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In this work, an efficient gas kinetic scheme is presented for simulation of two-dimensional incompressible
thermal flows. In the scheme, the macroscopic governing equations for mass, momentum, and energy conservation
are discretized by the finite volume method and the numerical fluxes at the cell interface are reconstructed by the
local solution of the Boltzmann equation. To compute these fluxes, two distribution functions are involved. One
is the circular function, which is used to calculate the numerical fluxes of mass and momentum equations. Due to
the incompressible limit, the circle at the cell interface can be approximately considered to be symmetric so that
the expressions for the conservative variables and numerical fluxes at the cell interface can be given explicitly and
concisely. Another one is the D2Q4 model, which is utilized to compute the numerical flux of the energy equation.
By following the process for derivation of numerical fluxes of mass and momentum equations, the numerical flux
of the energy equation can also be given explicitly. The accuracy, efficiency, and stability of the present scheme
are validated by simulating several thermal flow problems. Numerical results showed that the present scheme can
provide accurate numerical results for incompressible thermal flows at a wide range of Rayleigh numbers with
less computational cost than that needed by the thermal lattice Boltzmann flux solver (TLBFS), which has been
proven to be more efficient than the thermal lattice Boltzmann method (TLBM).
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I. INTRODUCTION

The Boltzmann equation is obtained by kinetic theory. It
provides the theoretical connection between hydrodynamics
and the underlying microscopic physics. Within the limitation
of local equilibrium for the distribution function, the Euler
equations, Navier-Stokes (NS) equations, and Burnett and
super-Burnett equations can be derived from the Boltzmann
equation by using the truncated expansion to different orders.
This means that we can solve fluid flow problems directly by
the solution of Boltzmann equation. These kinds of methods
are generally called kinetic methods. Two typical kinetic
methods are the lattice Boltzmann method (LBM) [1–4] and
gas kinetic scheme (GKS) [5–8]. Due to their kinetic nature and
strong foundation in physics, these two methods have received
much attention and have been widely used for modeling and
simulation of complex fluids [9–10].

In LBM, the discrete particle distribution functions are
updated by solving the algebraic lattice Boltzmann equation
(LBE) and the macroscopic flow properties are then computed
by the moments of particle distribution functions. The solution
of the standard LBM is very simple and efficient, and only
consists of a linear streaming process and a collision process
[11]. Due to its distinct features, the application of LBM
has been extended to solving incompressible thermal flow
problems [12–19]. So far, a number of promising thermal LBE
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models, such as the two-component distribution model [12],
the thermal energy distribution model [13–14], the temperature
distribution model [15], and the total energy distribution model
[16], have been proposed to describe the evolution of the
temperature/energy. The thermal lattice Boltzmann method
(TLBM) inherits the merits of the standard isothermal LBM
but, at the same time, also suffers from its drawbacks. First,
due to the lattice uniformity, the applications of TLBM are
usually restricted to uniform meshes. To apply it on nonuniform
meshes, some extra computational efforts are required [20–
22]. In addition, the TLBM requires large amounts of virtual
memory, because both the density and the temperature/energy
distribution functions need to be stored during the computation
[23]. Moreover, in the implementation of TLBM, the physical
boundary condition must be converted into the boundary
condition for distribution functions. This process is quite chal-
lenging for cases with curved boundaries [24]. To overcome
these drawbacks, Wang et al. [25–26] combined the LBM
with the conventional Navier-Stokes solver and proposed the
thermal lattice Boltzmann flux solver (TLBFS) for simulation
of incompressible thermal flows. In their method, the incom-
pressible Navier-Stokes equations are discretized by the finite
volume method (FVM) and the numerical fluxes at the cell
interface are reconstructed by the local solution of the LBE.
The conservative variables at cell centers are then obtained by
marching the macroscopic governing equations in time. This
solver has been proven to be more efficient than the TLBM of
Peng et al. [14].
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Different from the LBM, the GKS solves the macroscopic
governing equations directly so that the shortcomings of
standard LBM, which are mentioned above, can be effectively
overcome. In GKS, the finite volume method (FVM) or the
finite difference method (FDM) is commonly adopted to
discretize the macroscopic governing equations, and the local
solution of the continuous Boltzmann equation is utilized
to compute the numerical fluxes of conservative variables at
the cell interface. The conventional GKS usually applies the
Maxwellian function as the equilibrium distribution [27–31].
For simulation of compressible viscous flows, the formula-
tions of conventional GKS are quite complicated due to the
discontinuity of conservative variables and their derivatives at
the cell interface [31]. By assuming that the flow variables
and their derivatives at the cell interface change smoothly,
several simple GKSs have been developed for simulation of
both incompressible isothermal flows [32–34] and thermal
flows [35]. Although the incompressible GKS is simpler than
the compressible one, it is very inefficient compared to LBM.
As indicated by Guo et al. [34], for two-dimensional (2D)
problems, the LBM is about 10 and 3 times faster than the
GKS for steady and unsteady flow calculations, respectively.
In addition, Chen et al. [36] recently found that the above
incompressible GKSs may encounter a stability problem when
simulating incompressible flows at high Reynolds numbers.
Hence, they commented that the discontinuous derivatives of
flow variables at the cell interface should be retained in order
to improve the stability of incompressible GKS. Nevertheless,
this treatment leads the implementation of incompressible
GKS [36–37] to be as complicated as the compressible one.
Moreover, there are very few applications of GKS for simula-
tion of incompressible thermal flows in the literature. Among
the limited works, Xu and Lui [35] proposed an incompressible
GKS to solve Rayleigh-Bénard flows by introducing an addi-
tional distribution function for the evolution of thermal energy.
Given the above, it is imperative to develop an efficient and
robust GKS for simulation of incompressible flows, especially
for thermal flows.

To simplify the Maxwellian function-based GKS [5–7,27–
31], Shu and his coworkers proposed the circular function-
based GKS (CGKS) [38–40] for 2D cases. In CGKS, the
Maxwellian distribution function is first simplified to a circular
function. Then the integrals for conservation forms of moments
in the infinite domain for the Maxwellian function-based GKS,
which are needed to recover macroscopic governing equations,
are reduced to those in the finite domain (integrals along the
circle) for the CGKS. As a consequence, the expressions for
numerical fluxes at the cell interface can be simplified corre-
spondingly. In order to improve the computational efficiency
of incompressible isothermal flow problems, a simplified
CGKS is further developed based on the incompressible limit
[41]. In the simplified CGKS, the integral domain along the
circle is approximately considered to be symmetric at the
cell interface due to the incompressible limit. Besides that,
the energy equation is neglected since the incompressible
isothermal flows are simulated. With all these simplifications,
the formulations for the conservative variables and numerical
fluxes at the cell interface can be given explicitly and concisely.
At the same time, the discontinuity of conservative variables
and their derivatives at the cell interface can still be retained for

the simplified CGKS in order to keep good numerical stability
at high Reynolds numbers. This scheme has been proven to
be as accurate and robust as the original CGKS [39] and the
lattice Boltzmann flux solver (LBFS) [42] for simulation of
incompressible isothermal flows. In terms of computational
cost, the simplified CGKS is more efficient than the other two.
Hence, it is worthwhile to extend the application of simplified
CGKS to incompressible thermal flows.

It can be found from the above discussion that the distri-
bution function of temperature/energy is usually introduced
in TLBM [12–19], TLBFS [25–26], and GKS of Xu and Lui
[35] in order to solve incompressible thermal flow problems.
In TLBM and TLBFS, the discrete thermal LBE model is used,
while in GKS of Xu and Lui [35] the continuous distribution
function is utilized. Due to its simplicity, the discrete thermal
LBE model is introduced into the simplified CGKS for simula-
tion of incompressible thermal flows in this work. To date, a lot
of thermal LBE models have been proposed for incompressible
thermal flows [12–16]. Among these models, the D2Q4 model
proposed by Guo et al. [15] is relatively simple, containing only
four discrete velocity points for the 2D case. As commented
by Huang et al. [43], the D2Q4 model is capable of obtaining
results with accuracy equal to the D2Q5 or D2Q9 models,
while the time of simulation with the D2Q4 model is less
than that of the latter. In addition, the D2Q4 model has been
validated to have excellent numerical stability and accuracy
at high Rayleigh numbers up to 108 for simulation of natural
convection in a square cavity [44]. Therefore, it was chosen
as the equilibrium distribution function for the evolution
of temperature in the present work. From Chapman-Enskog
expansion analysis, the governing equation of temperature
can be recovered from the LBE with the D2Q4 model, and
the flux of governing equation at the cell interface can be
computed by the moment of particle distribution functions.
Like the derivation of the simplified CGKS [41], we can
discretize the governing equation of temperature by FVM and
evaluate the numerical flux by the local solution of LBE with
the D2Q4 model. In addition, the effect of temperature field
on the flow field can be taken into account by the buoyancy
force represented in the momentum equation. Although the
particle velocity space is continuous for the circular function
and discrete for the D2Q4 model, it has no direct effect on the
Galilean invariance of the present scheme. The reason is that
the Navier-Stokes equations are directly solved in the present
method and the local solution of the Boltzmann equation
is only used to reconstruct the numerical fluxes at the cell
interface. It is known that the Navier-Stokes equations are
Galilean invariant. To validate the present method, several
test examples of incompressible thermal flows with various
Rayleigh numbers are simulated. Since it has been proven to be
accurate, robust and efficient for simulation of incompressible
thermal flows, the TLBFS of Wang et al. [25–26] will be chosen
as the basis to assess the capability of the present scheme.

II. MACROSCOPIC GOVERNING EQUATIONS,
BOLTZMANN EQUATION, AND DISTRIBUTION

FUNCTIONS

A. Macroscopic governing equations and FVM discretization

In this work, we confine the study to incompressible thermal
flows. The macroscopic governing equations usually consist
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of incompressible Navier-Stokes equations and the energy
equation, which can be written as [35]

∂ρ

∂t
+ ∇ · (ρu) = 0, (1)

∂ρu
∂t

+∇ · (ρuu + pI) = ∇ · {μ[∇u + (∇u)T ]} + fE, (2)

∂T

∂t
+ ∇ · (T u) = κ∇2T , (3)

where ρ, u, p, and T are respectively the density, velocity,
pressure, and temperature of fluid flow. μ and κ represent the
dynamic viscosity and the thermal diffusivity. I is the unit
tensor. fE is the buoyancy force resulting from the uneven
distribution of temperature field. According to the Boussinesq
approximation, fE can be computed by

fE = −ρβ(T − Tm)gj, (4)

where g represents the acceleration due to gravity, j is the unit
vector in the y direction, β is the thermal expansion coefficient,
and Tm is the average temperature of the flow field. As can
be seen from Eq. (3), the temperature field is affected by
the flow field. In contrast, the buoyancy force resulting from
temperature field also plays an essential role as an external
force for the momentum equation, as shown in Eq. (2).

To solve thermal flow problems with curved boundaries,
the governing equations (1)–(3) are discretized by the finite
volume method (FVM) in this work, where the conservative
variables are defined at cell centers. For the 2D case, Eqs. (1)–
(3) given by FVM can be written as

dWI

dt
= − 1

�I

Nf∑
i=1

FniSi + QI, (5)

where I is the index of a control volume, and �I and Nf

represent the volume and the number of the faces of the control
volume I , respectively. Si denotes the area of the ith interface
of the control volume. The conservative variable vector W,
flux Fn, and source term Q are given by

W = (ρ,ρu,ρv,T )T , (6)

Fn = (Fρ,Fρu,Fρv,FT )T , (7)

Q = (0,0, − ρβ(T − Tm)g,0)T . (8)

u = (u,v) is the velocity vector expressed in the global Carte-
sian coordinate system. The calculation of flux Fn and source
term Q are two keys for solving Eq. (5). The source term Q can
be computed straightforwardly from the conservative variables
W at cell centers. The calculation of Fn will be discussed in
the following sections.

For the convenience of derivation, a local-coordinate system
is introduced with the x1 axis pointing in the normal direction
and the x2 axis pointing in the tangential direction with
respect to the cell interface. In the local-coordinate system,
the conservative variables and fluxes can be expressed as

W = (ρ,ρu1,ρu2,T )T , (9)

Fn = (
Fρ,Fρu1 ,Fρu2 ,FT

)T
, (10)

where u = (u1,u2) is the velocity vector expressed in the local-
coordinate system. By applying the coordinate transformation
from the local-coordinate system to the global Cartesian
coordinate system, we can get the relationship between Eqs. (7)
and (10) as follows:

Fn = (
Fρ,nxFρu1 − nyFρu2 ,nxFρu2 + nyFρu1 ,FT

)T
. (11)

n = (nx,ny) denotes the unit normal vector of the cell interface
in the global Cartesian coordinate system. It can be seen from
Eq. (11) that the calculation of Fn is equivalent to evaluating
Fn in the local-coordinate system.

B. Boltzmann equation, circular function, and D2Q4 model

In order to recover the macroscopic governing equations
(1)–(3) without the external forcing term fE , two Boltzmann
equations with different distribution functions can be con-
structed in the following forms [15,44]:

∂f

∂t
+ ξ · ∇f = f eq − f

τν

, (12)

∂h

∂t
+ ξ · ∇h = heq − h

τκ

, (13)

where f and h are respectively the density distribution func-
tion and the temperature distribution function. f eq and heq

are the equilibrium states approached by f and h through
particle collisions within the collision time scales τν and τκ ,
respectively. ξ = (ξ1,ξ2) is the particle velocity in the particle
velocity space. Equation (12) is used to recover the mass and
momentum equations without the external forcing term fE ;
Eq. (13) is utilized to recover the energy equation.

The equilibrium state f eq in Eq. (12) is originally the
Maxwellian distribution function. As reported in [38–39], for
the 2D case, the Maxwellian distribution function can be
simplified to the circular function gC given by,

f eq = gC =
{ ρ

2π
if (ξ1 − u1)2 + (ξ2 − u2)2 = c2,

0 otherwise,
(14)

where the square of radius c actually represents the mean
kinetic energy of the particles. For incompressible flows, c2

can be linked to the reference velocity u0 and Mach number
Ma by the following form [41]:

c2 = Dc2
s = Du2

0

Ma2
(15)

Here, D is the abbreviation of the dimension (D = 2 for
two dimensions) and cs = u0/Ma is the sound speed. For
simulation of incompressible flows, u0 and cs can be taken
as 0.1 and 1/

√
3 respectively to satisfy the requirement of the

incompressible limit (i.e., Ma < 0.3). This setup is also widely
used in the lattice Boltzmann method (LBM) [1–4]. In addition,
from Eq. (14), the particle velocity components in the local
coordinate system can be expressed as

ξ1 = u1 + c cos(θ ), (16a)

ξ2 = u2 + c sin(θ ), (16b)

The definition of the angle θ is shown in Fig. 1.
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cell interface

x1
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FIG. 1. Distribution of the circular function in the particle velocity
space at a cell interface for incompressible flows.

With notations of c1 = c cos(θ ), c2 = c sin(θ ), and ξα =
uα + cα , the conservation forms of moments for the circular
function, which are used to recover incompressible Navier-
Stokes equations, can be expressed as [41]∫ 2π

0
gCdθ = ρ, (17a)

∫ 2π

0
gCξαdθ = ρuα, (17b)

∫ 2π

0
gCξαξβdθ = ρuαuβ + pδαβ, (17c)

∫ 2π

0
gCξαξβξχdθ = p(uαδβχ + uβδχα + uχδαβ)

+ ρuαuβuχ , (17d)

where ξα , ξβ , ξχ and uα , uβ , uχ are the particle velocities
and macroscopic flow velocities in the α, β, and χ directions,
respectively. As shown in Eq. (17), the connection between the
distribution function and the conservative variables and fluxes
can be written as

W(1 : 3) =
∫ 2π

0
ϕαf dθ, (18)

Fn(1 : 3) =
∫ 2π

0
ξ1ϕαf dθ. (19)

Here, the notation (1 : 3) represents the first three compo-
nents of the vector. ϕα is the moment vector given by

ϕα = (1,ξ1,ξ2)T (20)

In addition, from the Chapman-Enskog expansion analysis,
the relationship between the kinematic viscosity μ and colli-
sion time scale τν can be expressed as [33]

τν = μ

ρc2/D
= μ

ρc2
s

. (21)

Equation (19) shows that the key issue to calculate the
fluxes Fn(1 : 3) is to obtain the distribution function f and
the moments ϕα at the cell interface.

interface

1x

2x

1

mid-point of 

cell interface

2

3

4

FIG. 2. Distribution of D2Q4 model in the particle velocity space
at a cell interface.

To solve the energy equation, since the discrete LBE model
is used, we should reformulate Eq. (13) into the discrete form

∂hα

∂t
+ eα · ∇hα = h

eq
α − hα

τκ

. (22)

Note that in Eq. (22), the particle velocity ξ has been written
as eα . In this work, the D2Q4 model is applied in the discrete
lattice velocity space. The equilibrium state h

eq
α and the discrete

particle velocity eα of the D2Q4 model are given by [15]

heq
α = T

4
[1 + 2eα · u], α = 1,2,3,4, (23)

eα = (cos[π (α − 1)/2], sin[π (α − 1)/2]),

α = 1,2,3,4. (24)

The distribution of the D2Q4 model in the particle velocity
space at a cell interface in the local coordinate system is shown
in Fig. 2.

From the Chapman-Enskog expansion analysis, we can
get the connection between the distribution function and
temperature and flux of the energy equation as follows:

W(4) =
∑

α

hα, (25)

Fn(4) =
∑

α

eα,1hα, (26)

where the notation (4) denotes that the fourth component of
the vector is computed by Eqs. (25) and (26). eα,1 is the first
component of particle velocity in the local-coordinate system.
In addition, the relationship between the thermal diffusivity κ

and collision time scale τκ can be written as

τκ = 2κ. (27)

The detailed Chapman-Enskog expansion analysis for re-
covering the energy equation from Eq. (22) with the D2Q4
model can be found in Appendix A. Equation (26) shows that
the key issue to calculate the flux of the energy equation, Fn(4),
is to compute the distribution function hα at the cell interface.
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III. AN EFFICIENT GAS KINETIC SCHEME FOR
INCOMPRESSIBLE THERMAL FLOWS

A. Evolution for fluxes of mass and momentum equations

In our early work [41], a simplified CGKS was proposed
for simulation of incompressible isothermal flows, and the
expressions of numerical fluxes for mass and momentum
equations were derived in detail. These formulations can be
directly used to calculate the fluxes Fn(1 : 3) in this work. For
convenient application, a brief review and the final expressions
of the simplified CGKS are given in this subsection. Suppose
that the cell interface is located at r = 0; the distribution
function at the cell interface can be written as

f (0,t) = f eq(0,t) + f neq(0,t)

≈ gC(0,t) + τ ∗
ν [gC(−ξδt,t − δt) − gC(0,t)], (28)

where gC(0,t) = f eq(0,t) is the equilibrium distribution func-
tion at the cell interface, and gC(−ξδt,t − δt) is the equi-
librium distribution function on the circle. τ ∗

ν = τν/δt is the
dimensionless collision time and δt is the streaming time step
in the solution reconstruction at the cell interface. The deter-
mination of δt can be found in Appendix B. To simplify the
notation, we denote (0,t) by superscript face and (−ξδt,t − δt)
by superscript cir in the following text. Substituting Eq. (28)
into Eq. (19), we can get

Fn(1 : 3) =
∫

ξ face
1 ϕface

α gface
C dθ + τ ∗

ν

[∫
ξ cir

1 ϕcir
α gcir

C dθ

−
∫

ξ face
1 ϕface

α gface
C dθ

]

= FI (1 : 3) + τ ∗
ν [FII (1 : 3) − FI (1 : 3)]. (29)

In Eq. (29), FI (1 : 3) denotes the flux attributed to the
equilibrium distribution function and moments at the cell
interface, and FII (1 : 3) represents the flux attributed to the
equilibrium distribution function and moments on the circle.

In the simplified CGKS, the equilibrium distribution func-
tion and moments are functions of the conservative variables.
Furthermore, the conservative variables on the circle can be
obtained by interpolation from those at cell centers, and the
conservative variables at the cell interface can be computed by
Eq. (18). According to the compatibility condition and con-
sidering the incompressible limit, the conservative variables at
the cell interface can be expressed as [41]

W
face

(1 : 3) =
∫ π

2

− π
2

ϕcir,L
α g

cir,L
C dθ +

∫ 3π
2

π
2

ϕcir,R
α g

cir,R
C dθ.

(30)

The superscripts L and R represent the variables defined
at the left and right cells, respectively. Once the conservative
variables at the cell interface are obtained, the flux FI (1 : 3)
can be calculated by directly substituting W

face
(1 : 3) into the

expression of inviscid flux, i.e.,

FI (1 : 3) =
⎡
⎣ ρu1

ρu1u1 + ρc+c+/D

ρu1u2

⎤
⎦

face

, (31)

where c+ = c is a constant determined from Eq. (15). Similarly
to the derivation of Eq. (30), the flux FII (1 : 3) can be
computed by

FII (1 : 3) =
∫ π

2

− π
2

ξ
cir,L
1 ϕcir,L

α g
cir,L
C dθ

+
∫ 3π

2

π
2

ξ
cir,R
1 ϕcir,R

α g
cir,R
C dθ. (32)

The expressions of W
face

(1 : 3) and FII (1 : 3) can be found

in Ref. [41] or Appendix B. Note that both W
face

(1 : 3) and
FII (1 : 3) can be expressed concisely and explicitly for the
simplified CGKS, which are the functions of the conservative
variables and their derivatives at the left and right cells. In
the meantime, the discontinuities of conservative variables
and their derivatives at the cell interface are still kept in the
present scheme for enhancing the numerical stability, as shown
in Eqs. (30) and (32).

B. Evolution for flux of energy equation

Like the derivation of the numerical fluxes for mass and
momentum equations, the temperature distribution function at
the cell interface can also be written as

hα(0,t) = heq
α (0,t) + hneq

α (0,t)

≈ heq
α (0,t) + τ ∗

κ

[
heq

α (−eαδt,t − δt) − heq
α (0,t)

]
.

(33)

where τ ∗
κ = τκ/δt is the dimensionless collision time. By

substituting Eq. (33) into Eq. (26), we have

Fn(4) =
∑

α

eα,1h
eq
α (0,t) + τ ∗

κ

[∑
α

eα,1h
eq
α (−eαδt,t − δt)

−
∑

α

eα,1h
eq
α (0,t)

]

= FI (4) + τ ∗
κ [FII (4) − FI (4)]. (34)

To compute FI (4) and FII (4), the flow velocity and tem-
perature at the surrounding points of the cell interface have to
be determined in advance. For any variable φ, its value at the
surrounding points of the cell interface can be computed by

φ(−eαδt,t − δt) =
⎧⎨
⎩

φL − ∇φL · eαδt if eα,1 > 0,

φR − ∇φR · eαδt if eα,1 < 0,

φM − ∇φM · eαδt if eα,1 = 0,

(35)

where φ represents the variables u1, u2, and T . φL and φR are
the values of φ at the left and right sides of the cell interface.
∇φL and ∇φR are the first-order derivatives of φ at the left
and right cells around the cell interface, respectively. The
superscript M denotes the average value at the cell interface,
i.e., φM = (φL + φR)/2 and ∇φM = (∇φL + ∇φR)/2. Once
the velocity and temperature at the surrounding points are
obtained, the distribution function h

eq
α (−eαδt,t − δt) can be

determined by substituting Eq. (35) into Eq. (23).
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According to the compatibility condition and Eq. (25), the
temperature at the cell interface can be computed by

W
face

(4) =
∑

α

heq
α (−eαδt,t − δt). (36)

By substituting Eq. (35) into Eq. (36), we have

W
face

(4) =
[

1

4

(
T − ∂T

∂x1
δt

)(
1 + 2u1 − 2

∂u1

∂x1
δt

)]L

+
[

1

4

(
T + ∂T

∂x1
δt

)(
1 − 2u1 − 2

∂u1

∂x1
δt

)]R

+
[

1

2
T − T

∂u2

∂x2
δt − u2

∂T

∂x2
δt

]M

. (37)

By combining Eqs. (B1)–(B3) and Eq. (37), we can obtain
all the conservative variables at the cell interface. Then, the flux
of the energy equation attributed to the equilibrium distribution
function at the cell interface can be calculated by

FI (4) = W
face

(2)W
face

(4)/W
face

(1). (38)

The flux attributed to the equilibrium distribution at sur-
rounding points of the cell interface can be computed straight-
forwardly by substituting Eq. (35) into the definition of FII (4).
After some algebraic manipulations, we have

FII (4) =
[

1

4

(
T − ∂T

∂x1
δt

)(
1 + 2u1 − 2

∂u1

∂x1
δt

)]L

−
[

1

4

(
T + ∂T

∂x1
δt

)(
1 − 2u1 − 2

∂u1

∂x1
δt

)]R

.

(39)

Furthermore, by substituting Eqs. (38) and (39) into
Eq. (34), we can obtain the whole expression for the numerical
flux of the energy equation.

IV. NUMERICAL EXAMPLES

In this section, the performances of the developed solver are
validated by simulating several incompressible thermal flow
problems. In the simulations, the conservative variables at two
sides of cell interface are obtained by linear interpolation from
those at cell centers. This implementation has been validated
to have second-order accuracy in space for isothermal incom-
pressible flows [41]. In fact, the calculation of distribution
function at the cell interface [Eqs. (28) and (33)] was proved
to be of second-order accuracy in both space and time in
our previous work [45]. Thus, the accuracy of the present
scheme could be affected by the interpolation technique and
temporal discretization. For the temporal discretization to solve
Eq. (5), the explicit Euler method is applied, which is inherently
first-order accurate in time.

Since the macroscopic governing equations are actually
solved in the present method, the boundary condition can be
implemented based on the flow variables by creating two ghost
cells. For the adiabatic wall condition, the flow variables in the
ghost cells can be taken as

ρ−i = ρi, T−i = Ti, i = 1,2,

u−i = −ui, v−i = −vi, i = 1,2, (40)

Mesh spacing

E
rr

o
r

0.1 0.2 0.3
10-4

10-3

10-2

10-1

Slope=1.945

FIG. 3. Error of Nusselt number versus mesh spacing for
Rayleigh-Bénard convection at Ra = 5 × 103.

where the subscripts −1 and −2 represent the first and second
ghost cells and the subscripts 1 and 2 denote the first and
second cells adjacent to the boundary. For the isothermal wall
condition, the density and velocity in the ghost cells can be
calculated the same way as the adiabatic wall condition, while
the temperature should be determined by

T−i = 2Tb − Ti, i = 1,2, (41)

where Tb is the temperature at the boundary. For the far-
field boundary, the characteristic-based boundary condition is
utilized. Specifically, for the inflow boundary condition, the
velocity and temperature in the ghost cells are determined
from the free-stream state and the density is calculated by
interpolation from those at the interior cells. For the outflow

Ra

N
u

103 104 105
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Clever & Busse
He et al.
TLBFS
Present

FIG. 4. The dependence of Nusselt number on Rayleigh number
for Rayleigh-Bénard convection.
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(a) (b)

(c) (d)

FIG. 5. Streamlines for Rayleigh-Bénard convection at different Rayleigh numbers. (a) Ra = 5 × 103, (b) Ra = 104, (c) Ra = 5 × 104,
(d) Ra = 105.

boundary condition, the velocity and temperature in the ghost
cells are interpolated from the interior cells and the density is
set as the free-stream state.

In all simulations, the convergence criterion is set to be

Error = max(Verror,Terror) < 1 × 10−8, (42)

where Verror and Terror are respectively the relative errors of
velocity field and temperature field, which are defined as

Verror =
∑

Nx×Ny |(√u2 + v2)
n+1 − (

√
u2 + v2)

n|∑
Nx×Ny (

√
u2 + v2)

n+1 ,

(43a)

Terror =
∑

Nx×Ny |T n+1 − T n|∑
Nx×Ny T n+1

. (43b)

In order to compare the solution accuracy and computa-
tional efficiency of the present scheme with those of TLBFS

[25–26], all the configurations of the two schemes are taken to
be the same except for the calculation of numerical fluxes at
the cell interface. In addition, all the computations were done
on a PC with an Intel® Xeon® processor E5-2643 CPU at
3.3 GHz, and no parallel computation is adopted here.

A. Case 1: Rayleigh-Bénard convection

A good benchmark test for the developed solver is Rayleigh-
Bénard convection, in which a viscous fluid between two
horizontal walls is heated from the bottom while the top is
maintained at a lower temperature. The temperatures at the
bottom and top walls are set as T1 = 1 and T0 = 0, with
the difference �T = 1. The dynamic similarity of this test
example depends on two dimensionless parameters: the Prandtl
number Pr and the Rayleigh number Ra. They are respectively
defined as

Pr = ν

κ
, Ra = gβ�T H 3

νκ
= V 2

c H 2

νκ
, (44)

(a) (b)

(c) (d)

FIG. 6. Isotherms for Rayleigh-Bénard convection at different Rayleigh numbers. (a) Ra = 5 × 103, (b) Ra = 104, (c) Ra = 5 × 104,
(d) Ra = 105.
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TABLE I. Comparison of computational time (minutes) of
TLBFS and the present scheme for Rayleigh-Bénard convection at
different Rayleigh numbers.

Schemes Ra = 5 × 103 Ra = 104 Ra = 5 × 104 Ra = 105

TLBFS 3.9234 3.8511 6.8529 11.2126
Present 2.8538 2.8434 5.2520 8.1157
Present/TLBFS 0.7274 0.7383 0.7664 0.7238

where ν is the kinematic viscosity. H is the vertical length
scale of the test case, which is chosen as the characteristic
length; Vc = √

gβH�T is the characteristic thermal velocity.
We chose Pr = 0.71 and Vc = 0.1 in the present calculations.
In addition, the horizontal and vertical length scales are taken
as L = 2 and H = 1, respectively. Moreover, no-slip boundary
conditions are implemented at the bottom and top walls, and
periodic boundary conditions are applied on the left and right
boundaries.

For this test case, there exists a critical Rayleigh number
Rac = 1707.76, which can be obtained by linear stability the-
ory [46]. At Rayleigh numbers below Rac, a static solution with
zero velocity everywhere and a linear function of the vertical
coordinate for temperature exists for this problem, while at

Rayleigh numbers above Rac, the static conduction becomes
unstable to any small disturbance and the system becomes
convective. In order to invoke the convective phenomenon,
the Rayleigh numbers Ra = 2 × 103, 2.5 × 103, 3 × 103, 5 ×
103, 104, 2 × 104, 3 × 104, 5 × 104, and 105 are considered in
our work. The heat transfer between the top and bottom walls
can be described by the Nusselt number, which is defined as

Nu = 1 + 〈vT 〉
k�T /H

, (45)

where 〈vT 〉 represents the average of product of the vertical
velocity and temperature over the whole flow domain. First,
the test case of Ra = 5 × 103 is simulated to validate the
overall accuracy of the present method in space. In the simu-
lation, the computational domain is divided by six different
uniform grids, Nx × Ny = 10 × 5, 20 × 10, 40 × 20, 80 ×
40, 160 × 80, and 320 × 160. The numerical error is defined
as the absolute value of the difference between the final steady
value of Nu for the result of Nx × Ny = 320 × 160 (this
result is considered as the benchmark datum) and that of each
resolution. Figure 3 shows the numerical error versus mesh
spacing (�x) in logarithmic scale. It can be seen that the
overall accuracy of the present scheme is about second order in
space.

(a) (b)

(c) (d)

FIG. 7. Streamlines for natural convection in a square cavity at four different Rayleigh numbers. (a) Ra = 103, (b) Ra = 104, (c) Ra = 105,
(d) Ra = 106.
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FIG. 8. Isotherms for natural convection in a square cavity at four different Rayleigh numbers. (a) Ra = 103, (b) Ra = 104, (c) Ra = 105,
(d) Ra = 106.

Second, the uniform mesh with Nx × Ny = 80 × 40 cells
is used for simulation of this test case at different Rayleigh
numbers. Figure 4 shows the relationship between the Nusselt
number and the Rayleigh number obtained by the present
scheme and TLBFS. Also displayed in this figure are the
simulation results of Clever and Busse [47] and He et al. [13].
It can be clearly seen that good agreements are achieved. The
computed streamlines and isotherms of the Rayleigh-Bénard
convection at four different Rayleigh numbers are shown
in Figs. 5 and 6, respectively. It can be observed that the
heat transfer in the box is enhanced as the Rayleigh number
increases. In addition, in terms of computational efficiency,
Table I shows that the present method takes at most 77% of
the computational time needed by TLBFS. This implies that
the present scheme is more efficient than the TLBFS. The
reason for this may be that a large number of interpolations are
required for the TLBFS to calculate the nonequilibrium term
of the distribution function at the cell interface since the D2Q9
lattice velocity model is utilized, while the numerical fluxes of
the present scheme are given explicitly as the function of flow
variables and their derivatives.

B. Case 2: Natural convection in a square cavity

The second test case is natural convection in a square cavity,
which is utilized to validate the present solver for simulation

of incompressible thermal flows at a wide range of Rayleigh
numbers. In this test example, the no-slip boundary condition
is applied on all walls. The adiabatic condition is set on the
top and bottom walls, while isothermal conditions with fixed
temperatures of T1 = 1 and T0 = 0 are respectively applied to

TABLE II. Results of natural convection in a square cavity at four
different Rayleigh numbers: Ra = 103, 104, 105, and 106.

Schemes Ra = 103 Ra = 104 Ra = 105 Ra = 106

umax DQ [48] 3.649 16.190 34.736 64.775
TLBFS [25] 3.640 16.14 34.87 64.838

Present 3.647 16.183 34.775 64.938
y DQ [48] 0.815 0.825 0.855 0.850

TLBFS [25] 0.815 0.825 0.855 0.850
Present 0.815 0.823 0.853 0.850

vmax DQ [48] 3.698 19.638 68.640 220.64
TLBFS [25] 3.708 19.67 68.85 220.92

Present 3.696 19.627 68.634 220.67
x DQ [48] 0.180 0.120 0.065 0.035

TLBFS [25] 0.180 0.118 0.065 0.038
Present 0.175 0.117 0.067 0.038

Nu DQ [48] 1.118 2.245 4.523 8.762
TLBFS [25] 1.115 2.232 4.491 8.711

Present 1.118 2.245 4.524 8.835
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TABLE III. Comparison of computational time (hours) of TLBFS
and the present scheme for natural convection in a square cavity at
different Rayleigh numbers.

Schemes Ra = 103 Ra = 104 Ra = 105 Ra = 106

TLBFS 0.2652 1.8068 7.7501 31.4062
Present 0.1682 1.3596 5.9587 23.9196
Present/TLBFS 0.6342 0.7525 0.7689 0.7616

the left and right walls. In this test case, the vertical length is
equal to the horizontal length, i.e., H = L = 1. The dynamic
similarity of this test example depends on two dimensionless
parameters: the Prandtl number Pr and the Rayleigh number
Ra, which are defined the same as in Eq. (44). In the simulation,
the Nusselt number Nu is used to evaluate the heat transfer rate.
The averaged Nusselt number over the whole computational
domain and that along the line of x = L/2 are respectively
defined as

Nu = L

κ�T

1

L2

∫∫
©

�

(
uT − κ

∂T

∂x

)
d�, (46)

Nu1/2 = L

κ�T

1

L

∫
x=L/2

(
uT − κ

∂T

∂x

)
dl. (47)

In the present study, we set Pr = 0.71 and Vc = 0.1. The
simulated Rayleigh number is changed from 103 to 108. It
should be noted that the natural convection at high Rayleigh
numbers (Ra = 107 and 108) is a challenging test case. It
provides a good chance to examine the performance of the
present solver.

First, the test case of Ra = 103, 104, 105, and 106 is simu-
lated on uniform grids. In the present simulation, four different
uniform grids with 100 × 100, 150 × 150, 200 × 200, and
250 × 250 cells are respectively used for Ra = 103, 104, 105

and 106, as suggested by Peng et al. [14]. Figures 7 and 8
respectively show the streamlines and isotherms computed by
the present scheme. These plots agree well with those obtained
by Peng et al. [14] using the TLBM, Wang et al. [25] adopting
the TLBFS, and Shu and Xue [48] applying the high order
differential quadrature (DQ) method. In addition, Table II
quantitatively compares the computed representative proper-
ties with those of Wang et al. [25] and Shu and Xue [48]. In this
table, umax is the maximum u velocity at the vertical centerline
and y is the y coordinate of the corresponding location, vmax is
the maximum v velocity at the horizontal centerline, and x is
the x coordinate of the corresponding location. It can be seen
that the present results show good agreement with those of
the previous studies [25,48]. Moreover, Table III compares the
computational cost of TLBFS and the present scheme at four
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FIG. 9. Simulation results for natural convection in a square cavity. (a) Streamlines at Ra = 107, (b) streamlines at Ra = 108, (c) isotherms
at Ra = 107, (d) isotherms at Ra = 108.
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FIG. 10. Comparison of velocity profiles at the centerlines for natural convection in a square cavity. (a) Ra = 107, (b) Ra = 108.

different Rayleigh numbers. The high efficiency of the present
method is clearly demonstrated.

Second, the test case of Ra = 107 and 108 is solved on
nonuniform grids. For Ra = 107, a nonuniform grid with
301 × 301 points is used, and the distance from the wall to
the nearest grid point in the computational domain is taken
as 0.0004, while for Ra = 108, the computational grid is
set as 401 × 401, and the distance from the wall to the
nearest grid point in the computational domain is chosen as
0.0001. The mesh stretching transformation near the wall is
controlled by a hyperbolic tangent function. The computed
streamlines and isotherms at Ra = 107 and 108 are depicted
in Fig. 9. As can be seen from the figure, both the flow and
temperature boundary layers close to the hot and cold walls
are very thin compared with the test case at moderate Rayleigh
numbers (Ra = 103, 104, 105, and 106). Furthermore, vertical
convection in the central area becomes very weak and heat
conduction dominates this region. This observation can be
further validated through Fig. 10, which shows the u velocity
along the vertical centerline and v velocity along the horizontal
centerline. Also displayed in this figure are the results of Wang
et al. [44] obtained by the TLBFS. Clearly, good agreements
are achieved. Detailed comparisons of representative proper-

TABLE IV. Results of natural convection in a square cavity at
Ra = 107.

Parameters Contrino et al. [49] Quéré [50] TLBFS [44] Present

Mesh 15312 3012 3012

|ϕ|max 30.185 30.165 30.164 30.192
x 0.0857 0.086 0.0857 0.0848
y 0.5559 0.556 0.5559 0.5548
Nu1/2 16.523 16.52 16.543 16.518
umax 148.58 148.59 148.84 148.86
y 0.8793 0.879 0.8789 0.8800
vmax 699.31 699.18 699.91 699.20
x 0.0213 0.021 0.0216 0.0217

ties at Ra = 107 and 108 are respectively listed in Tables IV
and V. In these tables, |ϕ|max is the maximum stream function
in the whole computational domain, and x and y below |ϕ|max

are the coordinates of the corresponding location. Also listed
in these tables are the simulation results of Contrino et al. [49]
obtained by the thermal lattice Boltzmann equation with the
multiple-relaxation-times collision model (MRT-TLBE) and
Quéré [50] calculated by the high order pseudospectral method.
Once again, the present results compare well with the published
data [44,49–50]. Note that, since a nonuniform grid is utilized,
relatively fewer grid points are required in our simulation as
compared with the MRT-TLBE.

C. Case 3: Natural convection in a concentric annulus

To illustrate the capability of the present scheme for solving
thermal flow problems with curved boundaries, we present a
numerical test of the natural convection in a concentric annulus
[25,51–53] in this subsection. The configuration of the problem
is illustrated in Fig. 11. Basically, it is an internal natural con-
vection problem bounded by a hot outer cylinder with radius Ro

and temperature To = 1 and a cold inner cylinder with radius
Ri and temperature Ti = 0. The dynamic similarity of this

TABLE V. Results of natural convection in a square cavity at
Ra = 108.

Parameters Contrino et al. [49] Quéré [50] TLBFS [44] Present

Mesh 15312 4012 4012

|ϕ|max 53.953 53.85 53.893 53.885
x 0.0480 0.048 0.0476 0.0476
y 0.5533 0.553 0.5528 0.5532
Nu1/2 30.227 30.225 30.301 30.227
umax 321.37 321.9 323.65 321.49
y 0.9276 0.928 0.9288 0.9284
vmax 2222.3 2222 2222.9 2221.7
x 0.0120 0.012 0.0119 0.0122
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iR

oR

Cold wall iT

L

Hot wall oT

FIG. 11. Illustration of the setup for natural convection in a
concentric annulus.

problem is characterized by three dimensionless parameters,
i.e., the aspect ratio Ar, the Prandtl number Pr, and the Rayleigh
number Ra. Pr and Ra were previously defined in Eq. (44),
while the characteristic length H is changed to the distance
between the two cylinders L in this test case. The aspect ratio
Ar is defined as

Ar = Ro

Ri

. (48)

In addition, to quantify the heat transfer efficiency of this
problem, the average equivalent heat conductivities on two
cylinders are defined as follows [25,51]:

(a) (b)

(c) (d)

FIG. 12. Streamlines for natural convection in a concentric an-
nulus at different Rayleigh numbers. (a) Ra = 102, (b) Ra = 103,
(c) Ra = 104, (d) Ra = 5 × 104.
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FIG. 13. Isotherms for natural convection in a concentric annulus
at different Rayleigh numbers. (a) Ra = 102, (b) Ra = 103, (c) Ra =
104, (d) Ra = 5 × 104.

keqi = ln (Ar)

2π (Ar − 1)

∫ 2π

0

∂T

∂r
dθ for the inner cylinder, (49)

keqo = Ar ln (Ar)

2π (Ar − 1)

∫ 2π

0

∂T

∂r
dθ for the outer cylinder. (50)

In the present study, we choose Ar = 2.6 and Pr = 0.71. Six
cases with various Rayleigh numbers of Ra = 102, 103, 3 ×
103, 6 × 103, 104, and 5 × 104 are carried out on a body-fitted
O-type mesh with size 251×61, and the distance from the inner
wall to the nearest grid point in the computational domain is
taken as 0.018.

Figures 12 and 13 respectively show the streamlines and
isotherms at different Rayleigh numbers in our simulations.
As can be seen from these figures, at lower Rayleigh number

TABLE VI. Comparison of average equivalent heat conductivity
for natural convection in a concentric annulus at different Rayleigh
numbers.

Inner cylinder, keqi Outer cylinder, keqo

Kuehn Shu TLBFS Kuehn Shu TLBFS
Ra [52] [51] [25] Present [52] [51] [25] Present

102 1.000 1.001 1.002 1.001 1.002 1.001 1.002 1.001
103 1.081 1.082 1.076 1.079 1.084 1.082 1.078 1.080
3 × 103 1.404 1.397 1.381 1.390 1.402 1.397 1.384 1.392
6 × 103 1.736 1.715 1.695 1.707 1.735 1.715 1.701 1.709
104 2.010 1.979 1.960 1.970 2.005 1.979 1.960 1.972
5 × 104 3.024 2.958 2.941 2.949 2.973 2.958 2.941 2.953
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with 1 1T =

FIG. 14. Illustration of the setup for mixed heat transfer from a
heated circular cylinder.

(Ra = 102), both the streamlines and isotherms are almost
symmetric about the x and y axes. This means that the thermal
conduction dominates the heat transfer and the heat transfer
efficiency is relatively low in this case. As the Rayleigh

TABLE VII. Comparison of computational time (hours) of
TLBFS and the present scheme for natural convection in a concentric
annulus at different Rayleigh numbers.

Schemes Ra = 102 Ra = 103 Ra = 104 Ra = 5 × 104

TLBFS 0.5631 1.0768 2.6920 4.0346
Present 0.4218 0.8027 2.0240 3.1278
Present/TLBFS 0.7491 0.7454 0.7519 0.7752

number is increased, the vortex centers of the flow field move
upwards gradually and the isotherms are squeezed closer
to the boundaries. This indicates that thermal convection
dominates the heat transfer and the heat transfer efficiency is
relatively high at large Rayleigh number. These observations
can also be quantitatively verified via Table VI, in which the
converged results of the average equivalent heat conductivities
are compared with the data given by Shu [51], Kuehn and
Goldstein [52], and Wang et al. [25]. It can be observed
that the average equivalent conductivities on both inner and
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FIG. 15. Streamlines for mixed convection at Re = 20 and various Gr. (a) Gr = 0, (b) Gr = 100, (c) Gr = 800, (d) Gr = 1600.
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FIG. 16. Isotherms for mixed convection at Re = 20 and various Gr. (a) Gr = 0, (b) Gr = 100, (c) Gr = 800, (d) Gr = 1600.

outer cylinders increase gradually as the Rayleigh number is
increased. Besides that, we also observe that the computed
parameters agree well with the reference data. Finally, we
compare the computational cost of TLBFS and the present
scheme in Table VII. It clearly shows that the present scheme
is more efficient than the TLBFS.

D. Case 4: Mixed heat transfer from a heated circular cylinder

The last test case is the mixed heat transfer from a heated
circular cylinder, which is used to examine the capability
of present solver in modeling external thermal flows. Since
both natural heat convection and forced heat convection are
involved, the physical mechanism of this problem is more
complicated than the previous three examples. As shown in
Fig. 14, a stationary heated circular cylinder with the diameter
D = 1 and temperature T1 = 1 is placed in an incoming
fluid flow with free-stream velocity u0 = 0.1 and free-stream
temperature T0 = 0. Apart from the Prandtl number defined
in Eq. (44) with the characteristic length D, the Reynolds
number Re, Grashof number Gr, and average Nusselt number
Nu are usually introduced in order to better describe the

mixed convection problem. These dimensionless parameters
are defined as follows:

Re = u0D

ν
, (51)

Gr = gβ(T1 − T0)D3

ν2
, (52)

Nu = D

2π (T1 − T0)

∫ 2π

0

∂T

∂n

∣∣∣∣
w

dθ. (53)

In the present simulation, we choose Re = 20 and Pr = 0.7
to keep in accordance with the initial setup in Refs. [25,54].
Four cases with various Grashof numbers of Gr = 0, 100, 800,
and 1600 are simulated on a body-fitted O-type mesh. The
computational grid is taken as 301 × 201, and the far-field
boundary is put at 25.5 diameters away from the center of the
cylinder. The distance from the wall to the nearest grid point
in the computational domain is taken as 0.005.

The computed streamlines and isotherms at four different
Grashof numbers are plotted in Figs. 15 and 16, respectively.
Since the temperature field has no effect on the flow field at
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TABLE VIII. Comparison of average Nusselt number and sepa-
ration angle on a circular cylinder for mixed convection at Re = 20
and various Gr.

Nu θs(deg)

Gr Badr [54] TLBFS [25] Present Badr [54] TLBFS [25] Present

0 2.540 2.523 2.454 43.13 43.19 43.59
100 2.654 2.640 2.655 29.51 29.73 30.01
800 3.227 3.208 3.201 0.0 0.0 0.0
1600 3.564 3.554 3.508 0.0 0.0 0.0

zero Grashof number, clear recirculation zones are captured
and the streamlines obtained are the same as those in isothermal
simulations at the same Reynolds number. As the Grashof
number is increased, the separation angle and the length of the
vortex behind the circular cylinder decreases gradually until
the vortex disappears at Gr � 800. This phenomenon means
that the viscous effect is weakened by the heat convection as
the Grashof number increases. In the isotherm figure, it can
be seen that the isotherms are squeezed closer to the cylinder
surface at high Grashof number. Hence, high heat transfer
rates could be expected in such cases. In addition, Table VIII
quantitatively compares the computed average Nusselt number
and separation angle on the circular cylinder at different
Grashof numbers with the results of Badr [54] and Wang
et al. [25]. As expected, at higher Grashof number, a larger
average Nusselt number is obtained in our simulations. In the
meantime, the results of the present solver match very well
with the published data [25,54].

V. CONCLUSIONS

This work presents an efficient gas kinetic scheme for
simulation of incompressible thermal flows. In the scheme, two
distribution functions are introduced to evaluate the numerical
fluxes at the cell interface. One is the circular function in
the gas kinetic scheme, and another one is the distribution
function in LBE with the use of the D2Q4 lattice velocity
model. The circular function is used to calculate the numerical
fluxes of mass and momentum equations, and the D2Q4 model
is utilized to compute the numerical flux of the energy equation.
By using the difference of equilibrium distribution functions
at the cell interface and its surrounding points to approximate
the nonequilibrium distribution function, and at the same time
considering the incompressible limit, the formulations for the
conservative variables and numerical fluxes at the cell interface
can be given concisely and explicitly. The effect of temperature
field on the flow field is taken into account by the buoyancy
force exerted on the momentum equation. It can be treated
as a source term and calculated straightforwardly from the
conservative variables at cell centers.

To validate the accuracy, efficiency, and stability of
the present scheme, several numerical examples, including
Rayleigh-Bénard convection, natural convection in a square
cavity, natural convection in a concentric annulus, and mixed
heat transfer from a heated circular cylinder, are simulated.
Numerical results showed that the incompressible thermal
flows can be well simulated by the developed solver. The

numerical stability of present scheme is validated by the test
case of natural convection in a square cavity at two high
Rayleigh numbers of Ra = 107 and 108. In terms of the
computational efficiency, the developed solver is more efficient
than the TLBFS of Wang et al. [25]. As shown in this work,
the present method takes about 63%–78% of the computational
time needed by TLBFS.
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APPENDIX A: CHAPMAN-ENSKOG ANALYSIS FOR
RECOVERING ENERGY EQUATION

By introducing multiscale expansion, the temperature dis-
tribution function, temporal derivative, and spatial derivative
can be respectively expanded as

hα = h(0)
α + εh(1)

α + ε2h(2)
α , (A1)

∂t = ε∂t1 + ε2∂t2, (A2)

∇ = ε∇1, (A3)

where h(0)
α = h

eq
α is the equilibrium state. ε is a small pa-

rameter proportional to the Knudsen number. By substituting
Eqs. (A1)–(A3) into Eq. (22), we have the following three
equations in terms of ε order:

O(ε0) : heq
α − h(0)

α = 0, (A4)

O(ε1) : (∂t1 + eα · ∇1)h(0)
α + h(1)

α

/
τκ = 0, (A5)

O(ε2) : ∂t2h
(0)
α + (∂t1 + eα · ∇1)h(1)

α + h(2)
α

/
τκ = 0. (A6)

By using the D2Q4 model [Eqs. (23) and (24)] and taking
summation of Eqs. (A5) and (A6) about index α, we can get

∂t1T + ∇1 · (uT ) = 0, (A7)

∂t2T + ∇1 ·
∏(1) = 0. (A8)

According to the Boussinesq approximation [15],
∏(1) can

be expressed as

∏(1) =
∑

α

eαh(1)
α

= −τκ

∑
α

eα(∂t1 + eα · ∇1)h(0)
α

= −τκ∇1T /2 + O(τκMa2∇1T ). (A9)
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Here, Ma is the Mach number. Substituting Eq. (A9) into
Eq. (A8) and combining Eqs. (A7) and (A8), we have

∂tT + ∇ · (T u) = τκ

2
∇2T + O(τκMa2∇2T ). (A10)

By comparing Eq. (A10) with Eq. (3), it is found that
the collision time scale and the thermal diffusivity have the
following relationship:

τκ = 2κ. (A11)

In addition, the error term for recovering energy equation is
O(τκMa2∇2T ). For simulation of incompressible flows, this
error term can be neglected.

APPENDIX B: CALCULATION OF W
face

(1 : 3)
AND FI I (1 : 3)

As shown in Eq. (29), the numerical fluxes of mass and
momentum equations at the cell interface consist of two parts:
the flux attributed to the equilibrium distribution function and
moments at the cell interface FI (1 : 3) and the flux attributed
to the equilibrium distribution function and moments on the
circle FII (1 : 3). FI (1 : 3) can be directly computed by the

conservative variables at the cell interface W
face

(1 : 3), as
shown in Eq. (31). Hence, the expression of W

face
(1 : 3) has

to be given first. By using Eq. (30), we have

W
face

(1) = [πg0 + 2g1]L + [πg0 − 2g1]R, (B1)

W
face

(2) =
[
πa0g0 + 2(a1g0 + a0g1) + π

2
(a1g1 + a2g2)

]L

,

+
[
πa0g0−2(a1g0+a0g1)+π

2
(a1g1+a2g2)

]R

(B2)

W
face

(3) =
[
πb0g0 + 2(b1g0 + b0g1) + π

2
(b1g1 + b2g2)

]L

,

+
[
πb0g0−2(b1g0 + b0g1)+π

2
(b1g1 + b2g2)

]R

(B3)

where

aL
0 = uL

1 − ∂uL
1

∂x1
u+

1 δt − ∂uL
1

∂x2
u+

2 δt, aL
1 = c+ − ∂uL

1

∂x1
c+δt,

aL
2 = −∂uL

1

∂x2
c+δt,

bL
0 = uL

2 − ∂uL
2

∂x1
u+

1 δt − ∂uL
2

∂x2
u+

2 δt, bL
1 = −∂uL

2

∂x1
c+δt,

bL
2 = c+ − ∂uL

2

∂x2
c+δt,

gL
0 = gL

C − ∂gL
C

∂x1
u+

1 δt − ∂gL
C

∂x2
u+

2 δt, gL
1 = −∂gL

C

∂x1
c+δt,

gL
2 = −∂gL

C

∂x2
c+δt,

and the coefficients aR
i , bR

i , and gR
i , i = 0,1,2, can be easily

obtained by replacing the superscript L of the above equations
with R. Note that these coefficients are only related to the
conservative variables and their derivatives at the left and right
cells around the cell interface. In addition, the predicted mean
flow velocities u+

1 and u+
2 can be calculated by Roe average

or simple average from those at the left and right sides of cell
interface [38–40].

The flux attributed to the equilibrium distribution function
and moments on the circle can be computed by Eq. (32). After
some algebraic manipulations, we have

FII (1) =
[
πa0g0 + 2(a1g0 + a0g1) + π

2
(a1g1 + a2g2)

]L

+
[
πa0g0 − 2(a1g0 + a0g1) + π

2
(a1g1 + a2g2)

]R

, (B4)

FII (2)=
[
a0g0(πa0+2a1) +

(
2a0+πa1

2

)
(a0g1 + a1g0) + πa2

2
(a0g2 + a2g0) +

(
πa0

2
+ 4a1

3

)
(a1g1 + a2g2) + 2

3
a2a2g1

]L

,

+
[
a0g0(πa0−2a1)−

(
2a0−πa1

2

)
(a0g1+a1g0) + πa2

2
(a0g2 + a2g0) +

(
πa0

2
−4a1

3

)
(a1g1 + a2g2)−2

3
a2a2g1

]R

(B5)

FII (3) =
[
b0g0(πa0 + 2a1) +

(
2a0 + πa1

2

)
(b0g1 + b1g0) + πa2

2
(b0g2 + b2g0) +

(
πa0

2
+ 2a1

3

)
(b1g1 + b2g2)

+2

3
a2(b1g2 + b2g1) + 2

3
a1b1g1

]L

+
[
b0g0(πa0 − 2a1) −

(
2a0 − πa1

2

)
(b0g1 + b1g0) + πa2

2
(b0g2 + b2g0)

+
(

πa0

2
− 2a1

3

)
(b1g1 + b2g2) − 2

3
a2(b1g2 + b2g1) − 2

3
a1b1g1

]R

(B6)

Finally, by substituting Eq. (31) and Eqs. (B4)–(B6) into Eq. (29), we can obtain the whole expression of numerical fluxes at
the cell interface for the mass and momentum equations.
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The last undetermined variable in Eqs. (29) and (34) is the streaming time step δt . The principle for the choice of δt is that the
circle in the physical space and the position of discrete velocity points of the D2Q4 model must be within the cell of the interface
in order to avoid extrapolation. They are respectively shown in Figs. 1 and 2. A feasible way to determine δt can be expressed as

δt = 0.4 × min{�l,�r}
max

{
ucircle

max , u
D2Q4
max

} , (B7)

where

ucircle
max = max{u+

1 ,u+
2 } + c+ and uD2Q4

max = |eα| = 1.

�l and �r are the shortest edge lengths of the left and right cells around the cell interface, respectively.
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