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In this work we compute the main features of a surface-wave-driven plasma in argon at atmospheric pressure
in view of a better understanding of the contraction phenomenon. We include the detailed chemical kinetics
dynamics of Ar and solve the mass conservation equations of the relevant neutral excited and charged species.
The gas temperature radial profile is calculated by means of the thermal diffusion equation. The electric field radial
profile is calculated directly from the numerical solution of the Maxwell equations assuming the surface wave
to be propagating in the TM00 mode. The problem is considered to be radially symmetrical, the axial variations
are neglected, and the equations are solved in a self-consistent fashion. We probe the model results considering
three scenarios: (i) the electron energy distribution function (EEDF) is calculated by means of the Boltzmann
equation; (ii) the EEDF is considered to be Maxwellian; (iii) the dissociative recombination is excluded from
the chemical kinetics dynamics, but the nonequilibrium EEDF is preserved. From this analysis, the dissociative
recombination is shown to be the leading mechanism in the constriction of surface-wave plasmas. The results
are compared with mass spectrometry measurements of the radial density profile of the ions Ar+ and Ar+

2 . An
explanation is proposed for the trends seen by Thomson scattering diagnostics that shows a substantial increase
of electron temperature towards the plasma borders where the electron density is small.
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I. INTRODUCTION

The phenomenon of the positive column’s contraction of
gas discharges has been observed and discussed for more than
a century. It was described systematically for the first time by
the German physicist Johannes Stark in his book Elektrizität in
Gasen in 1902 [1]. In this book, he describes a typical discharge
produced in a transparent vacuum tube using a dc power supply.
He reported that the light emitted by the plasma’s positive
column did not always fill the whole tube volume. He noted
that under low pressure the discharge filled all the tube’s cross
section but as the pressure was increased it would eventually
collapse into a thin canal between the anode and cathode.

Although the first report of such phenomenon was more
than a century ago, the contracted discharge regime did not
receive as much attention as the discharge regime at lower
pressures. The mathematical description of the low pressure
regime was accomplished by Schottky in 1924 [2]. His theory
described the radial profile of electrons and positive ions by
assuming that charge production occurred by electron impact
ionization and that charge loss occurred by diffusion into the
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walls. Unfortunately, the Schottky theory could not predict the
contraction effect.

In contrast, convection or wall stabilized arcs at higher pres-
sures could be successfully described assuming that volume
recombination of charged particles was the only mechanism
of loss. The intermediate case, where both diffusion and
recombination contribute about equally, remained unsolved.
This fact can be promptly illustrated if we consider that in 1954
Fowler reviewed four different theories to explain discharge
contraction [3]. The author himself proposed a fifth one, in
which it was suggested that inelastic collisions produce a
damping effect, which accounted for the contraction effect
by means of an antidispersing action. The author recognized
that it was an oversimplification, but it was an attempt to
account for the effect of inelastic collisions on the electron
energy distribution function (EEDF). His theory was not fully
accepted due to the lack or rigor based on kinetic theory.

The four explanations in Fowler’s paper are now revisited
because they offer a better understanding of the current status
of the problem. The first explanation is based on the intrinsic
nonlinearity of the differential equations that describe the
transport of charge carriers. The conventional Schottky theory
does not include them. One possible cause for nonlinearity
arises from the mathematical formulation of the transport
equations in the sheath region [4]. However, it can be dismissed
on grounds that the contraction occurs when the pressure is
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increased, while the sheath length decreases with pressure. But
other nonlinearities may play an important role. For instance,
dissociative recombination reaction introduces rates in the
mass conservation equations that depend on the square of the
charge density.

The second group of explanations is related to the rate of
volume recombination, in particular electron-ion recombina-
tion. This mechanism was thought to be too weak to explain the
magnitude of the observed effect, until the dissociative recom-
bination of molecular ions with electrons was discovered. This
is because the rate coefficient for dissociative recombination
is several orders of magnitude higher than the electron-ion
recombination rate coefficient. Pioneering work by Kenty
published in 1962 was the first to suggest the crucial role of
dissociative recombination in the onset of plasma constriction
[5]. Kenty went one step further by suggesting that it was
related to the gas temperature gradient.

In fact, the third group of explanations attributed the onset
of plasma contraction to temperature gradient, but they were
not related to any kind of volume recombination. It was thought
that the transport equations of mass, momentum, and energy
could give rise to a solution that would eventually describe a
thin channel of dense plasma surrounded by a hot neutral gas
which transported heat outward [6]. The temperature gradient
also implied a number density gradient, which could eventually
produce a significant drop in the reduced electric field E/N in
the outer regions of the plasma column and trigger the plasma
contraction. At the time that this explanation was proposed
no numerical solution could be found and all the reasoning
was based on the equation’s analysis in limiting cases. Today
we know that the temperature and number density gradients
may also influence the rate coefficients and reaction rates
of important reactions, such as dissociative recombination.
For that reason, the first and third explanations are usually
grouped together and referred to as nonuniform gas heating
effects. In spite of that fact, the role of gas heating and volume
recombination should always be analyzed separately, since a
model accounting for nonuniform gas heating alone may give
completely different predictions when compared to an analysis
which also includes volume recombination.

There was also an attempt to associate the contraction of
the plasma column to the well known Z-pinch effect, but it
was soon understood to be a poor explanation for the follow-
ing reason. If we consider the typical electron temperatures
and densities of these discharges, the confinement current
computed using the Bennett relation would be something
between 100 A and 1000 A [7], which is much higher than
the actual currents observed in contracted columns (�0.01 A).
Therefore, the Z-pinch effect does not play any role in these
cases.

The numerous theories developed over the years could not
be tested until the advance of computer technology that allowed
the numerical study of this topic. Theoretical and numerical
analysis made by Golubovskii and co-workers showed that in
many cases the contraction effect may be explained solely by
the dependence of the ionization rate with electron density,
which is related to the competition of electron-atom and
electron-electron collisions [8–12]. In argon and neon, for
instance, this effect was proposed as the main explanation for
plasma contraction. One of the main arguments supporting that

conclusion was that experiments carried out with controlled
wall temperature in argon and neon discharges would still con-
tract, ruling out nonuniform gas heating. In contrast, the same
experimental procedure did not lead to plasma contraction in
helium, so in this case nonuniform gas heating was considered
to be the primary mechanism of contraction.

Nonetheless, other numerical models which assume a
Maxwellian EEDF everywhere in the plasma column could
successfully predict the plasma contraction in argon dis-
charges, as demonstrated by Moisan’s group [13,14]. These
models included detailed chemical kinetics, with dissociative
recombination, and the heat equation to describe the nonuni-
form gas heating. The effect of the nonequilibrium EEDF was
not taken into account; nonetheless, the model was able to
describe the plasma contraction and explain experimental data.
Whether or not this can be harmonized with Golubovskii’s
theory remains an open question.

To elucidate this issue we use a particular example in
which we modeled an argon discharge at atmospheric pressure
sustained by a surface wave at microwave frequency. Our
approach is very similar to the ones proposed by Petrov and
Ferreira [15] and Dyatko et al. [16], which consider a uniform
electric field and dc current. In contrast, we solve the Maxwell
equations that describe the TM00 field components of the
surface wave, which were coupled to the transport equations.
A very similar approach was adopted by Gregorio et al.
to describe microplasmas produced by microwave sources
[17]. This is a different problem because the magnitude of
the electric axial field increases towards the tube wall to a
maximum value near the boundaries.

We simplified the problem by neglecting the gradients in
the axial direction, so that the equations could be written only
in the radial coordinate. There are many works in the literature
that consider the axial coordinate and the detailed geometry
of the microwave launcher, but as far as we are concerned
these works assume the EEDF to be Maxwellian [18,19]. Here
the EEDF is calculated using the electron Boltzmann equation
in the classical two-term expansion. In order to study the
most important contributions to the contraction, we considered
three scenarios. In the first scenario, the EEDF was calculated
solving the Boltzmann equation. In the second scenario, the
EEDF was considered to be Maxwellian, and in the third
scenario the dissociative recombination was excluded from the
chemical kinetics dynamics, but the nonequilibrium EEDF was
preserved.

Our primary motivation was the theoretical interpretation of
a recent experimental work based on mass spectrometry which
reported measurements of the ionic fluxes of Ar+ and Ar+

2 as
a function of the radial coordinate in a surface-wave discharge
in argon at atmospheric pressure [20]. As we will show,
the numerical results reproduced the experimental behavior
of the ionic fluxes [20]. The trend of the experimental data
was marked by the population inversion of the ions Ar+

and Ar+
2 , the density of Ar+ being higher in the center of

the discharge and the density of Ar+
2 being higher near the

border. That result was consistent with Kenty’s mechanism
[5], which was the first explanation stating that dissociative
recombination with molecular ions in the outer regions of
the plasma was the main source of charge loss leading to
contraction.
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The results that we present here also shed light on the inter-
pretation of electron temperature measurements of contracted
surface-wave discharges carried out by means of Thomson
scattering [21–23]. The experimental data show that the elec-
tron temperature increases significantly towards the border as
the electron density decreases whenever the discharge is in
the contracted regime. Here these measurements will be inter-
preted in light of the shape variation of the calculated EEDF at
different radial positions. As will be shown, the experimental
observations can only be correctly interpreted if the EEDF
is nonequilibrium. We also discuss what is in our opinion
the most accurate interpretation of the electron temperature
measurements and how it is related to the temperature defined
as 2/3 〈E〉.

II. THEORY AND MODELING

A. Problem definition

Before proceeding with a detailed description of the model,
we shall give an overall picture of the experimental setup.
This is relevant because the simulation was run using physical
parameters which were consistent with these experimental
conditions. We recall that our primary motivation was to
explain the mass spectrometric results from our previous work
[20]. Many other works report data on the electron density and
temperature radial profiles of similar discharges, and our model
could be adapted to their particular experiments. However, we
chose this particular condition, emphasizing the investigation
of the contraction mechanism.

In this plasma source, the electromagnetic wave is excited
by means of a surface-wave launcher called the surfatron,
which is basically a cylindrical resonant cavity [24] which
excites a surface wave along the plasma medium. The feeding
gas is delivered through a ceramic tube with one millimeter
radius, which is inserted into the launcher’s central cavity. The
tube’s end is placed near the launcher gap, so that the plasma
column extends into the ambient air. Although a small number
of air molecules penetrates the flow, the density of these species
is small relative to Ar. Here we use a pure Ar plasma chemistry
scheme to approximately describe the plasma. The physical
configuration of such system is visualized in Fig. 1.

The plasma column is assumed to have cylindrical symme-
try. We take a slice that is orthogonal to the symmetry axis
located at a distance �z from the launcher gap and restrict our
analysis to this slice. The results are expected to be valid as
long as the axial gradients of the relevant physical quantities
are much smaller than the radial gradients. In the next sections,
we give a more detailed description of each part of the model
and show how they are connected in the iterative self-consistent
procedure.

B. Electron kinetics

The purpose of the electron kinetics study was the com-
putation of the EEDF as a function of the radial coordinate,
which is of fundamental importance for the calculation of many
crucial plasma quantities such as the electron mean energy,
the electron temperature, transport parameters, and reaction

FIG. 1. Scheme of a typical experimental setup. The problem is
solved for a given cross section in the axial direction for which the
electron density at the axis is known. The cross section is specified
by its distance �z = 3.7 mm from the launcher gap.

rate coefficients. These quantities are needed as input data
in the modeling of plasma chemistry, plasma heating, and
electrodynamics, which will be discussed in the next section.

The simplest approach concerning the EEDF is to consider
it Maxwellian. In this case, an energy balance equation for
the electrons is needed to calculate the temperature that
characterizes its Maxwellian distribution. However, plasmas
in rare gases at atmospheric pressure almost always have some
degree of deviation from equilibrium [25], which requires
numerical solution of the Boltzmann equation. This method
was used for the first time by Morse et al. [26] back in the
1930s to study the EEDF of elastically colliding electrons in
uniform electric fields and was further expanded to include
the description of oscillating fields [27,28], inelastic collisions
[28], and magnetic fields [29]. In the analysis developed
by these authors the electron velocity distribution function
(EVDF) is written as a spherical harmonics expansion in the
velocity space. The z coordinate from which the polar angle
is accounted for is usually set to the direction of the electric
field. If the magnetic field is absent or can be neglected the
problem becomes azimuthally symmetrical and the expansion
reduces to a sum of Legendre polynomials of the polar angle’s
cosine. The first term of this expansion gives the EEDF [30]
and it is isotropic in velocity space. The other terms are
anisotropic and usually only the first of them is retained in
the expansion. This technique, which is usually known as
two-term expansion in the specialized literature, was adopted
here. Some cases must be treated retaining higher order terms
[31], but in the conditions met here, i.e., high-frequency
Ar discharge subjected to low reduced electric fields, this
approximation is considered to give a good description of the
problem [32].
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The steady-state electron Boltzmann equation may be
written as [33–35]

d

du
(GE + Gc + Gee)

=
√

2e

m

∑
s,j,j ′

ns[(u + us,jj ′ )δs,j σs,jj ′ (u + us,jj ′ )f (u + us,jj ′ )

− uδs,j σs,jj ′ (u)f (u) − uδs,j ′σ
′
s,jj ′ (u)f (u)

+ (u − us,jj ′ )δs,j ′σ
′
s,jj ′ (u − us,jj ′ )f (u − us,jj ′ )]. (1)

The first term contains the electron fluxes in energy space due
to the electric field (GE), elastic collisions with heavy particles
(Gc), and collisions between electrons (Gee). These quantities
depend only on the EEDF, f (u), which is proportional to the
anisotropic component of the EVDF. Their expressions are
given by the following formulas:
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In Eqs. (1)–(4) u is the electron energy in eV; e and m are the
elementary unit of charge and the electron mass, respectively;
E is the maximum value of the high-frequency electric field; N
is the absolute density of the gas; f is the EEDF satisfying the
normalization condition

∫ ∞
0 f (u)

√
udu = 1; δs = ns/N and

δs,j = ns,j /N are the relative densities of the atomic species s

and of its excited electronic state j , respectively (ns and ns,j

being the corresponding absolute densities, satisfying
∑

s ns =
N and

∑
j ns,j = ns); σm,e

s and σm
s are the electron-neutral

scattering cross sections for the elastic and the total momentum
transfer, respectively; σs,jj ′ and σ ′

s,jj ′ are the electron-neutral
scattering cross sections for the excitation/deexcitation be-
tween upper level j ′ and lower level j of species s with energy
threshold us,jj ′ ; ε0 is the vacuum permittivity; ne is the electron
density; λD is the Debye length; and ω is the angular frequency
of the field. The quantities ln �, ν, and Eeff are commonly
known as Coulomb logarithm, electron collision frequency,
and high-frequency effective field, respectively.

This stationary EBE (electron Boltzmann equation) was
solved numerically using a standard finite difference procedure
implemented in MATLAB. Many physical quantities such as the
electric field, species densities, and gas temperature must be
determined from equations which will be discussed in the next
sections. These equations take the EEDF indirectly by its mean
energy as an input parameter, so that a self-consistent scheme
is needed. It also takes as input the cross sections for many
different electron-neutral collisional processes which will be
discussed in more detail in what follows. Before that, however,
we shall explain the procedure for the special case where the
EEDF is a Maxwellian distribution. In this case we determine
the electron temperature from the energy balance equation. It
can be derived from Eq. (1) by multiplying it by the kinetic
energy and then integrating it in energy space to obtain

PE = Pel + Pinel, (5)

where PE is the power gained from the applied electric field,
Pel is the net power lost in elastic collisions, and Pinel is the net
power lost in inelastic/superelastic collisions. They are given
by the following expressions:

PE =
∫ ∞

0
GE du,

Pel = −
∫ ∞

0
Gel du,

Pinel = −
∫ ∞

0
�inelu du,

where �inel is the right-hand term of Eq. (1). By determining
the energy gain by the field and the energy lost in elastic and
inelastic collisions, one is able to find the electron temperature
Te which satisfies Eq. (5) within an acceptable accuracy.
Equation (5) was solved at each grid point to determine the
radial profile of Te. We shall mention that Eq. (5) does not
contain the energy flux term, an approximation which is valid
as long as the electron density variation is negligible in the
energy relaxation length. The energy balance terms at a given
axial position are determined only by the balance between
the energy gained by the local field and the energy lost in
collisions. This approximation is usually called the “local
approximation.” In cases for which the EBE was solved, the
electron temperature is obtained from the EEDF as 2/3〈u〉. It
also uses the local approximation assumption, though in this
case the EEDF is computed instead of being assumed to be
Maxwellian.

Table I shows the electronic collisional processes that
participate in the numerical solution of the EBE. The cross
sections were extracted from a database compiled by the
plasma group from IST-Lisbon (Instituto Superior Técnico de
Lisboa) which is available online in the LXcat project site [37].
Some processes do not have any perceptible effect on the
EEDF, but their rate coefficients are needed in the computation
of the balance equation of the heavy species. In such cases,
the cross sections are computed using semiempirical formulas
proposed by Vriens and Smeets [36] or the Klein-Roseland
relation based on the microreversibility principle [38].
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TABLE I. Electronic collisional processes included in the model and references for the cross-section databases. The tag EB indicates that
the corresponding process was included in the EBE calculation, and the tag RC indicates that the rate coefficient was calculated for later use in
the chemical kinetics code.

Collision Aplication Ref. Threshold (eV)

Elastic:
Ar(1S0) + e → Ar(1S0) + e EB IST

Excitation:a

Excitation from Ar(1S0):
Ar(1S0) + e → Ar(3P 1) + e EB, RC IST 11.62
Ar(1S0) + e → Ar(1P 1) + e EB, RC IST 11.82
Ar(1S0) + e → Ar(3P 2) + e EB, RC IST 11.55
Ar(1S0) + e → Ar(3P 0) + e EB, RC IST 11.72
Ar(1S0) + e → Ar(4p) + e EB, RC IST 13.00
Ar(1S0) + e → Ar∗∗ + e EB IST 14.00

Excitation from 4s:
Ar(4si) + e → Ar(4p) + e RC IST

Excitation between 4s states:
Ar(4si) + e → Ar(4sj ) + e,i < j RC IST

Ionization:
Ionization from Ar(1S0):

Ar(1S0 + e → Ar+ + 2e EB, RC IST 15.60
Ionization from 4s:

Ar(4si) + e → Ar+ + 2e RC [36]
Ionization from 4p:

Ar(4p) + e → Ar+ + 2e RC [36] 2.60
Ionization from excimer Ar∗

2:
Ar∗

2 + e → Ar+
2 + 2e RC [36] 3.80

Superelastic processes:
Ar(4s) + e → Ar(1S0) + e EB, RC Klein-Rosseland
Ar(4p) + e → Ar(1S0) + e EB, RC Klein-Rosseland
Ar(4p) + e → Ar (4s) + e RC Klein-Rosseland
Ar(4si) + e → Ar(4sj ) + e, i > j RC IST

aThe electronic states of argon are expressed in L-S notation when upper cases are used. The minor case notation, such as 4s and 4p, indicates
the electronic configuration of the uppermost orbital and it is used to group together all states which share this configuration.

C. Treatment of ions and neutral species

The radial profile of the species densities may be computed
using the mass conservation equations with a proper set of
chemical reactions. We will not show here the detailed form
of these equations, which may be found in many textbooks. In
Ref. [39] these equations are written with special emphasis on
problems of plasma modeling. Here we will limit ourselves to
a detailed description of the set of chemical reactions and other
processes that influence the particle balance, such as radiative
decay and diffusion.

The mass conservation equation was solved for six neutral
species: Ar(3P 2), Ar(1P 1), Ar(3P 0), Ar(3P 1), Ar(4p), and Ar∗

2,
and two charged species: Ar+ and Ar+

2 . The electron density is
determined as the sum of the positive species densities. The ten
excited states in the electronic configuration 4p were grouped
together and treated in the model as one excited level. Higher
excited states of argon were not considered in this model.
The same procedure was adopted in the case of the excimer
Ar∗

2, which has a complex structure with singlet and triplet
states, besides vibrational levels [40]. Therefore the detailed
processes of the excimer kinetics were not taken into account.

For the density of the ground state Ar(1S0) there is no need to
solve the mass balance equation. Rather, it may be determined

through the ideal gas law once the gas temperature is computed
from the heat equation.

In order to solve the mass balance equations one needs to
choose proper boundary conditions. The plasma’s cross section
(see Fig. 1) does not have boundaries and we assumed that
all charged and radicals have null density at an imaginary
border that we would get if the ceramic tube wall was
prolongated downstream. This is an approximation, but it may
give reasonable results since these species are supposed to
be destroyed by the chemical processes in the surrounding
air.

The system of the mass balance equations was solved
numerically using the standard pdepe routine from MATLAB

for parabolic partial differential equations. The time variable
upper limit was chosen so that a stationary solution could be
reached in that limit.

Table II lists the reactions involving other species. The
rate coefficients were compiled from different references and
in order to abbreviate the extensive work of detailing them
we refer to previous works which adopted a very similar
approach [41,42]. The reactions or rate coefficients which
were introduced in this model will be discussed in what
follows.
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TABLE II. Reactions and other creation/destruction processes included in the mass balance equations of heavy species and their
corresponding rate coefficients.

Reaction Ref. Reaction coefficient

Diffusion: [s−1]
Free diffusion:

Ar(3P 2), Ar(3P 0) [42] Df /�2

Ambipolar diffusion:
Ar+, Ar+

2 [43] Da/�
2

Spontaneous emission: [s−1]
Ar(3P 1) → Ar(1S0) + hν [44] ga × (1.19×108), see text
Ar(1P 1) → Ar(1S0) + hν [44] ga × (5.1×108), see text
Ar(4p) → Ar(3P 2) + hν [44] 1.43×107, see text
Ar(4p) → Ar(3P 1) + hν [44] 7.3×106, see text
Ar(4p) → Ar(3P 0) + hν [44] 3.5×106, see text
Ar(4p) → Ar(1P 1) + hν [44] 9.83×106, see text
Ar2(*) → 2Ar(1S0) + hν [40] 3.13×105, see text

Molecular conversion: [cm6 s−1]
Ar+ + Ar(1S0) + Ar(1S0) [45] 2.25×10−31(300/Tg)0.4

→ Ar+
2 + Ar(1S0)

Dissociative recombination: [cm3 s−1]
Ar+

2 + e → Ar(1S0) + Ar(1S0) [46] 9.6×10−7[1 − exp(− 630
Tg

)]χ ( 300
Te

)0.67, see text

Penning ionization: [cm3 s−1]
Ar(4si) + Ar(4sj ) → Ar(1S0) + Ar+ + e [42] 3.69×10−11T 0.5

g

Ar(4p) + Ar(4p) → Ar+ + Ar(1S0) + e [47] 5×10−10

Ar(4p) + Ar(4s) → Ar+ + Ar(1S0) + e [47] 5×10−10

Ar(4si) + Ar(4sj ) → Ar+
2 + e [47] 5×10−10

Electronic impact dissociation: [cm3 s−1]
e + Ar+

2 → e + Ar(1S0) + Ar+ [48] 1.11×10−6 exp{− [2.94−3(Tg [eV]−0.026)]
(Te[eV]) }

Atomic conversion: [cm3 s−1]

Ar+
2 + Ar(1S0) → Ar+ + 2Ar(1S0) [48] 5.22×10−10

exp(− 1.304
Tg [eV] )

Tg [eV]

Three-body recombination: [cm6 s−1]
e + e + Ar+ → e + Ar(4p) [36] 1.43×10−28(Te[eV])−3

e + e + Ar+ → e + Ar(3P 2) [36] 6.14×10−29(Te[eV])−3

e + e + Ar+ → e + Ar(3P 1) [36] 1.33×10−29(Te[eV])−3

e + e + Ar+ → e + Ar(3P 0) [36] 3.81×10−29(Te[eV])−3

e + e + Ar+ → e + Ar(1P 1) [36] 4.19×10−29(Te[eV])−3

Excimer formation: [cm6 s−1]
Ar(4s) + 2Ar(1S0) → Ar2(*) + Ar [41] 10−32

Excimer extinction: [cm3 s−1]
Ar2(*) + Ar2(*) → Ar+

2 + 2Ar(1S0) [40] 5×10−10

Ar2(*) + Ar(4s) → Ar+
2 + Ar(1S0) + e [40] 6×10−10

Atomic [cm6 s−1]
three-body recombination:

Ar+ + Ar(1S0) + e → 2Ar(1S0) [41] 3.7×10−29Te(eV)−1.5Tg(K)−1

aHere g is the scape factor in Holstein’s theory of radiative transport.

1. Diffusion

The diffusion processes are relevant in the case of the
metastable Ar(3P 2) and Ar(3P 0) and the charged Ar+ and
Ar+

2 species. In the first case, we adopted the diffusion
coefficients of Kutasi and Guerra [42]. The ambipolar diffusion
coefficients for the charged species were computed following
Jonkers et al. [43] and the mobilities are from Ref. [49]. The
electron diffusion and mobility were determined directly from
the EEDF. The diffusion of resonant species was neglected
since diffusive losses are negligible compared to radiative
decay.

2. Spontaneous emission

The loss by spontaneous emission must be considered for
all excited states, except metastables. The only species in the
model that decay to the ground state are the excited states
Ar(3P 1) and Ar(1P 1), for which cases it is important to take into
account the radiation imprisonment due to the large density of
atoms in ground state. This effect was taken into account using
Holstein theory [50].

In the case of radiative decay from 4p states to 4s states
it is important to consider the Einstein coefficients from the
transition of each state k with configuration 4p to each state
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i with configuration 4s. Considering the statistical weights
of each state, gk , an effective decay coefficient from Ar(4p)
to each state i with configuration 4s was computed. The
expression for this coefficient is

A4p,i =
∑

k gkAki∑
k gk

, (6)

where the sum is taken over all the allowed transitions between
the states with configuration 4p to each state with configuration
4s. The values of the computed coefficients are shown in
Table II.

The triplet state of the excimer has a non-negligible decay
constant [40], though lower than the ones of other resonant
species. Since the excimer does not exist in the fundamental
state, there is no radiation imprisonment. However, the decay
constant of the singlet state is much larger and because of that
the density of the singlet is expected to be much lower than
the density of the triplet. Therefore, we considered the decay
constant of the triplet state as the effective decay constant of
the excimer (see Table II).

3. Molecular conversion

The reaction of molecular conversion that forms the molec-
ular ion Ar+

2 is a three-body reaction, which plays an important
role in rare gas discharges at atmospheric pressure. Unfortu-
nately, the reaction rate coefficients from the literature are not
perfectly adequate to plasma modeling, since the experiments
from which they are determined are usually carried out at tem-
peratures around 300 K. There are many studies with proposed
values which are consistent among each other [45,51,52], but
at low temperatures. Here we have adopted the rate coefficients
from the work of Jones et al. [45] (see Table II).

4. Dissociative recombination

In this process an incident electron is captured by the ion,
producing an autoionizing state Ar∗

2(n) which dissociates into
two neutral atoms. Since it is a very efficient process, it is
usually the main channel of charge destruction. Although the
rate coefficients have been studied experimentally by many
authors [46,53], there is no reliable information concerning
its branching ratio. It has been experimentally shown that two
dissociation paths are possible: the formation of an atom in
the ground state and another atom in one of the four states
in the 4s electronic configuration or the formation of two
atoms in the ground state [54]. Since it is an exothermic
reaction, the extra energy is shared between the two atoms.
The experimental study of Ramos et al. [54] showed that on
average ∼ 1.5 eV of the extra energy is carried by the 4s

excited atom and the ground state. If the reaction occurs via
the second path, ∼ 7.21 eV is carried by the two atoms in the
ground state. Since fast atoms are very likely to ionize due to
collisions with other species, only a small proportion of the
dissociative recombination effectively reduces the net charge
of the discharge. Following Jonkers et al. [48], we considered
that only 5% of the events effectively reduce the net charge of
the plasma medium (χ = 0.05).

5. Electronic impact dissociation

The process of electronic impact dissociation competes with
dissociative recombination and the rate coefficients have the
same order of magnitude at the typical plasma conditions of this
study. In this process the incident electron excites the molecular
ion from a bound state to an repulsive state which dissociates
[55]. The rate coefficient for this process was extracted from the
work of Jonkers et al. [48], which proposed an analytical ex-
pression consistent with the theoretical cross sections derived
by Marchenko [55]. Even so, the dissociative recombination
remains the main mechanism of charge destruction.

6. Three-body recombination

The three-body recombination processes are specially rel-
evant to the charge balance when the electron density is
relatively large (ne > 1015 cm−3) or the molecular ion density
is much smaller than the atomic ion density. The rate coefficient
expression of the three-body recombination involving two
electrons and an ion was taken from the work of Vriens and
Smeets, which arrived at their expression using the microre-
versibility principle and their semiempirical formulas of the
direct process (ionization). We also considered the three-body
recombination processes involving the atom in the ground state
as a third particle. In this case, the rate coefficient was taken
from Ref. [41].

In order to guarantee the model consistency, we considered
the recombination processes which are the inverse of the
ionization of states 4s and 4p by electronic impact. Recombi-
nation to the ground state is negligible and it was not included
in the model, since the ionization from the ground state is
also negligible at the typical plasma conditions of this study.
This was confirmed by the results as will be shown later. The
excited states of the higher levels which were not considered in
the model were considered to be at Saha equilibrium so that the
ionization is compensated by the three-body recombination.

D. Plasma heating

The temperature was determined using the following heat
equation:

1

r

d

dr

[
rλ(Tg(r))

dTg

dr

]
= −σe(r)E0(r)2, (7)

where λ(T ) is the thermal conductivity of argon, which is
temperature dependent, and σ is the electric conductivity (σe =
eneμe). Note that all the energy given up by the electrons to the
plasma (Joule heating) contributes to plasma heating, not only
elastic collisions. It is assumed that excited states convert the
internal energy into translational energy mainly by relaxation
processes, heating the gas. Equation (7) is frequently referred
to as the Elenbaas-Heller equation [56], with an additional
term accounting for the radiative losses. The terms containing
axial gradients were also neglected, in accordance with earlier
assumptions.

The thermal conductivity in Eq. (7) depends on the tem-
perature, so an empirical relation for λ(T ) [57] had to be
used to obtain a realistic solution. The electron conductivity
σ (r) was obtained from the solution of the electron Boltzmann
equation. The electric field in the heat equation was determined
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by solving the Maxwell equation, as will be described in the
next section.

In the same way as the continuity equations, the heat equa-
tion was solved numerically using the standard pdepe routine
from MATLAB for parabolic partial differential equations.

E. Plasma electrodynamics

Plasmas can be sustained by microwaves by several mech-
anisms. In the problem described here, the plasma is sustained
by a propagating wave in the magnetic mode TM00. Note that
the discharge is also the propagating medium of the wave.

In the case of a TM00 propagating wave, the electric and
magnetic fields E and B can be written in cylindrical coordinate
as E = (Er,0,Ez) and B = (0,Bφ,0). These components are
assumed proportional to the factor exp [−jωt + j

∫
z
k(z′)dz′],

where k = β + jα, β is the propagation coefficient, and α

is the space damping factor (attenuation coefficient), and
another factor which only depends on the radial coordinate.
The relation between these components can be found using
the Maxwell equations [58]

∂Bφ

∂z
= j

ω

c2
εEr,

1

r

[
∂

∂r
(rBφ)

]
= −j

ω

c2
εEz,

∂Er

∂z
− ∂Ez

∂r
= jωBφ, (8)

where ε is the medium relative dielectric constant. In the case
of vacuum (or free space), the value is ε0 = 1; in the case of
a dielectric, the value is εd ; and in the case of a plasma the
dielectric constant is given by the following formula [59]:

εp = 1 − ω2
p

ω2 + ν2
+ j

ν

ω

ω2
p

ω2 + ν2
= 1 − ξ + j

ν1

ω
ξ, (9)

where ωp = ( nee
2

ε0me
)1/2 is the plasma oscillation frequency. After

some algebraic manipulations of Eqs. (8), we arrive at the
following expression for the component Ez:

1

r

[
∂

∂r

(
r
∂Ez

∂r

)][
k2

κ2
p

−1

]
+ ∂Ez

∂r

∂

∂r

(
k2

κ2
p

)
= ω2

c2
εEz, (10)

where κp = k2 − (ω2ε)/c2. We note that the solutions of
Eq. (10) are complex, so that the physical solution is obtained
taking the real part of the solution. Note also that the factor
exp [−jωt + j

∫
z
k(z′)dz′] may be canceled out from Eq. (10)

so that only the radial dependence is retained.
The propagating and attenuation coefficients must be de-

termined from the continuity of the axial components of the
electromagnetic fields in the boundary between the plasma and
the air. Here we considered that the boundary is located at
r = R, where R is the radius of the ceramic tube. We shall
recall that our analysis is restricted to a given cross section of
the plasma column propagating in the ambient air, so only the
continuity relations in the boundary between the plasma and the
air are needed. In order to solve that problem, we built a routine
that searched for the attenuation and propagating coefficients
which would satisfy the continuity relations. Equation (10)
was solved numerically by means of the ode45 solver from the
MATLAB library of ordinary differential equations routines.

No

Yes

FIG. 2. Flow chart representing the self-consistent routine. Some
of the symbols were not introduced in the text, namely,De, the electron
free diffusion coefficient; Nj , the density of the heavy species j ; and
ka , the rate coefficient of the electronic collisional processes.

F. Self-consistent method

The workflow of the self-consistent routine is sketched in
Fig. 2. The variables—such as electron and ion densities, gas
temperature, axial electric field, and transport parameters—
were initialized using arbitrary profiles. The only fixed value
was the electronic density at the center of the discharge,
ne0(0), whose value was chosen equal to the one which was
derived from line broadening measurements of the discharge
in the desired condition [60]. The method consists of finding
a solution for the radial profiles of all the relevant physical
quantities which is consistent with the value ne0(0) at the
column center. It may be thought as an eigenvalue problem,
akin to that of Ref. [41]. For instance, the magnitude of the
electric field Ez at the center is adjusted self-consistently with
the radial profiles of the electric field and the charged and
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-3

FIG. 3. Electron density profile. Three different scenarios are
shown, namely, full model, with no restrictions (black solid line),
Maxwellian EEDF (blue dashed line), no dissociative recombination
(green dot-dashed line), and the Bessel profile (red dotted line).

neutral particles which satisfy simultaneously the Maxwell
equations and the mass conservation relations. This procedure
is repeated iteratively until an electric field which is consistent
with the electron density is found. The self-consistent routine
described in the flow chart from Fig. 2 was implemented in
MATLAB.

III. RESULTS AND DISCUSSION

A. Plasma contraction

The first result we show here is the electron density profile
for three different modeling assumptions (see Fig. 3). The first
condition is just the full model described earlier, without any
simplification besides the ones we have already mentioned. In
the second case we use a Maxwellian EEDF, as also described
in the previous section. In the third case we have only omitted
the dissociative recombination from the full model, keeping
the nonequilibrium EEDF. We also plotted the Bessel profile
which corresponds to the analytical solution of the density
profile in the linearized Schottky model.

The value of the electron density at the center of the
discharge was fixed at 1.25×1014 cm−3. This value was
estimated by means of the hydrogen Balmer series Hβ line’s
broadening measured in the same experimental conditions of
the mass spectrometric diagnostics (see Sec. III B 1), with the
optical fiber fixed at �z = 3.7 mm from the launcher exit. The
results are presented as a function of the normalized radial
coordinate r/R, where R is the tube radius with a diameter of
1.0 mm.

It can be clearly seen that the highest degree of contraction
was obtained when the full model was considered. When the
Maxwellian EEDF is assumed instead of the nonequilibrium

FIG. 4. Reaction rates of charge creation as a function of the
normalized radial coordinate. The creation processes are shown in
blue, where the solid line is the ionization from the 4s states, the
long-dashed line is the ionization from the molecular argon excimer,
and the dotted line is the ionization from the 4p states. The destruction
processes, here shown as negative creation processes, are given by the
red lines, where the solid line is the dissociative recombination and
the short-dashed line is the atomic three-body recombination. These
results were generated using the full model.

one, we observed a relatively small broadening of the profile.
The broadening was much more pronounced in the case where
the dissociative recombination was switched off. These results
suggest that the main mechanism leading to the discharge
contraction is the dissociative recombination associated with
the nonuniform heating, as postulated by Kenty’s mechanism.
The EEDF does play a significant role in the contraction
phenomena, as can be clearly seen in the broadening of the
profile in the second scenario. Nonetheless this broadening
is small when compared to that in the third scenario and we
may safely conclude that the dissociative recombination plays
a more important role than the tail depletion and other EEDF
related effects.

So how can this be reconciled with those experimental
observations in which contraction was not prevented when
the discharge tube was heated [11]? First of all, we must
consider that temperature uniformity does not guarantee that
dissociative recombination will not grow faster than ionization
processes, even if the EEDF is Maxwellian. Besides that,
the experimental method of heating the discharge tube can-
not guarantee that the temperature will be radially uniform,
because the intrinsic plasma heating, the initial feeding gas
temperature, and its thermal conductivity may still contribute
to the onset of non-negligible thermal gradients which may
trigger discharge contraction due to Kenty’s mechanism. For
instance, helium has a much higher thermal conductivity than

013201-9



RIDENTI, DE AMORIM, DAL PINO, GUERRA, AND PETROV PHYSICAL REVIEW E 97, 013201 (2018)

FIG. 5. Diffusion rate of charges as a function of the relative radial
coordinate. These results were generated using the full model.

argon and neon, which could also explain why the tube heating
method only prevents the helium contraction.

In order to get a better understanding of the results from
the full model, let us analyze the main contributions to the
processes of charge creation and destruction. The plot in Fig. 4
shows the reaction rate of such processes as a function of the
normalized radial coordinate. The plot in Fig. 5 shows the net
effect of creation and destruction of charges and according to
the particle balance equation it is equal to the diffusion rate in
the stationary regime. We see in Fig. 4 that the most important
creation process in the discharge center is the ionization from
the 4s states. At the borders (r/R > 0.2) ionization from the
excimer exceeds ionization from the 4s states. This is related to
the radial profile of the density of the excimer, which is broader
than the radial profiles of the 4s resonant and metastable states
(see Fig. 6). The third most important creation process is the
ionization from the 4p states. Note that the ionization from the
ground state is not shown in the plot, because its contribution
is negligible relative to the other creation processes.

The destruction of charges is caused mainly by the effect of
dissociative recombination within the whole interval between
r/R = 0 and r/R = 1. The atomic three-body recombination
is also important, but always lower than the dissociative
recombination. The plot of the diffusion rate in Fig. 5 shows
that the net rate of charge creation is positive in the center of the
plasma column (r/R < 0.15), but negative in the border. The
equality between diffusion rate and charge creation/destruction
rates imposed by the electron particle balance equation also
implies that the diffusion must be positive in the center and
negative at the border. The positive value corresponds to
the typical behavior which is expected from the linearized
Schottky model, where the charge produced in the discharge
always diffuses towards the border. When the contraction
phenomena takes place one observes a negative diffusion rate

FIG. 6. Radial profile of the densities of the excited species
considered in the model [Ar(3P 2), Ar(1P 1), Ar(3P 0), Ar(3P 1), Ar(4p),
and Ar∗

2]. These results were generated using the full model.

in the border and this effect is closely related to the contraction
phenomena. Since the net creation of charge is negative in that
region, the electron’s flow through the inward radial surface of
a fixed small cylindrical volume is higher than the flow through
the outward radial surface. The destruction processes are acting
analogously to a “charge filter” causing the abrupt collapse of
the discharge column.

B. Consistency with experiment

1. Mass spectrometric data of Ar+ and Ar+
2

One of the main motivations for the modeling effort reported
in this work was to obtain a theoretical description of the
experimental observation of the radial profile of the Ar+ and
Ar+

2 densities. These measurements were accomplished by
means of mass spectrometry. More information concerning
the experimental setup may be found elsewhere [20,61,62].
We also note that the raw data from mass spectrometry mea-
surements are proportional to the particle flux. However, we
are interested in the particle density. The procedure to convert
the flux proportional measurements into density proportional
values is described in detail in [62] and it is based on the
supplementary information about the ion energy distribution,
which was also determined experimentally.

The modeling results give a good qualitative description
of the experimental data (see Fig. 7). The inversion of the
[Ar+]/[Ar+

2 ] ratio is observed both experimentally and the-
oretically around r/R ≈ 0.25. Nonetheless, the full model’s
results overestimate the [Ar+]/[Ar+

2 ] ratio in the column center.
Besides that, the [Ar+] profile seems to be too narrow. On the
other hand, the model which assumes a Maxwellian EEDF
seems to predict correctly the column’s center [Ar+]/[Ar+

2 ]
ratio, but the profile in this case is clearly too broad. On the
theoretical side, we must take into account many uncertainties
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FIG. 7. Normalized number densities of Ar+ and Ar+
2 . The blue

and red solid lines are the Ar+ and Ar+
2 densities, respectively,

calculated by means of the full model. The dashed blue and red curves
are the Ar+ and Ar+

2 densities, respectively, obtained when the EEDF
was assumed to be Maxwellian. The experimental values for Ar+

(blue symbols) and Ar+
2 (red symbols) are also shown [20].

both in the model and the experiment that may hinder the accu-
racy. For instance, we took a more or less arbitrary branching
ratio for the dissociative recombination reaction. Since this
parameter is critical, an error in the branching ratio could
explain the observed discrepancies. On the experimental side,
we must consider that the mass spectrometer’s probe disturbs
the discharge and it may actually change by a considerable
amount the electron density at the column center and the
electric field profile, even if all other physical conditions
are kept fixed. Besides, the pure Ar plasma chemistry is
disturbed by the presence of air molecules, whose effect is more
important in the borders of the positive column. Therefore, we
may consider a qualitative agreement to be the best achievable
result.

For the sake of completeness, we also show the radial profile
of the excited species Ar(3P 2), Ar(1P 1), Ar(3P 0), Ar(3P 1),
Ar(4p), and Ar∗

2. Note that the metastable Ar(3P 2) is the most
abundant species in the discharge center. It has the highest
statistical weight, which explains its high density relative to
the other excited species. The relatively high density of the
states in the 4s configuration explains why the main creation
processes of electrons is the electronic impact ionization from
these excited atoms. The Ar(4p) states present only a negligible
density along the radius. It is also interesting to note that the
excimer profile is much broader relative to the other excited
species. This may be explained by the fact that we considered
that the excimer extinction occurs only via collision with other
identical partners, electrons or 4s states. The density profile of
these species always decreases radially, contrary to the argon
ground state. The quench by argon atoms seems to be negligible
[40] and it was not included in the model. If this behavior is

FIG. 8. Radial profile of the gas temperature (solid sloping curve),
generated using the full model. The horizontal lines are used to
display graphically the values of the calculated mean (dashed) and the
measured (dot-dashed) temperatures, 〈Tg〉 and Tg,OH, where 〈Tg〉 =
542 K and Tg,OH = 659(8) K.

confirmed experimentally, it may be explored to build new
excimer laser sources.

2. Gas and electron temperature

The radial profile of the calculated gas temperature is shown
in Fig. 8. A dashed horizontal line is used to show the mean
value 〈Tg〉 = (2/R2)

∫
Tg(r)r dr = 542 K, which is compared

to the value estimated by means of the Boltzmann plot of the
line intensities from the OH (A 2�+,ν ′ = 0 → X 2�,ν ′′ = 0)
UV band, Tg,OH = 659(8) K [60]. The values are consistent
and the difference may be explained by the fact that the OH
radial profile may differ from the gas temperature radial profile.
Besides, the rotational temperatures are generally higher than
the gas temperature in nonequilibrium discharges [60,63].

Figure 9 shows the radial profiles of the reduced electric
field and the electronic temperature. The reduced electric field
decreases towards the border, even if the axial component of
the electric field, Ez, increases. This happens because the gas
density increases faster than the electric field. The electron
temperature follows a similar trend, but it increases slightly
between r/R = 0 and r/R = 0.2 and after that it decreases.
We also included in the plot the “Thomson temperature,” which
allows us to compare our results with Thomson scattering
temperature measurements [23]. The temperature measured
by this technique is often considered the most accurate plasma
diagnostic for electron temperature measurements. However,
assumptions must be met, which is discussed next.

The Thomson scattering gives the profile of the light
elastically scattered by electrons in the plasma column. If the
EEDF is Maxwellian, this profile can be proven to have a
Gaussian shape and an expression can be derived which relates
the standard deviation with the electric temperature. However,

013201-11



RIDENTI, DE AMORIM, DAL PINO, GUERRA, AND PETROV PHYSICAL REVIEW E 97, 013201 (2018)

FIG. 9. Radial profiles of the reduced electric field E/N (blue
solid line), electron temperature Te = 2/3〈ε〉 (red solid line), and
Thomson temperature Te,th (red dashed line). These quantities were
derived from the full model results.

if the EEDF is not Maxwellian, there is no guarantee that the
Gaussian fit will actually give the real electron temperature,
if it is defined as Te = 2/3〈u〉. In this case, the populous low
energy electrons provide the most important contribution to the
scattered light and the resulting profile is not exactly Gaussian.
However, it is usually fitted as if it were a normal distribution
and the electron temperature is derived in the usual manner.
Actually, the deviation from a Gaussian is imperceptible,
because the EEDF in the energy interval between 0 eV and
2 eV, which contains the electron population that gives the
most important contribution for the light scattering, may
be approximated by a straight line, even in the worst cases.
The contribution of more energetic electrons (ue > 2 eV) in the
tail of the Doppler broadened scattering profile, which could
possibly show the deviation from the equilibrium EEDF, is
obscured by the signal noise [22]. That is why we may define
the Thomson temperature as the temperature of the Maxwellian
which best fits the nonequilibrium EEDF in the energy interval
from 0 eV to 2 eV (see Fig. 12).

Using this definition, we clearly see that the Thomson tem-
perature increases radially as observed experimentally [23].
Nonetheless, this is just an artifact caused by the increasingly
higher deviation from equilibrium of the EEDF as the electron
density decreases due to the column contraction. It has been
often stated that the electron temperature “must increase” in
order to keep the discharge alive, but this is not the case. Actu-
ally, one must analyze whether the physical conditions are such
that the plasma existence is possible. Besides, real electron
temperatures of 2 eV or 3 eV at the borders would result in
very high ionization rates, causing the electron density at the
borders to be higher than in the center in spite of the dissociative
recombination. No stability would be possible in this case.

The radial profile of the magnitude of the axial component
of the electric field, Ez, is shown in Fig. 10. The plot in Fig. 11

FIG. 10. Radial profile of the magnitude of the axial component
of the electric field, Ez, obtained in the full model simulation.

compares the radial profiles of the electron density, ne, and the
Thomson electron temperature, Te,th. This plot is analogous to
the one shown in [23], where both ne and Te were obtained
experimentally in similar physical conditions by means of
Thomson scattering. We were able to reproduce this apparent
increase in the electronic temperature, but only using this new
definition of the electron temperature.

The procedure used to obtain the Thomson electron tem-
perature is shown in Fig. 12. The EEDFs in three different
positions are shown: r/R = 0.0, r/R = 0.25, and r/R = 0.5.
As the radial coordinate increases, the EEDF becomes more

FIG. 11. Comparison between the radial profiles of the electron
density, ne, and the Thomson electron temperature, Te,th. These
quantities were derived from the full model results.
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FIG. 12. Electron energy distribution functions at different radial
coordinates: r/R = 0 mm (blue solid line), r/R = 0.25 mm (red
solid line), and r/R = 0.5 mm (green solid line). The Maxwellian
distribution which was fitted in the low energy electron interval is
also shown: r/R = 0 mm (blue dashed line), r/R = 0.25 mm (red
dotted line), and r/R = 0.5 mm (green dot-dashed line). The EEDFs
were obtained using the full model simulation.

depleted due to the decrease of the electron density. Here
we recall that the higher the electron density, the higher
the e-e collisions rates, so that the EEDF is expected to
approach equilibrium. Note that the nonequilibrium EEDF
always exhibits a negative concavity on a logarithm scale.
Consequently, the Thomson electron temperature is higher
than the values of the real electron temperature. The concavity
tends to increase as the EEDF deviates more and more from
the equilibrium and this accounts for the apparent increase in
temperature.

Lastly, we would like to discuss the impact of the EEDF on
the ionization rate. As can be clearly seen in Fig. 12 the tail of
the EEDF tends to be more and more depleted as the electron
density decreases. This certainly would have a large impact
on the rate coefficient of electronic ionization from the ground
state, since the ionization threshold in this case is 15.6 eV
and the EEDF experiences a drastic drop in the vicinity of
this value. Nevertheless, the most important ionization source
comes from the electron impact with excited states. In the
case of the 4s states, the threshold value is approximately
4.0 eV. In the vicinity of this value, the tail depletion is
much less pronounced and the effect on the ionization rate
coefficient will be relatively small. This reinforces our prior
conclusion: the contraction phenomena is more related to
the dissociative recombination than to the nonequilibrium
EEDF. It also explains why the models which considered the
EEDF to be Maxwellian could provide reasonable results. This
conclusion should be valid not only to atmospheric pressure
plasmas, but also to intermediate pressure discharges where
the transition from single-step to multistep ionization occurs
before plasma contraction. On the other hand, if single-step

ionization is the main creation mechanism or no dissociative
recombination occurs in a particular discharge configuration
where the constriction is experimentally observed, then other
explanations based on the nonequilibrium EEDF would be
more appropriate.

IV. CONCLUSION

In this work we reported a physical model for the de-
scription of an argon discharge sustained by surface waves at
atmospheric pressure. We focused on the problem of column
contraction and we elucidated the relative importance of the
dissociative recombination and the nonequilibrium EEDF to
the onset of this phenomenon. By detailed examination of
our results, which also included two alternative scenarios
where the dissociative recombination was switched off and
the EEDF was considered to be Maxwellian, the dissociative
recombination was shown to be the most important process
leading to plasma contraction. The leading charge creation
path was ionization from the excited species, mainly the 4s

states and the molecular argon excimer. Although the EEDF
exhibited a significant tail depletion in the region of the column
borders where the electron density was relatively small, it was
not pronounced enough to produce a significant change in the
rate coefficients of the previously mentioned processes, which
have low ionization thresholds. The dissociative recombination
proved to be the most important ingredient for the maintenance
of the contracted discharge. The three-body atomic conversion
is also an integral part of the constriction process, since
without this process no molecular ion would be formed.
The nonhomogeneous heating is essential, since it causes a
positive density gradient of neutral atoms which contributes
to the maintenance of the molecular ion formation in the
borders. However, the nonhomogeneous heating only aids
the contraction; the dissociative recombination could possibly
cause contraction even if the atomic density were uniform.

The simulation results showed that the density of the
molecular ion Ar+

2 becomes larger than that of the atomic
ion Ar+ at the borders of the plasma column. This behavior
was predicted by Kenty [5] and it was verified experimentally
recently [20]. Another important contribution of this work
was the elucidation of the apparent steep electron temperature
increase towards the border which was observed in Thomson
scattering plasma diagnostics. We showed that our results can
reproduce this behavior if the effect of the nonequilibrium
EEDF is taken into account in the interpretation of the electron
temperature measured by Thompson scattering.
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