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Generation of anisotropy in turbulent flows subjected to rapid distortion
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A computational tool for the anisotropic time-evolution of the spectral velocity correlation tensor is presented.
We operate in the linear, rapid distortion limit of the mean-field-coupled equations. Each term of the equations
is written in the form of an expansion to arbitrary order in the basis of irreducible representations of the SO(3)
symmetry group. The computational algorithm for this calculation solves a system of coupled equations for the
scalar weights of each generated anisotropic mode. The analysis demonstrates that rapid distortion rapidly but
systematically generates higher-order anisotropic modes. To maintain a tractable computation, the maximum
number of rotational modes to be used in a given calculation is specified a priori. The computed Reynolds stress
converges to the theoretical result derived by Batchelor and Proudman [Quart. J. Mech. Appl. Math. 7, 83 (1954)]
if a sufficiently large maximum number of rotational modes is utilized; more modes are required to recover the
solution at later times. The emergence and evolution of the underlying multidimensional space of functions is
presented here using a 64-mode calculation. Alternative implications for modeling strategies are discussed.
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I. INTRODUCTION

A mathematically appropriate decomposition of the
anisotropic two-point turbulence correlation function utilizes
the irreducible representations of the SO(3) rotational symme-
try group. This has been demonstrated successfully in a series
of papers beginning with Ref. [1] and reviewed in Refs. [2,3].
Among the primary outcomes of those studies was a refinement
of the Kolmogorov 1941 local isotropy hypothesis—that is, at
sufficiently high Reynolds number, the small scales recover
isotropy not in some absolute sense but because the higher-
order anisotropic modes in an SO(3) basis expansion decay
more rapidly in scale than does the isotropic part.

In the present work we use the SO(3) group decomposition
to develop a computational scheme for the evolution of the
general anisotropic two-point velocity correlation function in
the linear problem of mean-flow coupled turbulence. This
approach is distinct from previous uses of the SO(3) decom-
position for turbulence in that we apply the method to the
equations of motion to derive a computable model, instead
of using the basis functions as a diagnostic tool in a post-
processing step.

To expose the utility of the two-point correlation dynamics
in the development of the model, we review some known
features of single-point turbulence modeling. The pressure-
strain correlations that arise in the (single-point) Reynolds
stress evolution equations for incompressible flow are typically
discussed in terms of a “rapid part,” that is, the terms that couple
directly to the mean-flow gradients, and a “slow part” that is ex-
pressed purely in terms of moments of velocity fluctuations [4].
Despite its linearity in the Reynolds stresses and in the mean
velocity, the rapid pressure-strain (RPS) correlation represents
a significant challenge to engineering turbulence modeling
efforts due to its integro-differential nature; its representation

in the single-point equations is unclosed and requires a model
assumption to achieve closure. In the two-point description
of the Reynolds stress evolution equation the RPS appears in
closed form, which can alleviate this issue. However, efforts
to simplify these two-point descriptions by describing the
turbulence spectra as an average over all angles in Fourier
space (so that the spectra are functions of wave number, rather
than wave-vectors) are still confronted with the need to model
the rapid part, despite its apparent simplicity [5,6]. If, as we
propose here, a full wave-vector representation of the dynamics
is permitted, it allows these terms to be represented exactly, and
thus requires no model for the rapid part of the pressure strain
correlation.

An advantage of such an approach is that it permits the
model to handle the ‘rapid distortion theory” (RDT) problem
without approximation. RDT is based on the assumption
that, when a large mean-field distortion is imposed on a
turbulent field, the early time response to the distortion can
be described by ignoring the effects of higher-order velocity
correlations. “Early time” in defined in essence as the time
whilst the turbulence time-scales associated with the triple
(and higher) correlations remain much larger than the time-
scales associated with the mean-field. The rapid distortion
problem has a deep history in both theoretical and experimental
turbulence research [7,8]. Of relevance to the present work is
the derivation by Batchelor and Proudman (BP54 [9]) of the
exact form of the spectral correlation tensor as a function of
the so-called extension factor, a surrogate for the time over
which the mean-strain acts on a homogeneous turbulence. For
the purposes of demonstrating the efficacy and accuracy our
algorithm, we will show that our computed results approach
the BP54 theory to arbitrarily long times and with any desired
accuracy.
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The potential disadvantage of such an approach is that it is
generally computationally costly. For the homogeneous case, it
requires the solution of a fully three-dimensional wave-vector
problem. This difficulty is overcome to a degree by using
the SO(3) decomposition in our approach which, as we will
show, reduces a 3D problem of tensor functions of wave vector
into a 1D problem of computing scalar functions of the wave
number. That is, the complexity of a 3D grid is substituted for
a series expansion of a 1D function to arbitrary accuracy by
using in principle as many anisotropic rotational modes in the
SO(3) decomposition as the problem requires. Our longer-term
goal is to generate a computationally tractable model of the
Fourier-transformed fluctuating-velocity tensor as a function
of wave-vector that permits the exact solution of the rapid part
of the pressure strain correlations. Such an approach would
then allow the “modeling” aspects to be restricted entirely to
those associated with the third-order (and higher) correlations
of the fluctuating velocity.

The ability to formulate and treat this important problem
exactly permits an unbiased critique of the limitations of the
simpler practical models and perhaps may provide insights
into how to improve them. To achieve this goal, Zemach
[10] developed a system of vector algebra as a means of
reducing the dynamical equation for a second-rank tensor
field, dependent on wave-vector only, to a system of coupled
dynamical equations for scalar fields. The outcome of Ref. [10]
for the second-rank tensor field for velocity correlations is
identical, up to recombinations of terms to ensure solenoidality,
to the the irreducible representations of the SO(3) symmetry
group given in [1,11,12]. This representation is then used
to formulate the local wave vector (LWV) model [13], by
applying the framework of Ref. [10] to the full (nonlinear)
mean-field coupled equations of motion for the second-order
correlations in turbulent flow. Reference [13] derived the
elements of the coupling matrix between initial and final states
for the linear problem. This latter report involves, in addition to
the mean-field coupled terms, which are treated exactly by the
rotational mode decomposition, assumptions such as closure
approximations, and a return-to-isotropy model. Both of these
reports delve deeply and systematically into mathematical
foundations and detailed derivations which lie beyond the
scope of this paper. The code used to compute the results
presented in this paper is built on the strategy developed in
Ref. [13]; we will only consider the linear component and
will give explanations of the development as needed. However,
we will not review here the great deal of extra detail in those
reports that are freely available to the interested reader. We
will instead focus on the outcome of the computations and
their implications.

In Sec. II we consider the evolution of the second-order
spectral velocity correlation tensor in the mean-flow coupled
system. Following Ref. [13] the dynamical equation for a
second-rank tensor field, dependent on wave vector only is
reduced to a system of coupled dynamical equations for scalar
fields. For homogeneous turbulence of an incompressible fluid,
three such scalar fields is sufficient. Rather than solving the
three coupled dynamical field equations in 3D wave-vector
space, we elect to expand the scalar fields in spherical har-
monics. The computational problem is then of a differential
equation in the radial (wave number k) variable, with rotational

mode functions coupled in a discrete and large, but computa-
tionally feasible matrix. We show that each solenoidal term
in the equations of motion may be decomposed into known
basis functions in the SO(3) group representation. Crucially,
the differential operators that are the elements of the coupling
matrix act on the basis functions such that the resulting terms
remain within the SO(3) basis space but with different and
predictable weights. This fact allows us to efficiently code the
dynamics and prescribe arbitrarily many modes for the calcu-
lation. In Sec. III we verify the accuracy or our computation
against analytical results for single-point quantities of Ref. [9].
We show that the systematic generation of anisotropic modes in
the linear problem can be performed to arbitrary accuracy with
sufficiently many modes, and discuss some of the properties
of the emergent modes. Finally we summarize and discuss the
implications of our approach in Sec. IV.

II. THEORY

The SO(3) group representation theory identifies quantities
that transform into themselves under rotation. The theory
specifies the simplest, or irreducible, sets of such quanti-
ties, into which any scalar, vector, or tensor function may
be decomposed. Isotropy, which we normally think of as
invariance under rotation, becomes just one piece of a sys-
tematic representation for arbitrarily anisotropic functions.
The two-point spectral correlation of velocity Eij (k) in a
homogeneous, incompressible flow may be represented in the
SO(3) symmetry group basis by nine scalar fields and nine
tensor dyadic operators [14]. These may be constructed in
different ways [1,10–12] but must satisfy the same symmetry
and parity properties to span the basis space for the second-
rank tensor. For nonhelical flows, which are the focus of
this paper, index symmetry, and even-parity in wave vector
k, Eij (k) = Eji(k) = Eij (−k), implies a reduction to a space
of six scalar fields and corresponding six tensor operators.
Finally, the solenoidal condition kiEij (k) = kjEij (k) = 0 re-
duces the characterization to three scalar fields which multiply
appropriate rotationally invariant, solenoidal constant tensors:

Eij (k) = Sκ
ij (k)κ(k) + Sλ

ijλ(k) + S
χ

ijχ (k). (1)

We here and henceforth use the notation in Ref. [10] and
its companion report, Ref. [13], in which the computational
algorithm to be described below was developed. The scalar
fields may be represented in terms of expansions in the scalar
spherical harmonics

κ(k) =
∑

even��0
m

κ�m(k)Y �m(θ,φ),

λ(k) =
∑

even��2
m

λ�m(k)Y �m(θ,φ),

χ (k) =
∑
odd�>1

m

χ�m(k)Y �m(θ,φ). (2)

Rotational modes indexed by � form a (2� + 1)-dimensional
space indexed by m,−� � m � �. Each scalar field
is expanded in spherical harmonics; the coefficients
κ�m(k), λ�m(k), and χ�m(k) are the rotationally invariant
basis functions defining Eij (k). The spherical harmonic
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functions Y �m(θ,φ) = k−�Y �m(k) are expressed in terms of the
conventional polar and azimuthal angles. We will denote index
� variously as the “spin,” “rotational mode index,” or “sector”
of the representation in keeping with previous work [1,12].
Each basis function belongs to a rotationally invariant subspace
corresponding to an irreducible representation of the SO(3)
symmetry group. That is, each (�m) contribution transforms
into itself under SO(3) group rotations. The � = 0 sector of
κ in this expansion is the isotropic part. Each basis function
with � > 0 defines the strength of one mode of anisotropy, as
expressed by the spherical harmonic it multiplies. The � = 1
contribution is not permitted due to the solenoidal condition
in homogeneous incompressible flows [1].

The κ term in Eq. (1) contains the tensorially isotropic
projection operator,

Sκ
ij = Pij = δij − k̂i k̂j , (3)

where k̂i = ki/k for i = 1,2, or 3 denoting the Cartesion
coordinate indices. By tensorially isotropic we mean that Sκ

ij is
spin-0, transforming identically to itself under true rotations.
This operator does not change the spin of the scalar function
that it operates on. Thus, all anisotropic contributions in this
term arise from the scalar spherical harmonics κ(k).

To formulate the tensor operators Sλ
ij and S

χ

ij , first define

three primary vector operators, the unit vector k̂, the infinites-
imal SO(3) generator [14] L = −i(k × ∇) = +i(∇ × k) and
its moment M = i(k̂ × L). Here the gradient operates with
respect to k as ∇i = (∂/∂ki). Then, Ref. [10] shows

Sλ
ij = 1

2 [k̂iMj + k̂jMi) − (LiLj + LjLi)], (4)

S
χ

ij = 1
2 [k̂iLj + k̂jLi) − (MiLj + MjLi)]. (5)

Sλ
ij is even-parity and has trace (−L2). It operates on even-order

polynomials forming even-parity tensor functions. The S
χ

ij

operator is odd-parity and trace-free and operates on odd-
order polynomials forming even-parity tensor functions. The
χ contributions permit symmetry-breaking under reflections in
the azimuthal plane while still remaining index-symmetric and
even-parity [12]. Both Sλ and Sχ tensors operate on the scalar
functions that they multiply to change their rotational mode
index, or spin. This property is essential to how higher-order
anisotropic modes are generated and will be described further
below. Equivalent representations derived in Ref. [12] using
basis functions in Ref. [1] separate the trace and trace-free
contributions in the so-called directional and polarization
components, which are separately rotationally invariant under
SO(3) operations [6]. All representations [1,10–12] are equiv-
alent and invariant under SO(3) group rotations.

The mean-flow-coupled equations for the evolution of the
energy spectral tensor in homogeneous incompressible flow
may be derived from the Navier-Stokes equations as

Ėij (k) = Uab

[
−δaiEbj (k) − δajEib(k) + 2k̂a k̂iEbj (k)

+ 2k̂a k̂jEbi(k) + ka

∂

∂kb

Eij (k)

]
, (6)

where Ėij (k) = ∂Eij (k)/∂t . The mean-flow-gradient tensor
Uab = ∂

∂xb
Ua(x,t) is independent of x and traceless. The

first, second, and third lines of the right-hand side (RHS) of
Eq. (6) are the production, rapid pressure-strain and mean-flow
distortion terms respectively. This equation is linear in both
the mean-flow gradient and Eij . However, it is not yet in a
form that is useful for computation in the SO(3) basis. To
achieve that, we rewrite the RHS in the form of an operator O
acting on Eij . Set ∂/∂kb = kb(∂/∂k) − Mb/k and define two
new operators M and 
:

MbZij = MbZij − k̂iZbj − k̂jZib, (7)


abZij = (−δia + k̂i k̂a)Zbj + (−δja + k̂j k̂a)Zib, (8)

where Zij is any of the symmetric solenoidal tensors Sκ
ij , S

λ
ij ,

or S
χ

ij . Then Eq. (6) can be rewritten in the desired form,

Ėij = OEij = Uab

(
k̂a k̂b

(
k

∂

∂k

)
− k̂aMb + 
ab

)
Eij , (9)

where the wave-vector argument of Eij (k) is implicit. Note that
with this recombination of terms, the different physical compo-
nents of the equation are mixed. Any linear operator acting on
a solenoidal symmetric tensor field with the form in Eq. (1) of
the linear combination of κ , λ, and χ will generate output scalar
fields that are also linear combinations of κ, λ, and χ . There-
fore, the coupled scalar equations to be solved have the form⎡

⎣κ̇

λ̇

χ̇

⎤
⎦ =

⎡
⎣Oκκ Oκλ Oκχ

Oλκ Oλλ Oλχ

Oχκ Oχλ Oχχ

⎤
⎦

⎡
⎣κ

λ

χ

⎤
⎦, (10)

where the operator O = Uab{A(k ∂
∂k

) + B + C} is now
an operator connection matrix with the assignment
A = k̂a k̂b, B = −k̂aMb, and C = 
ab. The components
Oμν have μ,ν taking on labels κ,λ, and χ with any pair (μν)
indicating the change to μ due to ν. The evolution equation
for κ from Eq. (10) then has the form

κ̇ = Uab

(
Aκκk

∂

∂k
κ + Aκλk

∂

∂k
λ + Aκχk

∂

∂k
χ

+ Bκκκ + Bκλλ + Bκχχ + Cκκκ + Cκλλ + Cκχχ

)
,

(11)

with companion equations for λ̇ and χ̇ . These are the formal
equations solved in our model calculations.

The task remains to compute the linear operator connection
matrices A, B, and C, which depend on combinations of the
three primary operators defined above. Note that up to the
point of the general form derived in Eq. (10) the formal
representation of the problem is independent of the choice of
coordinate system. For the purposes of writing a computer code
we choose to work in the basis of spherical harmonics, a natural
choice for SO(3) representation, and to use proper components
instead of normal (e.g., Cartesian) components. We may write
an arbitrary vector operator V in its proper components:

V+ = V1 + iV2, V0 = V3, V− = V1 − iV2, (12)
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where once again the subscripts 1, 2, and 3 are the Cartesian
components x, y, and z, respectively. For spherical harmonic
functions in unit normalization,

∫
�

Y �′m′
Y �md�/(4π ) =

δ�′�δm′m, the action of proper components of L can be shown
to leave � unchanged and change m according to

L+Y �m =
√

(� − m)(� + m + 1)Y �,m+1,

L0Y
�m = mY�m,

L−Y �m =
√

(� + m)(� − m + 1)Y �,m−1. (13)

On the other hand, the action of k̂ results in a linear combination
of lowered and raised spins � with prescribed weights for each
term:

k̂+Y �m = −
√

(� + m + 1)(� + m + 2)

(2� + 1)(2� + 3)
Y �+1,m+1

+
√

(� − m − 1)(� − m)

(2� + 1)(2� − 1)
Y �−1,m+1. (14)

k̂0 and k̂− operate, respectively, to retain and lower m for mixed
(� + 1) and (� − 1) indexed combinations of basis functions.
It may similarly be shown that the action of dyadic tensor
operators formed from pair combinations of k, L, and M, as
in Eqs. (3), (4), and (5), on Y �m transforms it into a sum of
terms depending on Y �′m′

where the values of 
� = �′ − � =
0, ± 1, or ±2 depending on the particular operator form, and

m = m′ − m = 0,±1, or ±2, depending on the coordinate
indices. Similarly, the action on Y �m of pair combinations of
k, L, and M, results in a sum of terms depending on Y �′m′

,
where 
� = �′ − � = 0,±1, or ±2 depending on the particular
operator form, and 
m = m′ − m = 0,±1, or ±2, depending
on the coordinate indices.

The main point in this description is that k̂, L, and M and
their dyadic operator products have prescribed effects, namely,
raising, leaving unchanged or lowering the spin indices (�,m)
of the spherical harmonic basis functions upon which they
operate, with scalar prefactors that are fixed functions of �

and m. The detailed results of such calculations for each of
the elements in the connection matrix may be obtained from
Ref. [10].

III. VALIDATION OF NUMERICAL STRATEGY
AGAINST BP54 THEORY

The computational algorithm proposed allows for efficient
numerical simulation of the equations of motion using a
wavenumber-dependent form with the angular dependence
contained implicitly in the weights of the spherical harmonics
contributions. For a prescribed maximum number of rotational
modes Lmax, one can compute the generation of anisotropy up
to that maximum mode with deterministic weights computed
from the operator connection matrix for each Y �m contribution
to the κ, λ, and χ basis functions. As modes of order greater
than the prescribedLmax are generated, they are discarded. The
only approximation thus arises from the truncation of the series
expansion at � = Lmax.

We now review the numerical strategy employed for cal-
culation. We substitute z = log (k) and then compute over a
range of z ∈ [zmin,zmax] where, for the current calculations,

zmin = −16 and zmax = +16, corresponding to minimum and
maximum values of k of kmin ≈ −1.125 × 10−7 and kmax ≈
8.886 × 106. A total of 3201 mesh points (including end
points) were used to discretize z, with a spacing of δz = 10−2.
The boundary conditions in z were consistent with a k-space
power law with an arbitrary exponent at low and high z. No spe-
cial treatment of the �,m modes beyond Lmax was employed.
The temporal and spatial (z coordinate) differencing scheme
was analogous to a MacCormack method (see Ref. [15]). This
yields a scheme that is second order in time and in z.

To test the algorithm, we consider uniform plane strain such
that U11 = 0, U22 = −1, and U33 = 1. We compute Eq. (11)
and its companion equations for λ and χ for an initially
isotropic homogeneous flow such that κ00 is the only nonzero
contribution at time t = 0. The results presented in this paper
are independent of the choice of the initial spectrum of κ00,
thus, for sake of brevity, we will not describe it. The total initial
energy is normalized so that the initial large-eddy turnover time
is t = 1 in the code units.

Batchelor and Proudman [9] obtained an analytical ex-
pression for the time-evolved Reynolds stress tensor for ho-
mogeneous turbulence subjected to uniform rapid distortion
due to symmetric mean-strain. The latter implies that the
distortion takes place on timescales much faster than those
of the nonlinear terms in the equations of motion. For a given
strain tensor, BP54 define the distortion factor,

c(t) = exp

( ∫ t

0
U33dt

)
, (15)

which is a surrogate for the duration of the distortion. Then
BP54 provide a general solution of the Reynolds tensor as
a function of c. They reduce their result to the single-point
quantities defined by the ratio of post- to predistortion value
of a Reynolds stress component

μn = Rnn(t)

Rnn(0)
, (16)

where n is 1, 2, or 3 (the indices are not summed over).
The general solution of BP54 was specialized for the case

of initially axisymmetric turbulence by Ref. [16], assuming
reasonable low-order truncations of the spherical harmonics
expansions. In Ref. [16], the goal was to obtain the solution for
distortion of initially axisymmetric flow, which in our notation
corresponds to m = 0 for each j sector. In the present work we
demonstrate a calculation which generates anisotropic modes
order-by-order to obtain the BP54 solution. As a validation
study we use the BP54 exact solution for plane strain distortion,
starting from isotropy; but we note that the computational
method we have presented may be used for any distortion
starting from any initial condition.

The BP54 solution for the plane strain distortion of initially
isotropic flow is given by

μ1 = 3

4

c−2

c2 − 1

{
c(c4 − c2 + 1)

(c4 − 1)1/2
[(c2 + 1)y − x] − 1

}

μ2 = 3

4(c2 − 1)

[
1 + c(c4 − c2 − 1)

(c4 − 1)1/2
y

]

μ3 = 3

4
c−2

[
1 + c(c4 + c2 − 1)

(c2 − 1)(c4 − 1)1/2
(x − y)

]
, (17)
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where

x =
∫ (1−c−4)1/2

0
1 − c2t2/(1 − c2)

−1/2
(1 − t2)−1/2dt,

y =
∫ (1−c−4)1/2

0
1 − c2t2/(1 − c2)

1/2
(1 − t2)−1/2dt.

This solution is an rational function of c with no reference
to the SO(3) basis functions whatsoever. Any computation
of μ must converge to this exact solution for a sufficiently
refined calculation. We show below that this is indeed true
for the rotational mode calculation we have proposed given
sufficiently many modes.

To recover the single-point quantities required for compar-
ison with the BP54 solutions above, we first define the angular
average of a function f (k),

〈f (k)〉� = 1

4π

∫
f (k)d� = 1

4π

∫
f (k) sin θdθdφ. (18)

Then the Reynolds stress tensor is given by

Rij =
∫

k2〈Eij (k)〉�dk

= 2

3
k2δij κ

0,0(k) −
∑
m

k2(κ2m(k) + 3λ2m(k))〈kikjY
2m〉�,

(19)

where the constant matrices 〈kikjY
2m〉� are straightforward to

calculate [13]. In the above we have used 〈Y �m(θ,φ)〉� = 1 if
� = m = 0 and vanishes otherwise. Therefore, when averaging
over the sphere, only those contributions to κ, λ, and χ ,
which reduce to spin 0 upon operation with the associated
tensor, survive. χ (k) [Eq. (2)] has no terms with � � 2 and
therefore odd-spin quantities do not contribute to angular-
averaged quantities. In terms of the SO(3) decomposition,
the Reynolds stress is a truncation at � = 2 of the spherical
harmonic expansion of the modal spectrum tensor. However,
the dynamics dictate that contributions from higher spins feed
directly and indirectly into the � = 0 and 2 modes due to
the selection rules discussed above. Therefore, anisotropic
contributions at higher orders in spin must be taken into
account to recover the Reynolds stress accurately. This point
is demonstrated in the results to follow.

The three panels of Fig. 1 show the computed value of
μn for each n, respectively. In each case we present model
calculations with Lmax ranging from 2 to 64 and plot these
along with the exact BP54 result. The calculation is stopped if
any of the Reynolds stress components becomes unphysical
(unrealizable). Therefore, the Lmax = 2 calculation ends at
about c = 2.5 since μ3 becomes negative. What is common to
all n is that for anyLmax the computed solution departs from the
analytical solution after some finite time; the larger the number
of modes permitted, the later the departure from the exact
solution. For Lmax = 64 the computed solution agrees with the
theoretical one for up to about four large-eddy turnover times.
We observe that the improvement, as more modes are added,
is systematic. The error over any desired interval [1,c] can be
made arbitrarily small as the number of modes is increased.

It must be noted further, that as Lmax is increased, μ2

appears to converge to the BP54 benchmark most rapidly, while
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FIG. 1. Ratio of post- to predistortion energy μ3 for various values
of Lmax as a function of the distortion factor c. BP54 is the theoretical
result from Ref. [9]. c = 7.34 corresponds to t = 1, which is the initial
large eddy turnover time.

μ3 is the slowest to converge. This illustrates that nominally
“near isotropic” behavior of a single component is possible,
but could mask underlying anisotropic contributions. That
is, one might be able to recover, for some components, a
partial expression of the solution with fewer modes, but that is
choice could adversely affect other components of the solution.
It is therefore important to assess the impact of anisotropic
contributions on the tensor as a whole.

More detailed structure of the rotational modes arising in
this problem may be revealed by these calculations. Some
redundancies and simplifications may be deduced a priori.
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FIG. 2. Evolution of volume integrated � = 4 modes (top) and
volume integrated � = 6 modes (bottom). The κ (solid) and λ (dashed)
contributions are essentially indistinguishable.

First, the χ contributions, though included in the calculations,
are identically zero because the flow configuration does not
break symmetry in the z(3) direction [12]. Within each even-�
sector it may be shown that odd-m do not contribute because
the chosen mean-strain tensor is diagonal. Finally, given the
definition of the spherical harmonics, the sign of m is an
additional redundancy for the integrated quantities described
below. It remains to compare the contributions of κ to those of
λ. Define the volume-integrated quantity,

Qγ (�,m) =
∫ kmax

0
k2γ �m(k)dk, (20)

where γ is either of κ or λ. These integrated rotational mode
contributions among the different m for � = 4 and � = 6 are
illustrated in Fig. 2. The data for these figures are taken
from the Lmax = 64 calculation. Instead of the expected l + 2
independent contributions, we see one-half that since Qκ (�,m)
and Qλ(�,m) are nearly indistinguishable up to and indeed
for later than the times shown in the figure. For a given �

the different m contributions also have different growth rates,
which change over time.

IV. DISCUSSION AND CONCLUSION

We have developed a computational tool using the SO(3)
decomposition of the second-order correlation function equa-
tion for mean-field coupled turbulence. The nonlinear terms in

the equations of motion are neglected under the assumption
of rapid distortion physics and viscosity is also neglected.
We are therefore in a physical regime that is described by
exact, closed equations of motion. The study is restricted to
symmetric distortions of nonhelical flows, for which Batchelor
and Proudman [9] derived the analytical solution for the
evolution of the second-order correlation function. However,
the method itself can be used with any initial condition and
for any distortion. Our calculations using sufficiently many
rotational modes show convergence to the BP54 analytical
result for nontrivial plane-strain distortion of initially isotropic
flow.

We conclude that, for the exact linear problem, the evolution
of statistical quantities, including low-order (single-point)
quantities like the Reynolds stress, depend on arbitrarily many
higher-order anisotropic sectors. It is apparent that even for
times much less that one large-eddy turnover time, nominally
a “rapid distortion” regime, the number of rotational modes
required for a converged solution proliferate rapidly. A single
time-step generates contributions ranked 2 higher than the
maximum � at a given time.

Calculation of the mean-flow coupled problem to arbitrary
accuracy in the manner proposed here points to strategies for
improved modeling. As already noted, capturing anisotropy
is critical in efforts to accurately model the rapid-pressure
strain correlation. However, we show that the anisotropy arises
from coupling of the various terms in the problem via the
linear operator. An important conclusion, therefore, is that
the RPS correlation cannot be modeled in isolation from the
other anisotropy-generating terms of the problem. On the
other hand, our calculation shows a way to systematically
generate anisotropy at the second-order level of description
and therefore suggests a suitable truncation at order dictated
by the problem itself. This has implications for the class of
single-point models for the stress such as that of Ref. [4] (LRR),
which a priori truncates the rotational-mode dependencies
down to a maximum of � = 2 by angle-averaging [5]. The error
inherent in the LRR-class of models for anisotropic flow can
in principle be explicitly quantified using the model presented
here.

While we have focused on the rapid distortion problem
in this study, the framework presented forms the basis for
a more complete modeling approach for the fully nonlinear
problem including turbulent diffusion and return-to-isotropy
terms [13,17]. These possibilities will be explored in future
work. The discussion of the full nonlinear problem in the
context of two-point second-order correlations will need to
include closure (modeling) assumptions of the third-order
correlations, which are addressed separately [12] and will be
integrated with this approach in future efforts.
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