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Partial entropic stabilization of lattice Boltzmann magnetohydrodynamics
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The entropic lattice Boltzmann algorithm of Karlin et al. [Phys. Rev. E 90, 031302 (2014)] is partially
extended to magnetohydrodynamics, based on the Dellar model of introducing a vector distribution for the
magnetic field. This entropic ansatz is now applied only to the scalar particle distribution function so as to
permit the many problems entailing magnetic field reversal. A 9-bit lattice is employed for both particle and
magnetic distributions for our two-dimensional simulations. The entropic ansatz is benchmarked against our
earlier multiple relaxation lattice-Boltzmann model for the Kelvin-Helmholtz instability in a magnetized jet.
Other two-dimensional simulations are performed and compared to results determined by more standard direct
algorithms: in particular the switch over between the Kelvin-Helmholtz or tearing mode instability of Chen et al.
[J. Geophys. Res.: Space Phys. 102, 151 (1997)], and the generalized Orszag-Tang vortex model of Biskamp-
Welter [Phys. Fluids B 1, 1964 (1989)]. Very good results are achieved.
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I. INTRODUCTION

The lattice Boltzmann (LB) algorithm has proven to be an
extremely interesting method for the solution of Navier-Stokes
[1] flows because of its simplicity, extreme parallelizability and
accuracy. Even though it is technically second-order accurate
it appears more comparable in accuracy to the pseudo-spectral
computational methods. One of the major constraints on LB
is that it is prone to numerical instability in certain parameter
regimes: there is no inherent mechanism to enforce the LB dis-
tribution function to remain non-negative in time, particularly
in strong turbulence simulations.

This has led to a generalization of the simple single-
relaxation-time (SRT) LB collision operator to its multiple-
relaxation-time (MRT) cousin [2–4]. With these extra degrees
of freedom one can achieve greater numerical stability, but
the choice of these extra parameters is problem dependent,
not known a priori, and can influence the fluid viscosity
coefficient (and thus the associated Reynolds numbers). An
alternate approach to achieving numerical stability is through
an entropic principle and a discrete H-theorem [5–21]. In some
respects, the entropic approach can be viewed as an optimal
subset of MRT algorithms in which emphasis is placed on an
algebraically determined entropy stabilizing parameter that is
not directly dependent on the MRT collisional rates and which
does not affect the fluid viscosity.

Here, we partially extended these entropic ideas to magne-
tohydrodynamics (MHD). LB was first extended to MHD by
Succi et al. [22] following on the heels of a cellular automata
approach of Montgomery and Doolen [23]. An important
breakthrough to a first principle LB-MHD model was by Dellar
[24] who introduced a vector kinetic equation for the magnetic
distribution function. In conventional LB for Navier-Stokes,
the zeroth moment of the scalar distribution function yields the
density ρ, while the fluid velocity �u, is retrieved from the first
moment. In the Dellar model for LB-MHD, the zeroth moment
of the vector magnetic distribution function yields the magnetic

field �B itself. Not only does this permit moment closure at
a lower level than in Navier-Stokes but it yields a consistent
discrete approximation to ∇· �B = 0 to machine round-off error
[24]. However there is a significant difference between Navier-
Stokes and MHD: in MHD there are many very important
applications where there is a reversal in the magnetic field �B.
Hence a first principle extension of an entropic principle, which
relies on maximization of a concave function, cannot be applied
to the magnetic field vector distribution function. Nevertheless,
we shall apply the entropic stabilization scheme of Karlin et al.
[5] to the scalar distribution function, and no such constraint
on the vector distribution function. While some may insist
that we are thus not forming any entropic stabilization as
such, we will find that our partial entropic stabilization (as
we shall call it) does permit numerically stable simulations at
arbitrary small viscosity. This cannot be achieved even in MRT
LB-modeling, which only has static relaxation rates. We also
shall show, from several different simulations, that there seems
to be an increased stabilization in the LB-MHD algorithm
due to this partial entropy constraint on the scalar particle
distribution function. This can be attributed to the effect of
the partial entropic parameter on the magnetic field because
of the magnetic field coupling that exists within the velocity
momentum equation or Navier-Stokes equation.

In Sec. II, we present a moment-based representation for
LB-MHD, while our partial entropic algorithm is outlined in
Sec. III. In Sec. IV we present some two-dimensional (2D)
simulation results of our partial entropic LB-MHD algorithm:
magnetic reconnection in the Kelvin-Helmholtz and the mag-
netic tearing instability as well as on the Biskamp-Welter
profile for 2D MHD. We have concentrated on 2D MHD
because of its much lower computational costs as compared to
3D LB-MHD. This is appropriate since 2D and 3D MHD there
is a direct cascade of energy to small spatial scales—unlike 2D
Navier-Stokes turbulence which exhibits an inverse cascade of
energy to larger and larger spatial scales. Our partial entropic
stabilization algorithm is readily extended to 3D.
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II. MOMENT BASIS REPRESENTATION FOR MULTIPLE
RELAXATION MODEL FOR LB-MHD

There are quite a few MRT extensions [13,17,20,25] of the
original SRT LB-MHD model of Dellar [24]. However, for
simplicity, we shall work with only an SRT model for the
vector magnetic field distribution �gk , and an MRT model for
the scalar distribution function fi , where the subscripts denote
the velocity streaming directions

(∂t + ∂γ cγ i)fi =
∑

j

X
′
ij

(
f

(eq)
j − fj

)
, (1)

(∂t + ∂γ cγ k)�gk = Y
′(�g (eq)

k − �gk

)
(2)

with the moments

∑
i

fi = ρ,
∑

i

fi �ci = ρ �u, and
∑

k

�gk = �B. (3)

It is convenient to employ the summation convention only
over the Greek indices which give the vector nature of the
fields (γ = 1,2 for 2D), while the Roman indices run over
the corresponding (kinetic) lattice vectors �ci,i = 0 . . . 8 for
the 9-bit model in 2D (see Fig. 1). Summation over the Roman
indices will always be made explicit. X

′
ij is the MRT collision

operator for the evolution of fi while Y
′

is the SRT for the
evolution of �gk . The MHD viscosity and resistivity trans-
port coefficients are determined from these kinetic relaxation
rates.

It is well known that the minimal LB representation of MHD
equations on a square lattice is a 9-bit velocity streaming for fi

and just 5-bit streaming for �gk . This is because �u is defined from
the first moment of fi while �B is defined as the zeroth moment
of �gk . It is convenient (and helpful for numerical stability) to
employ the 9-bit streaming model for both kinetic equations.
To recover the MHD equations in the Chapman-Enskog limit
of the (discrete) kinetic equations, we take the well-known

FIG. 1. The kinetic lattice vectors for 2D LB-MHD are, in our
D2Q9 model, �ci = (0,0),(0,±1),(±1,0) ,(±1,±1). wi are appropri-
ate weight factors dependent on the choice of lattice: w0 = 4

9 ; for

speed 1, wi = 1
9 ; and for speed

√
2, wi = 1

36 .

choice of relaxation distribution functions f i
(eq) and �g (eq)

k :

f
(eq)
i = wiρ

[
1 + 3(�ci · �u) + 9

2 (�ci · �u)2 − 3
2 �u 2

]
+ 9

2wi

[
1
2

�B2�c 2
i − ( �B · �ci)

2
]
, i = 0, . . . ,8, (4)

�g (eq)
k = wk[ �B + 3{(�ck · �u) �B − (�ck · �B)�u}], k = 0, . . . ,8.

(5)

The LB-MHD equations are typically solved by an operator-
splitting method with time advancement coming from stream-
ing and collisional relaxation. The excellent parallelization of
the LB-MHD algorithm is now apparent: the discrete kinetic
equations are solved using the streaming operation which is
a simple shift of the data from one lattice point to another,
while the collision step is a purely local operation with its
evaluation requires only data from only that grid point. The
streaming requires MPI only when the shift has data moving
from one processor domain to another—and this can also be
well parallelized. What makes LB so attractive is that the com-
putationally difficult nonlinear convective derivatives �u · ∇ �u,
�u · ∇ �B, �B · ∇ �u, and �B · ∇ �B are replaced at the lattice kinetic
level by simple linear advection and polynomial nonlinearities
in the relaxation distributions.

In MRT-LB it is natural to perform the collisional relaxation
in moment space (because of the local conservation of mass and
momentum constraints) and the streaming in the distribution
space fi,�gk . There is a 1-1 map between these spaces. For
the moment basis it is obvious to include the conservation
moments (the zeroth and first moments of the fi and the
zeroth moment of �gk), while the remaining higher moments
are somewhat arbitrary [26,27]. In particular, we consider
the same constant 9 × 9 T matrix that connects the scalar
distributions (fi,i = 0 . . . 8) to their moments (Mi,i = 0 . . . 8)
as for the vector magnetic distributions (�gk,k = 0 . . . 8) with
their moments ( �Nk,k = 0 . . . 8)

Mi =
8∑

j=0

Tij fj , �Nk =
8∑

q=0

Tkq �gq (6)

with

T =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
cx

cy

cxcy

c2
x

c2
y

c2
xcy

cxc
2
y

c2
xc

2
y

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 1 1 1 1

0 1 0 −1 0 1 −1 −1 1

0 0 1 0 −1 1 1 −1 −1

0 0 0 0 0 1 −1 1 −1

0 1 0 1 0 1 1 1 1

0 0 1 0 1 1 1 1 1

0 0 0 0 0 1 1 −1 −1

0 0 0 0 0 1 −1 −1 1

0 0 0 0 0 1 1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(7)

where the Cartesian components of the corresponding nine-
dimensional lattice vectors are just

cx = {0,1,0,−1,0,1,−1,−1,1},
(8)

cy = {0,0,1,0,−1,1,1,−1,−1}.
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For the scalar distributions, the first row of the T-matrix
is just the conservation of density while the second and third
rows are just the conservation of momentum (2D). For the
vector magnetic distributions the first row of the T-matrix is
the only collisional invariant.

With this moment basis, the MRT collisional relaxation
rate tensor X

′
ij is diagonalized with the T-matrix as a

similarity transformation. It is convenient to denote this

diagonal matrix with elements Xiδij . In the D2Q9 phase space,
the relaxation rate Xj is associated with the corresponding
moment Mj , j = 0 . . . 8. Similarly for the magnetic distri-
butions in SRT, there is just a single collisional relaxation
rate for each magnetic moment �Nk , and this will be denoted
by Y .

In particular, the equilibrium moments can be written in
terms of the conserved moments:

M
(eq)
0 = M0 = ρ, M

(eq)
1 = M1 = ρux, M

(eq)
2 = M2 = ρuy,

M
(eq)
3 = ρuxuy − BxBy, M

(eq)
4 = 1

6

(
6ρu2

x + 2ρ − 3
(
B2

x − B2
y

))
,

(9)

M
(eq)
5 = 1

6

(
6ρu2

y + 2ρ + 3
(
B2

x − B2
y

))
, M

(eq)
6 = 1

3
ρuy,

M
(eq)
7 = 1

3
ρux, M

(eq)
8 = 1

9
ρ
(
1 + 3u2

x + 3u2
y

)
,

N
(eq)
α0 = Nα0 = Bα, N

(eq)
α1 = uxBα − uαBx, N

(eq)
α2 = uyBα − uαBy,

N
(eq)
α3 = 0, N

(eq)
α4 = Bα

3
, N

(eq)
α5 = Bα

3
, (10)

N
(eq)
α6 = 1

3
(uyBα − uαBy), N

(eq)
α7 = 1

3
(uxBα − uαBx), N

(eq)
α8 = Bα

9
, α = x,y.

III. ENTROPIC METHOD AND ITS PARTIAL
EXTENSION TO MHD

The Karlin group [5,6] introduces the entropic procedure for
Navier-Stokes flows by separating the scalar lattice Boltzmann
distribution into various moment-related groups. In particular,

fi = ki + si + hi, i = 0 . . . 8, (11)

where the ki distributions correspond to those distributions
with conserved moments, the si distributions correspond to
the stress and/or shear moments, and finally the hi distributions
correspond to the remaining higher-order moments. Thus for
the ki distributions

ki =
8∑

j=0

2∑
m=0

T−1
im Tmjfj , i = 0 . . . 8 (12)

with the m-summation running from m = 0,1,2 since there are
three conserved moments, similarly for si and hi .

The si distributions corresponding to the stress and/or shear
moments will come from the set

si ∈ {d,d ∪ t,d ∪ q,d ∪ t ∪ q}, (13)

where d is the deviatoric stress, t is the trace of the stress tensor,
and q represents the third-order moments. Here, we choose, for
simplicity, the moment contributions si to be d ∪ t so that

si =
8∑

j=0

5∑
m=3

T−1
im Tmjfj , i = 0 . . . 8. (14)

Moments 3, 4, and 5 are each second-order moments in the
D2Q9 model, and thus represent the second-order quanti-
ties d ∪ t . The moment contributions to hi are then all the
remaining moments that do not contribute to either ki or si .

Thus

hi =
8∑

j=0

8∑
m=6

T−1
im Tmjfj , i = 0 . . . 8. (15)

Karlin et al. [5,6] now consider the entropy of the post-
collisional state, and introduce a parameter γ which yields
an extremal to this entropy function. In MRT only some
of the relaxation rates affect the transport coefficient under
Chapman-Enskog expansions [28]. The transport coefficient in
Navier-Stokes simulations is first affected by the stress related
distributions (si). The tunable parameter γ is introduced to
replace the relaxation rates for the higher-order moment effects
arising from the (hi) distributions. In particular, one moves
from the standard post-collisional distributions

f
′
i ≡ fi(t + 1) = fi + 2β

(
f

(eq)
i − fi

)
(16)

to f
′
i = fi − 2β�si − βγ�hi, (17)

where β is related to the kinematic viscosity as ν = 1
6 ( 1

β
− 1)

and �si = si − s
(eq)
i , �hi = hi − h

(eq)
i , while for the con-

served moments �ki = ki − k
(eq)
i = 0.

In order to maximize the entropy S[f ]

S[f ] = −
∑

i

fi ln

(
fi

wi

)
, (18)

one now writes the entropy in terms of the post-collisional
state and the γ parameter. The critical point of the entropy
[5,6] determines the tunable parameter γ from

∑
i

�hi ln

(
1 + (1 − βγ )�hi − (2β − 1)�si

f
(eq)
i

)
= 0. (19)
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This is a rather computationally expensive root-finding pro-
cedure having to be done at every point of the grid and at
every time step. Karlin et al. [5,6] noted that if one invokes the
simple small argument expansion log(1 + x) = x + . . . one
can then readily determine the entropic factor algebraically.
The parameter determined algebraically is denoted by γ ∗:

γ ∗ = 1

β
−

(
2 − 1

β

) 〈�s|�h〉
〈�h|�h〉, (20)

where the inner product

〈A|B〉 =
∑

i

AiBi

f
(eq)
i

. (21)

On substituting γ ∗ back into the new post-collisional state
[Eq. (17)] a maximal entropy state has been determined for
Navier-Stokes flows. The Karlin group successfully tested this
approximation for the tunable parameter γ ∗(�x,t) in various
simulations of 2D and 3D Navier-Stokes [5,6]. One thus sees
that this entropic algorithm is a subset of MRT—but it has a
dynamic entropic parameter determined at every lattice point
and every time step algebraically for entropic stabilization as
opposed to the static relaxation times for typical MRT models.

Clearly, this analysis does not simply carry over to LB-
MHD with possible non-positive vector magnetic distributions.
Hence we make the ansatz for our partial entropic algorithm
that the entropic parameter in LB-MHD is still determined
by Eq. (20) for the corresponding LB-MHD �h and �s. The
validity of our ansatz will now be tested against various 2D
MHD simulations.

Summarizing, our partial entropic LB-MHD algorithm
consists of the following steps (c.f., Karlin et al. [5]:

(1) Compute the conserved moments (ρ,u,B) [Eqs. (6),
(9), (10)],

(2) Evaluate the equilibria [f (eq)
i (ρ,u,B),�g(eq)

k (ρ,u,B)]
[Eq. (4)],

(3) Compute s and s(eq) [Eqs. (12), (13)],
(4) Compute �si = si − s

(eq)
i ,

(5) Compute �hi = hi − h
(eq)
i = fi − f

(eq)
i − �si ,

(6) Evaluate γ ∗ [Eq. (20)],
(7) Relax (Collide): f

′
i [Eq. (17)], and corresponding �g′

k .
Standard LB-MHD is recovered for entropy parameter:

γ (�x,t) = const. = 2. As mentioned earlier, there is no attempt
made to find a corresponding maximal entropy state for the
magnetic distribution function since the magnetic field in most
problems of interest undergoes field reversal (e.g., in magnetic
field reconnection). However the effect of working with the
maximal entropy state for the particle distribution function will
have direct effects on the evolution of the magnetic field due
to the coupling of the �B-field in the relaxation distribution
function f (eq) as well as the coupling of the fluid velocity �u in
�g(eq).

IV. PARTIALLY ENTROPIC LB-MHD SIMULATIONS

We first have benchmarked our partially entropic LB-MHD
code against our earlier (totally non-entropic) MRT LB-MHD
simulations of a Kelvin-Helmholtz jet instability in a magnetic
field [13]. Here, we show the physics recovered by the varia-
tions in the partially entropic parameter γ ∗ and its variations

FIG. 2. (a) The initial velocity (dark) and vorticity (gray) in
the unstable magnetized jet simulation as a function of x. (b) The
corresponding initial vorticity ω(x,y): gray for ω > 0 and dark for
ω < 0.

away from the MRT value of γ ∗(�x,t) ≡ 2.0 for sufficiently
weak axial �B that the jet is unstable. Some runs were then
performed to examine the increased numerical stability in the
parameter regime of the mean velocity �u and magnetic field
�B due to the partially entropic algorithm. Following this we
consider the interplay between Kelvin-Helmholtz instability
and the tearing mode instability and qualitatively compare our
results to that of Chen et al., [29]. Finally we qualitatively
compare our simulations with the Biskamp-Welter profile.

A. Magnetized Kelvin-Hemholtz jet instability

We now consider the partially entropic-LB-MHD algorithm
for the breakdown of a Kelvin-Helmholtz jet in a weak
magnetic field. In our simulations, the initial parameters are
so chosen that there is a direct cascade of energy to small
spatial scales (indicating the existence of a magnetic field) but
the magnetic field is sufficient weak so as not to stabilize the
jet, Fig. 2:

�u(t = 0) = U0sech2(x)ŷ, �B(t = 0) = B0ŷ. (22)

The evolution of the vorticity, ω, the current, j as well as the
entropic stabilization parameter γ ∗ for this 2D jet is plotted in
Fig. 3. With the (dimensionless) choice of B0 = 0.005U0, the
jet breaks into a Kelvin-Helmholtz vortex street (t � 266k).
There is then further symmetry breaking as the vortex street
is broken up, leading to vortex-vortex reconnection (as in the
2D Navier-Stokes turbulence), as well as the generation of
small scales eddies (characteristic of 2D MHD) for t > 266k.
One notices that the partial entropy parameter γ ∗ in Fig. 3
deviates from the ordinary LB-MHD value of γ ∗(�x,t) = 2
wherever there are a significant number of small eddies. These
are regions of steep gradients and it is in these regions where
the partial entropic stabilization of the simulation occurs. It
is important to note that this partial entropy stabilization is
occurring from local information at each lattice site. This is
reminiscent of LB where gradients can be computed from
local moments of perturbed distributions, e.g., in large eddy
simulation modelings in the Smagorinsky model, the mean
velocity gradients are determined from simple local moments.
For stronger magnetic fields, the jet will be stabilized and is
of little interest for our partial entropic-LB-MHD model, [13].
A spectral plot of the total energy of the Kelvin-Helmholtz
simulation at t = 500k is presented in Fig. 4 with a slope of

013302-4
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FIG. 3. Evolution of a Kelvin-Helmholtz jet with very weak axial magnetic field: B0 = 0.005U0. The column 2D plots are for (a) the
vorticity ω, (b) the entropy parameter γ ∗, and (c) the current j . The jet is unstable forming a von-Karman–like vortex street (time t = 44k).
These vortices start to generate secondary smaller vortex streaks (t = 80k)—where the entropy factor becomes important. The vortex street then
becomes unstable t = 344k with vortex-vortex reconnection dominating shortly after the break-up of the vortex street. However by t = 500k

strong subsidiary vortices are generated because of the 2D MHD turbulence with significant corresponding regions of variations of the entropic
parameter away from 2. Note that the color scheme is held constant for all time snapshots. Spatial grid 10242. During the time evolution, the
grayscale is unchanged in each column: (a), (c) gray for positive values, black for negative, while for (b) gray is maximum, black for γ = 0
and white for γ = 2.

013302-5
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FIG. 4. Spectral plot of the Kelvin-Helmholtz simulation at t =
500k where the grid size is 10242 and the slope of the dashed line is
k−1.67.

k− 5
3 . This spectral plot corresponds to the final timestep in

Fig. 3.

Stability improvements from the entropic algorithm

Some numerical stability boundaries were investigated
between ordinary LB-MHD and our partial entropic-LB-MHD

FIG. 5. A snapshot of the 2D spatial dependence of (a) magnetic
field lines (and velocity fields) from a Chen et al. supersonic Alfvenic
simulation, their Fig. 6(a), compared to (b) our entropic LB-MHD
simulation on 10242 grid for the same initial profiles. S = 1000.

FIG. 6. A snapshot of the 2D spatial dependence of the (a) the
magnetic field line contours (and velocity field) for zero initial shear
(V0 = 0.0), from Chen et al. Figure 4(a) and (b) from our entropic
LB-MHD algorithm on a 10242 grid.

with the γ ∗ parameter on a grid of 10242 for the Kelvin-
Helmholtz jet. We found that the partial entropic-LB-MHD
algorithm permitted a maximal mean velocity �U0,max to be
increased by a factor of 2 in a purely Navier-Stokes turbulence
simulation (i.e., no �B-field) while the velocity maximum could
be increased by a factor of 8 when there was a strong stabilizing
�B-field. As regards the magnetic field (at fixed �U0), the partial
entropic-LB-MHD algorithm permitted an increase by a factor
of 2 in �B0. In the partial entropic-LB-MHD algorithm the vis-
cosity could become arbitrary small, while ordinary LB-MHD
the minimum stable viscosity was 10−5 when �B0 = 0, and 10−2

when there was a strong stabilizing �B0. No substantial stability
limits were found on the achievable minimum resistivity.

It should be stressed that the computational overhead of
computing this entropic parameter γ ∗ is quite small, primarily
because it is determined algebraically from local information
only.

B. Chen et al. profile

Chen et al. [29] has considered the linear and nonlinear
evolution of Kelvin-Helmholtz (velocity shear) vs. the tearing
mode (magnetic shear) instabilities in 2D compressible MHD.
Their closure includes an evolution equation for the enthalpy
as well as various resistivity profiles using standard CFD
techniques. Their initial profiles are

uy(x,t = 0) = −U0 tanh(x), By(x,t = 0) = B0 tanh(x).

(23)
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FIG. 7. Evolution of the magnetic field lines from our partial entropic LB-MHD code for zero initial shear velocity in a uniform magnetic
field. Snapshots of the field lines are presented at each 8000 (8k) LB time steps. Grid 10242. (a) t = 0, (b) t = 8000, (c) t = 16000, (d)
t = 24000, (e) t = 32000, (f) t = 40000, (g) t = 48000, (h) t = 56000, (i) t = 64000, (j) t = 72000, (k) t = 80000, (l) t = 88000.

Thus our comparisons can only be qualitative, and we only
consider the Chen et al. [29] simulations when they keep their
resistivity constant. Typically, when the velocity is below the
Alfven speed, it stabilizes the tearing mode and so reduces the
reconnection rate. However, if the velocity is above the Alfven
speed the Kelvin-Helmholtz instability sets in. In our first par-
tial entropic LB-MHD simulation, we consider super-Alfven

velocity shear flow and the Kelvin-Helmholtz induced mag-
netic islands due to reconnection in Fig. 5. In Fig. 5(a) we show
the simulation results of case 13 in Chen et al. for the magnetic
field lines and compare them to those arising from our partial
entropic LB-MHD model for resistivity η = 0.001, Fig. 5(b).

For the case of no initial shear, large magnetic islands are
formed. A corresponding snapshot is given of the magnetic

FIG. 8. Snapshot of the current lines from (a) partial entropic LB-MHD code on a grid of 10242 at time = 226k, (b) Biskamp-Welter,
Fig. 11(a). Gray for positive values, black for negative values.
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FIG. 9. Plot of the entropic parameter γ ∗ after 226k timesteps
on a 10242 grid. γ = 2.0 corresponds to ordinary LB-MHD. Lattice
points with γ ∗ �= 2.0 correspond to the effects of the partial entropic
LB-MHD algorithm. Gray for positive values, black for negative,
while for (b) gray is maximum, black for γ = 0 and white for γ = 2.

field lines from the case 5 simulation in Chen et al., Fig. 6(a),
and from our entropic LB-MHD model, Fig. 6(b).

In Fig. 7 we show the partial entropic LB-MHD evolution of
the magnetic field lines for this initial zero velocity shear flow
parameter set of Fig. 6. It seems for the case considered here,
the enthalpy equation in Chen [29] does not play a significant
role.

C. Biskamp-Welter profile

We now consider the model of Biskamp and Welter [30] for
decaying 2D MHD turbulence, using their initial profiles

�u(x,y,t = 0) = U0[sin(y + 0.5)x̂ − sin(x + 1.4)ŷ], (24)

�B(x,y,t = 0) = B0[sin(y + 4.1)x̂ − 2 sin(2x + 2.3)ŷ]. (25)

(These are a generalization of the canonical Orszag-Tang
vortex.) A snapshot of the current lines are shown in Fig. 8 and
compared with those from the Biskamp-Welter simulation. In
Fig. 9 we plot the corresponding 2D entropy parameter γ ∗(x,y)
at this time snapshot. The lattice points at which γ ∗(x,y) �= 2
correspond to points where there are effects of in our partial
entropic LB-MHD algorithm. The energy dissipation rate for
this Biskamp-Welter case is shown in Fig. 10. This can be
compared with figure 20 in [30].

V. CONCLUSION

We have extended the Karlin [5,6] entropic Navier-Stokes
algorithm to LB-MHD and tested the ensuing model on three
different problems: velocity shear flows exhibiting Kelvin-

FIG. 10. Plot of energy dissipation over time for the Biskamp-
Welter profile.

Helmholtz and/or tearing instability, a generalized Orszag-
Tang vortex and magnetized jet instability. We considered the
D2Q9 model for both the particle and vector magnetic field
distributions. The partial entropy algorithm is applied only to
the particle distributions while in using a vector distribution for
the magnetic field one must allow for magnetic field reversals.
Hence we do not have a fully entropic LB-MHD model. The
algorithm clearly extends immediately to 3D, but because
of the much greater computational costs we have restricted
our simulations to 2D for we can still capture turbulence
effects of the generation of small scale motions since in
2D MHD energy cascades to small scales. We have found
good agreement with the CFD simulations of Chen et al. and
Biskamp and Welter. The partial entropic algorithm permits
much larger ranges of velocity and magnetic field amplitudes
than could be found in standard LB-MHD algorithms. This
greater numerical stability is achieved at a quite small increase
in computational costs since Karlin et al. have determined a
simple algebraic approximation to the full entropic parameter.
This approximation is then carried over as an ansatz for our
2D LB-MHD model. Moreover the extreme parallelization
of this partial entropic LB-MHD algorithm is retained since
this algebraic entropic parameter γ ∗ is determined purely
from local information at each lattice site. The accuracy of
the under-resolved Navier-Stokes simulations of Bösch et al.
[19] portend that this new (partial) entropy method could be
a possible subgrid model in itself. In some sense, this is the
spirit behind our pushing the magnitude of U0 and B0. We are
not trying to claim rigorous error bounds on various equilibria
representations. This partial entropic LB-MHD algorithm is
a subset of MRT models in which there is now a dynamical
relaxation rate determined for quasi-stabilization of the fluid
flow by a well-defined procedure as opposed to the standard
static MRT relaxation rates.
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