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Colloidal particle electrorotation in a nonuniform electric field
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A model to study the dynamics of colloidal particles in nonuniform electric fields is proposed. For an isolated
sphere, the conditions and threshold for sustained (Quincke) rotation in a linear direct current (dc) field are
determined. Particle dynamics becomes more complex with increasing electric field strength, changing from
steady spinning around the particle center to time-dependent orbiting motion around the minimum field location.
Pairs of particles exhibit intricate trajectories, which are a combination of translation, due to dielectrophoresis,
and rotation, due to the Quincke effect. Our model provides a basis to study the collective dynamics of many
particles in a general electric field.
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I. INTRODUCTION

The spontaneous rotation of a particle in a uniform electric
field, first observed over a century ago [1] and now known as
Quincke rotation, has been the subject of increasing interest in
recent years. An isolated sphere [2] or ellipsoid [3–5] displays
various rotational motions including chaotic reversal of the
direction of rotation. Even more complex dynamics is found
in a collection of particles. A pair of spheres can undergo
intricate trajectories [6–8], large populations can self-organize
in dynamic patterns [9–15], and a suspension can exhibit
lower effective viscosity [16–18] or increased conductivity
[19] compared to the suspending fluid.

While the Quincke rotation of an isolated particle in a uni-
form electric field is well understood [2,20–23], the collective
dynamics of many Quincke rotors is a largely unexplored
problem. Its modeling is particularly challenging because the
induced dipole of a particle is affected by the presence of
other particles. Hence, the question arises as follows: How
is electrorotation affected by nonuniformities in the electric
field (either due to the presence of other particles, or applied
by design, i.e., using complex arrangement of electrodes)?
A nonuniform field also induces dielectrophoresis [24–26],
hence, the overall particle dynamics becomes a complex mix
of translation and rotation.

In this paper, we explore the dynamics of spheres in a
nonuniform dc electric field. In the case of an isolated sphere,
we derive the threshold for Quincke rotation in a linear field.
In the case of a pair of spheres, we identify the evolution
equations for the multipolar moments (dipole and quadrupole)
and particle positions. The model can be generalized to many
particles and arbitrary nonuniform fields. We present numerical
results illustrating interesting particle dynamics for single, pair,
and multiparticle configurations.

II. PROBLEM FORMULATION

A. Electrostatic field

Consider an isolated spherical particle with permittivity
εp and conductivity σp suspended in a homogeneous fluid

*miksis@northwestern.edu

with permittivity εf and conductivity σf . We adopt the leaky
dielectric model [27], which assumes a charge-free bulk. Ac-
cordingly, the electric potentials satisfy the Laplace equation,
i.e., ∇2φ = 0, with the electric field defined as E = −∇φ. The
applied electric field is E∞ = −∇φa . And we will write

φ(r) =
{
φa + φd, r > a

φa + φ̄d , r � a
(1)

where r = |r|, φd and φ̄d are the disturbance potentials outside
and inside the sphere, respectively. The disturbance potentials
can be written as a multipolar expansion in r as

φd (r) = r · P
r3

+ 1

2

rr : Q
r5

+ · · · , r > a

φ̄d (r) = r · P
a3

+ 1

2

rr : Q
a5

+ · · · , r � a (2)

where P and Q are the dipole and quadrupole moments, and a

is the sphere radius. The coordinates system is centered at the
sphere.

Ohmic currents J = σf E and J̄ = σpĒ charge the interface
and give rise to induced free surface charge q = n · [εf E −
εpĒ]. Here, n is the unit normal vector to the particle surface
and Ē = −∇(φa + φ̄d ) is evaluated on the particle side of
the interface. In addition to conduction, the induced charge
is affected by convection due to the particle rotation

∂q

∂t
+ n · [J − J̄] + ∇s · (qus) = 0 at r = a, (3)

where ∇s = (I − nn) · ∇ and us is the velocity of a point on
the particle surface. In a frame of reference translating with
the particle, the surface motion is pure rotation � and hence
us = � × an.

If the applied field spatial variation on the particle scale is
small, then φa can be linearized around the particle center

φa(r) = φa(0) + r · ∇φa(0) + · · · . (4)

Combining the multipole expansion for the electric potential
[Eqs. (2) and (4)] in the charge conservation equation (3) yields
the evolution equations for the particle dipole and quadruple

2470-0045/2018/97(1)/013111(14) 013111-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.97.013111&domain=pdf&date_stamp=2018-01-22
https://doi.org/10.1103/PhysRevE.97.013111


YI HU, PETIA M. VLAHOVSKA, AND MICHAEL J. MIKSIS PHYSICAL REVIEW E 97, 013111 (2018)

moments (see also [6])

dP
dt

= � × [P + a3εcm∇φa(0)] − 1

τmw

[P + a3σcm∇φa(0)],

(5)

where

εcm = εp − εf

εp + 2εf

, σcm = σp − σf

σp + 2σf

, τmw = εp + 2εf

σp + 2σf

,

and

dQ
dt

= {� × [Q + 2a5ε′
cm∇∇φa(0)]}

+ {� × [Q + 2a5ε′
cm∇∇φa(0)]}T (6)

− 1

τ ′
mw

[Q + 2a5σ ′
cm∇∇φa(0)],

where

ε′
cm = εp − εf

2εp + 3εf

, σ ′
cm = σp − σf

2σp + 3σf

, τ ′
mw = 2εp + 3εf

2σp + 3σf

.

Here, the superscript T denotes transpose and σcm,σ ′
cm, εcm,ε′

cm

are referred to as the Clausius-Mossotti factors [26]. Details of
the derivation of Eqs. (5) and (6) can be found in Appendix A.
Note that even though � × Q does not have to be symmetric
at all time, given a traceless and symmetric Q initially, Eq. (6)
preserves symmetry and zero trace. In the absence of rotation,
the dipole and quadrupole moments relax toward the steady
state with two slightly different Maxwell-Wagner times τmw

and τ ′
mw, which depend on material electric properties. The

evolution of higher order moments in the expansion (2) can be
obtained in a similar way. However, in a linear applied electric
field (i.e., a spatially slowly varying external electric field)
these contributions come at a higher order and are negligible
in the far-field approximation.

The force and torque on the particle are calculated by the
effective multipole moment method [25,26], which at the order
of our approximation gives

Fel = −4πεf

[
P · ∇∇φa(0) + 1

6 Q : ∇∇∇φa(0)
]
,

(7)
Tel = −4πεf [P × ∇φa(0) + (Q · ∇) × ∇φa(0)].

Note that the above expressions are strictly valid for an isolated
sphere in a linear applied field.

B. Particle motion

For small particles, typically inertia is negligible. Accord-
ingly, the translational velocity U and rotational rate � of a
sphere is determined by the balance of electrostatic force and
Stokes drag,

Fel = 6πηf a

(
−u∞ − a2

6
∇2u∞ + U

)
,

(8)
Tel = 8πηf a3(−�∞ + �),

where ηf is the viscosity of the suspending fluid, and u∞ (and
−�∞) is a background flow (either applied or generated by
the motion of other spheres, if present) evaluated at the sphere
center. In our study, the background flow is zero for an isolated

particle. In the case of multiple particles, the background flow
is the flow induced by the motion of the rest of the particles.

III. AN ISOLATED SPHERE IN A LINEAR
ELECTRIC FIELD

A. Threshold for electrorotation

The classic Quincke electrorotation considers an isolated
sphere suspended in a homogeneous fluid and exposed to
uniform dc electric field E∞. The threshold field for electroro-
tation is given by [20,21],

|E| > Ec =
√

2ηf

εf τmw(εcm − σcm)
, (9)

and the rotation rate is

|�| = 1

τmw

√( |E∞|
Ec

)2

− 1. (10)

Equation (9) shows that electrorotation can occur only if εcm >

σcm.
In a nonuniform field, this criterion can be generalized.

Equations (5) and (6) show that the steady dipole and sym-
metric quadrupole moments satisfy

� × [P + a3εcm∇φa] − 1

τmw

[P + a3σcm∇φa] = 0,

� × [Q + 2a5ε′
cm∇∇φa] − 1

2τ ′
mw

[Q + 2a5σ ′
cm∇∇φa] = 0.

(11)

By taking inner and outer products of Eq. (11) with �, we
obtain P and Q in terms of �:

P = A1[� × ∇φa + τmw(� · ∇φa)�] − A2∇φa,

Q = A3[� × ∇∇φa + 2τ ′
mw(� · ∇∇φa)�] − A4∇∇φa,

(12)

where the coefficients are

A1 = a3τmw(εcm − σcm)

1 + �2τ 2
mw

, A2 = a3

[
εcm − εcm − σcm

1 + �2τ 2
mw

]
,

A3 = 2a5τ ′
mw(ε′

cm − σ ′
cm)

1 + 4�2τ ′2
mw

, A4 = 2a5

[
ε′
cm − ε′

cm − σ ′
cm

1 + 4�2τ ′2
mw

]
.

(13)

Substituting (12) back into the torque balance equation (8), and
taking the inner product with �, we find an equation for �:

2ηf |�|2 = εf

τmw(εcm − σcm)

1 + |�|2τ 2
mw

[−(� · E∞)2 + |�|2|E∞|2]

+ εf

4τ ′
mwa2(ε′

cm − σ ′
cm)

1 + 4|�|2τ ′2
mw

[−|� · ∇E∞|2

+ |�|2‖∇E∞‖2].

Here, we denote ‖T‖2 = ∑
T 2

ij . Unlike the uniform field case,
in a nonuniform field � · E∞ in general is nonzero. Equation
(14) yields a trivial solution

� = 0. (14)
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A nontrivial solution of Eq. (14) requires that

2ηf = εf

τmw(εcm − σcm)

1 + |�|2τ 2
mw

(
|E∞|2 − |� · E∞|2

|�|2
)

+ εf

4τ ′
mwa2(ε′

cm − σ ′
cm)

1 + 4|�|2τ ′2
mw

(
‖∇E∞‖2 − |� · ∇E∞|2

|�|2
)

.

(15)

Although this equation cannot be solved explicitly for �,
we can identify a necessary condition for the existence of a
nontrivial �. In particular, when εcm − σcm and ε′

cm − σ ′
cm are

both non-negative, we obtain that

2ηf � εf τmw(εcm − σcm)|E∞|2
+ 4εf τ ′

mwa2(ε′
cm − σ ′

cm)‖∇E∞‖2 (16)

should be satisfied for electrorotation to occur.
As an example of a nonuniform electric field, let us consider

E∞ = α(xi − zk), (17)

which is experimentally generated by a hyperbolic cylinder
electrodes; here, i and k are the unit vectors in the x and z

directions. The parameter α is a measure of the field gradient.
It should be noted that if a constant field were added to Eq. (17)
for nonzero α, the effect would simply be a translation of
the coordinate system, and hence this term is not included
here.

From Eqs. (11), (12), (15), and (17), we obtain for a particle
centered atx = 0 and z = 0, a steady rotation around they axis,
with the magnitude

|�| =
√

εf (ε′
cm − σ ′

cm)a2α2

ηf τ ′
mw

− 1

4τ ′2
mw

. (18)

Introducing G = aα/Ec, this is a measure of the field
strength over the particle. With this definition, we can identify
a critical value of G, G∗ in Eq. (18) which generates a nonzero
rotation predicted when |�| = 0:

G∗ = 1

4

√
τmw(εcm − σcm)

τ ′
mw(ε′

cm − σ ′
cm)

. (19)

This is the threshold for electrorotation in a linear field in the
whole plane. As shown later, G∗ ≈ 0.4092 for the physical
system considered here.

B. Dynamics and particle trajectories

Here, we consider particle motion in the nonuniform electric
field (17). Since the applied field direction is parallel to
the x-z plane, particle motion is expected to be confined
to the x-z plane. Still, this special case will allow us to illustrate
the effect of nonuniformities on the particle dynamics. Note
that although the evolution equations (5), (6), and (8) are
derived for a slowly varying electric field, they are exact for
the special case Eq. (17).

Henceforth, we nondimensionalize all variables by the
drop radius a, electrohydrodynamic time tehd = ηf /(εf E2

c ),
and electric field threshold for Quincke rotation Ec given by
Eq. (9). All dimensionless variables are denoted by “tilde.”

The dimensionless equations (5) and (6) are

dP̃
dt̃

= �̃ × [̃P − εcmG(x̂i − ẑk)]

− 1

D
[̃P − σcmG(x̂i − ẑk)], (20)

dQ̃
dt̃

= �̃ × [Q̃ − 2ε′
cmG̃] + [�̃ × [Q̃ − 2ε′

cmG̃]]T

− 1

D′ [Q̃ − 2σ ′
cmG̃], (21)

where

D = τmw

tehd

= εf E2
c τmw

ηf

, D′ = τ ′
mw

tehd

= D
τ ′
mw

τmw

,

and

G̃ = G

⎛⎝1 0 0
0 0 0
0 0 −1

⎞⎠. (22)

Note that the applied fields in Eqs. (5) and (6) are evaluated at
the particle center (x̂ = ŷ = 0), but for a moving particle in a
nonuniform field it should be evaluated at the current particle
location. Hence, there is a spatial dependence in the electric
field in Eq. (20).

The dimensionless equation (8) yields for the particle
translation and rotation

Ũ = 2

3
P̃ · G̃,

�̃ = 1

2

[
P̃ × E0

Ec

(x̃i − z̃k) + Q̃ × G̃
]
. (23)

For the numerical calculations, we chose the experimen-
tal system of Ref. [17]: εmw = −0.1092, ε′

mw = −0.0670,
σmw = −0.5 and σ ′

mw = −0.3333, Ec = 827.3 V/mm, τmw =
2.94 ms, τ ′

mw = 3.20 ms, D = 5.1520, D′ = 5.6054. From
Eq. (19) we find that to guarantee nonzero electrorotation in
the whole plane, we need G∗ > 0.4092.

Figure 1 shows a typical particle trajectory when G∗ =
0.4000. The particle undergoes negative dielectrophoresis
(DEP) and moves towards the minimum field location. The
Quincke rotation and continuous changing DEP force make the
trajectory nonstraight. The circle in Fig. 1 indicates the region
given by Eq. (16). Within this region, the particle does not
undergo Quincke rotation. The evolution of particle rotation
rate and the components of the dipole and quadrupole moments
are shown in Fig. 2. Upon particle release, the magnitude of
its rotation rate increases. Position p1 is a turning point after
which the rotation magnitude starts to decrease. Positions p2
and p3 are two intermediate points before particle enters the
“non-Quincke” zone. Position p4 is when the particle arrives
at the center axis, where rotation and all multiple moments
except the diagonal elements of Q decay to zero.

Increasing of the field gradient strength shrinks the “non-
Quincke” zone, and when G � G∗ the electro-rotation occurs
everywhere in the space. A single particle will eventually stay
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FIG. 1. One particle trajectory starting at x = 2.5, z = 6.0. Initial
perturbations at the magnitude of O(10−4) are randomly generated.
The red circle indicates the non-Quincke region satisfying Eq. (16).
The markers p1 to p4 indicate four positions when z first hits the
value of 0.0,1.0,2.0,3.0. G = 0.4000. The particle does not rotate in
the equilibrium state.

steady at the equilibrium position with a nonzero rotation
rate.

In even stronger fields, particle dynamics becomes more
complex. Figure 3 shows particle steady state changing from a
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FIG. 2. The evolution of the multipole moments and rotation rate
for the single particle motion shown in Fig 1. (a) Dipole moments.
(b) Quadrupole moments.

stable point [Fig. 3(a)] to circular orbit [Fig. 3(b)] and finally
rotating elliptic orbit [Fig. 3(c)] as G increases.

The long time stationary trajectory can be characterized
by the short ra and the long rb axes of the elliptical orbit.
Figure 4 shows the dependence of ra and rb on field strength.
Region 1 (R1, no rotation) and 2 (R2) indicate steady position
in the physical plane (ra = rb = 0). In region 2, the particle
undergoes electrorotation, however, there is no off-center
particle motion in this steady state solution [see Fig. 3(a)].
The narrow region 3 (R3) corresponds to a different scenario
[see Fig. 3(b)]. In this region, the origin is no longer a steady
position. The particle trajectory converges to a circle centered
at the origin. The radius of this circle increases with G. Region
4 (R4) shows a transition from the circular trajectory to rotating
elliptical trajectories as in Fig. 3(c). It is interesting to notice
that in this region, the average radius stays almost unchanged,
but the deformation increases with G. Region 5 (R5) indicates
a simultaneous increase of the deformation and the average
orbit radius, while the orbit retains elliptical shape.

IV. MULTIPARTICLE SYSTEM

Here, we extend Eqs. (5), (6), and (8) to many particle
systems. For convenience, we revert to dimensional variables.

A. General formalism

Here, we generalize the model to describe the dynamics
of N particles. With respect to the evolution of multipole
moments in Eqs. (5) and (6), now we need to include the
disturbance from other particles. Assuming widely separated
particles, introduce the two vectors Ep

ij = ∇ r·Pj

r3 |r=Rij
and

Eq

ij = ∇ rr:Qj

2r5 |r=Rij
, as the two leading orders of the field

contributions valued at particle i from the expansion of
disturbance potential induced by particle j . Also, introduce
Gp

ij = ∇∇ r·Pj

r3 |r=Rij
. Here, Rij = rj − ri .

The evolution equations of the multipole moments of the
ith particle are

dPi

dt
= �i ×

⎡⎣Pi + a3εcm

⎛⎝∇φa(ri) +
∑
j �=i

(
Ep

ij + Eq

ij

)⎞⎠⎤⎦
− 1

τmw

⎡⎣Pi + a3σcm

⎛⎝∇φa(ri) +
∑
j �=i

(
Ep

ij + Eq

ij

)⎞⎠⎤⎦
(24)

and

dQi

dt
=
⎧⎨⎩�i ×

⎡⎣Qi + 2a5ε′
cm

⎛⎝∇∇φa(ri) +
∑
j �=i

Gp

ij

⎞⎠⎤⎦⎫⎬⎭
sym

− 1

τ ′
mw

⎡⎣Qi + 2a5σ ′
cm

⎛⎝∇∇φa(ri) +
∑
j �=i

Gp

ij

⎞⎠⎤⎦,

(25)

where sym denotes A
sym
ij = Aij + AT

ij . The truncation error is
O((a/Rij )−5) in this approximation [28]. Here, it is assumed
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FIG. 3. Particle trajectories in different field gradient strength. Initial position x = 5.0, z = 2.0 and a random initial polarization perturbation
at O(10−4). D = 5.1520, D′ = 5.6054. (a) G = 1.0. (b) G = 2.3, inset shows steady state trajectory. (c) G = 3.0, inset shows the rotating
elliptical trajectory. The final time interval t̃ ∈ (380,400) is indicated by red color. See Supplemental Material for movies [31].

that the minimum Rij = |Rij | over all i �= j is used to estimate
the error.

The electric force on a particle is (see Appendix B for
details)

Fel
i = Fd1

i + Fd2
i + Fd3

i , (26)

G
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S
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et
er
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2.5
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(rb + ra)/2
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FIG. 4. Stationary trajectory shape vs G. ra and rb are the short
and long radii of the steady orbit. When no steady orbit is observed,
ra and rb are the minimum and maximum distances to the origin in a
chosen time frame. D′ = 5.6054, ε ′

mw = −0.0670, σ ′
mw = −0.3333.

where

Fd1
i = 4πεf Pi · ∇∇φa(ri),

Fd2
i = −

∑
j �=i

12πεf

R4
ij

[(Pi · R̂ij )Pj + (Pj · R̂ij )Pi

+ (Pi · Pj )R̂ij − 5(Pj · R̂ij )(Pi · R̂ij )R̂ij ],

Fd3
i = 2πεf

3
Qi : ∇∇∇φa(ri). (27)

The electric torque is

Tel
i = Td1

i + Td2
i + Td3

i + Td4
i , (28)

where

Td1
i = 4πεf [Pi × ∇φa(ri) + (Qi · ∇) × ∇φa(ri)],

Td2
i = −4πεf Pi ×

∑
j �=i

Ep

ij ,

Td3
i = −4πεf Pi ×

∑
j �=i

Eq

ij ,

Td4
i = −4πεf (Qi · ∇) ×

⎛⎝∑
j �=i

Ep

ij

⎞⎠. (29)

The quadrupole-quadrupole interaction and higher order
moments are neglected since they come at the order of
O((a/Rij )−5), as shown in Appendix B.

Particle motion generates fluid flow, hence, hydrodynamic
interactions should also be taken into account [29]. Includ-
ing the particles-induced flow, the equations of motion of a
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particle are

ui = Fel
i

6πaηf

+
∑
j �=i

Frep
ij

6πaηf

+
∑
j �=i

(
5Fel

i · R̂ij

)
R̂ij

8πaηf R4
ij

+ 1

ηf

∑
j �=i

[
−Tel

j × R̂ij

8πR2
ij

+ 1

8π

(
1

Rij

+ 2a2

3R3
ij

)
Fel

j

+ 1

8π

(
1

Rij

− 2a2

R3
ij

)(
Fel

j · R̂ij

)
R̂ij

]
, (30)

�i = Tel
i

8πa3ηf

+ 1

ηf

∑
j �=i

[
− Tel

j

16πR3
ij

− 3

16πR3
ij

(
Tel

j · R̂ij

)
R̂ij

−
(
Fel

j

)× R̂ij

8πR2
ij

]
. (31)

In Eq. (30), we introduce an artificial isotropic repulsion force
[30] to prevent particle contact,

Frep
ij = F r

0

(
r2
c − |Rij |2
r2
c − 4a2

)2

R̂ij , Rij < rc (32)

where rc = 2.01a is a control distance used to simulate surface
roughness and F r

0 is a characteristic repulsion force unit.
The detailed derivation of Eqs. (30) and (31) is provided

in Appendix B. For an applied linear electric field, the evo-
lution equations for the multipole moments are exact. For
a general nonuniform electric field, especially a field which
rapidly varies on the particle scale, the truncation of multipole
moments as well as the Taylor expansion of the applied

field introduce error. However, we are still able to set up a
similar model for slowly varying fields by doing a systematic
asymptotic analysis and assuming a proper balancing order
for the scales of the applied field and the disturbance field. The
discussion is provided in Appendix C.

B. Two-particle dynamics

Figure 5 shows the interaction of two identical particles
at different applied field strengths E0. The spheres move
towards the origin (location of minimum field), due to the
dielectrophoretic (DEP) force, while also executing rotations,
due to the Quincke effect. In a uniform field, the spheres would
orbit around each other [6,8]. In the nonuniform field, this
orbiting motion is superimposed on the DEP translation. The
circle which satisfies Eq. (16) is drawn in Figs. 5(a) and 5(b).
This circle represents the boundary of the existence of a steady
nonzero �, hence, within the circle only transient rotation can
exist.

In our computations, the two particles are positioned in
the electrorotation region and random initial polarizations
are applied. Computations for different initial polarizations
and different G are presented in Fig. 5. In Fig. 5(a), the
random initial polarizations have the particles initially rotating
in the same direction, and hydrodynamic interactions then
drive the particle pair to orbit about each other. Meanwhile,
they translate towards the “non-Quincke” region due to the
DEP force. The rotation decays to zero once they enter it. In
Fig. 5(b), the spheres are initially counter-rotating and form
a translating pair moving quite linearly to the “non-Quincke”
region. In stronger fields, the nonrotation region shrinks. As
shown in Figs. 5(c) and 5(d), the DEP force from the external
field dominates the pair interactions. However, when particles
come close to each other, we observe a pairing phenomenon
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FIG. 5. Particle dynamic patterns and their rotation rates as a function of time. The dashed (solid) line in the upper figure corresponds
to the dashed (solid) line in the lower figure. Initial P is given randomly at O(10−4). The nonelectrorotation region is indicated by the circle
satisfying Eq. (16). D = 5.1520, D′ = 5.6054. (a) Corotating pair, G = 0.1, (b) counter-rotating pair, G = 0.1, (c) co-rotating pair, G = 1.0,
(d) counter-rotating pair, G = 1.0. See Supplemental Material for movies [31].
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FIG. 6. Dynamics of 20 particles in a linear field with random
initial positions. Chaining at Y axis is observed. G = 1.0. D =
5.1520. See Supplemental Material for movies [31]. (a) t̃ = 0; (b)
t̃ = 20; (c) t̃ = 200; (d) t̃ = 2000.

due to their rotation. In the first example [Fig. 5(c)], the two
particles form a corotating cluster. In Fig. 5(d), we find that the
two particles form a stationary counter-rotating pair due to the
balance of DEP force and hydrodynamic interaction.

We note that in the previous pair-particle cases, the particles
are initially in the x-z plane of the applied electric field and
no initial disturbance is given in the y direction. Thus, no
motion in the y direction is present. However, if the particle’s
initial alignment is not in the x-z plane of the electric field or
there is any orthogonal perturbation (in the y direction), the
in-plane motion is not stable. In this case, particles eventually
form a chain orthogonal to the field plane, i.e., along the y

axis in our field setup. The particle’s axis of rotation is then
orthogonal to the x-z plane. This observation will be applied
to the multiparticle case below.

C. Multiparticle dynamics in nonuniform fields

The nonuniform electric field can be utilized to assemble
structures of spheres. Figure 6 shows that spheres in a linear
field Eq. (17) form a chain extending along the y direction,
which is the direction of rotation. However, in stronger fields,
no stable assembly exists and the multiparticle dynamics is
complex (similar to the single particle scenario).

Our multiparticle model can be applied to study particle
dynamics in more general nonuniform fields. Here, we illus-
trate particles assembly in a slowly varying periodical electric
potential which generates a spatially periodic electric field

Ẽa = E0

Ec

[δ′ sin(δ′x̃) sinh(δ′z̃)i − δ′ cos(δ′x̃) cosh(δ′z̃)k].

(33)

FIG. 7. Dynamics of 60 particles in periodical field with random
initial positions with x̃ ∈ [0,60]. Clustering at z̃ = 0 plane is ob-
served. Four chains are formed at x̃ = 8,24,40,56. E0/Ec = 1.0. δ′ =
π

16 . D = 5.1520. See Supplemental Material for movies [31]. (a)
t̃ = 0; (b) t̃ = 20; (c) t̃ = 200; (d) t̃ = 2000.

The field is periodic in the x direction and can be generated by
two separated plain electrodes with opposite sinusoidal applied
potential. Figure 7 illustrates the particle configurations for
the case E0 = Ec and δ′ = π

16 and 60 particles. The particles
are observed to cluster in the x-y plane and form chains
periodically localized at all zero points of field strength. This is
also majorly due to a negative DEP effect. In our simulations,
the chains’ positions are eventually stable while each particle
undergoes steady rotation.

V. CONCLUSIONS

We developed a model to investigate the dynamics of
spheres in a nonuniform electric field when Quincke rotation
has significant effect on the dynamics. Our theory is built
on the Taylor-Melcher leaky dielectric model, which assumes
Ohmic conduction in the bulk and creeping flow. Considering
an applied field with spatial variations much larger than the
interparticle spacing and the radius of the spheres, particle
polarization is approximated by the dipole and quadrupole
moments. This reduces the problem to a system of ordinary
differential equations for the particle position, rotation rate,
dipole, and quadrupole moments. In this paper, we focus on an
applied linear electric field in which case the approximation is
exact.

In the study of the steady state of single sphere, we identify
a necessary condition for when the nonuniform field induces
Quincke rotation. We find the threshold for electrorotation in a
linear field. Increasing the electric field strength makes the par-
ticle dynamics more complex: while Quincke electrorotation
is characterized by steady spinning around the particle center,
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in stronger fields time-dependent orbiting motion around the
minimum field location is observed.

We generalize the model to consider multiparticle sim-
ulations in arbitrary (but spatially slowly varying) applied
fields. Hydrodynamic interactions are included via the grand-
mobility matrix. In the leading order analysis, we retain terms
in the far field expansions up to fourth order in the interparticle
spacing. The electrostatic interactions between particles in-
clude dipole-dipole and dipole-quadrupole interactions which
are naturally introduced from the dielectrophoretic force cal-
culation. A numerical study of two-particle and multiparticle
systems was considered for the special case of a linear applied
field. Our calculation shows intricate trajectories in the case of
pairs, and chainlike assemblies in the case of many particles.

Our model provides a basis to study the collective dynamics
of many particles in a general electric field. The model can also
be extended to include ambient flow, and thus can be applied
to study problems in electrorheology.
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APPENDIX A: DERIVING EVOLUTIONS
OF MULTIPOLE MOMENTS

The Taylor expansion of the external field at the particle
center is given by

φa(r) = φa(0) + r · ∇φa(0) + 1
2 rr : ∇∇φa(0)

+ 1
6 rrr[·]3∇∇∇φa(0) + · · · . (A1)

Then, the gradient of potential is

∇φa(r) = ∇φa(0) + ∇∇φa(0) · r + 1
2∇∇∇φa(0) : rr + · · · .

(A2)

As we discussed in Sec. II A, the induced potential due to the
particle could be expanded in a series of spherical harmonics
as

φd (r) = r · P
|r|3 + 1

2

rr : Q
|r|5 + 1

2

rrr[·]3O
|r|7 + · · · , |r| > a

φ̄d (r) = r · P
a3

+ 1

2

rr : Q
a5

+ 1

2

rrr[·]3O
a7

+ · · · , |r| � a

(A3)

where P, Q, and O are the dipole, quadrupole, and octopole
moments.

We obtain the gradients as

∇φd (r) = P
|r|3 − 3r · P

|r|5 r + 1

2

(
2Q · r
|r|5 − 5rr : Q

|r|7 r
)

+ 1

2

(
3O : rr

|r|7 − 7O[·]3rrr
|r|9 r

)
+ · · · , |r| > a

∇φ̄d (r) = P
a3

+ Q · r
a5

+ 3

2

O : rr
a7

+ · · · , |r| � a. (A4)

We substitute the above gradients into the charge conserva-
tion equation (3). From the definition of the induced charge q

we obtain

q = −n · [εf (∇φa + ∇φd ) − εp(∇φa + ∇φ̄d )]

= −r/a ·
{
εf

[
∇φa(0) + ∇∇φa(0) · r + 1

2
∇∇∇φa(0) : rr + P

|r|3 − 3r · P
|r|5 r + 1

2

(
2Q · r
|r|5 − 5rr : Q

|r|7 r
)

+ 1

2

(
3O : rr

|r|7 − 7O[·]3rrr
|r|9 r

)]
− εp

[
∇φa(0) + ∇∇φa(0) · r + 1

2
∇∇∇φa(0) : rr + P

a3
+ Q · r

a5
+ 3

2

O : rr
a7

]}
= (εp − εf )

r · ∇φa(0)

a
+ (εp − εf )

rr : ∇∇φa(0)

a
+ (εp − εf )

2

rrr[·]3∇∇∇φa(0)

a
+ (2εf + εp)

r · P
a4

+
(

3

2
εf + εp

)
rr : Q

a6

+
(

2εf + 3

2
εp

)
rrr[·]3O

a8
, |r| = a. (A5)

Here, we have truncated at cubic terms in |r|.
Similarly, for the jump in the normal current

n · [J] = −n · [σf (∇φa + ∇φd ) − σp(∇φa + ∇φ̄d )]

= (σp − σf )
r · ∇φa(0)

a
+ (σp − σf )

rr : ∇∇φa(0)

a
+ (σp − σf )

2

rrr[·]3∇∇∇φa(0)

a

+ (2σf + σp)
r · P
a4

+
(

3

2
σf + σp

)
rr : Q

a6
+
(

2εf + 3

2
εp

)
rrr[·]3O

a8
, |r| = a. (A6)

Substituting u into the convection term, we have

∇s · (qu) = q∇s · (� × r) + (� × r) · ∇sq = (� × r) · ∇sq. (A7)
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Then,

∇sq = (I − nn) · ∇
[

(εp − εf )
r · ∇φa(0)

a
+ (εp − εf )

rr : ∇∇φa(0)

a
+ (εp − εf )

2

rrr[·]3∇∇∇φa(0)

a

+ (2εf + εp)
r · P
a4

+
(

3

2
εf + εp

)
rr : Q

a6
+
(

2εf + 3

2
εp

)
rrr[·]3O

a8

]
= (I − n̂n̂) ·

[
(εp − εf )

∇φa(0)

a
+ 2(εp − εf )

∇∇φa(0) · r
a

+ 3(εp − εf )

2

∇∇∇φa(0) : rr
a

+ (2εf + εp)
P
a4

+ (3εf + 2εp)
Q · r
a6

+
(

6εf + 9

2
εp

)O : rr
a8

]
. (A8)

Thus,

(� × r) · ∇sq = (� × r) ·
{

(I − nn) ·
[

(εp − εf )
∇φa(0)

a
+ 2(εp − εf )

∇∇φa(0) · r
a

+ 3(εp − εf )

2

∇∇∇φa(0) : rr
a

+ (2εf + εp)
P
a4

+ (3εf + 2εp)
Q · r
a6

+
(

6εf + 9

2
εp

)O : rr
a8

]}
(A9)

= −r ·
{
�×

[
(εp − εf )

∇φa(0)

a
+ (2εf + εp)

P
a4

]}
− rr :

{
�×

[
2(εp − εf )

∇∇φa(0)

a
+ (3εf + 2εp)

Q
a6

]}
− rrr[·]3

{
�×

[
3(εp − εf )

2

∇∇∇φa(0)

a
+
(

6εf + 9

2
εp

)O
a8

]}
. (A10)

Contributions from higher order moments can be added in the same way above.
Substituting back into Eq. (3), the equation has contributions in different order of multipole products with r. As we mentioned,

r is a position vector at any point on the particle surface. The equation is separable at each order of r so we can obtain the
independent equations for each multipole moment. When we only keep the dipole and quadrupole contribution in the system, we
can obtain

d

dt

[
(2εf + εp)

r · P
a4

]
+ (2σf + σp)

r · P
a4

+ (σp − σf )
r · ∇φa(0)

a

− r ·
{
�×

[
(εp − εf )

∇φa(0)

a
+ (2εf + εp)

P
a4

]}
= 0,

(A11)

d

dt

[(
3

2
εf + εp

)
rr : Q

a6

]
+
(

3

2
σf + σp

)
rr : Q

a6

+ (σp − σf )
rr : ∇∇φa(0)

a
− rr :

{
�×

[
2(εp − εf )

∇∇φa(0)

a
+ (3εf + 2εp)

Q
a6

]}
= 0.

(A12)

Equation (A11) indicates

dP
dt

= � × [P + a3εcm∇φe(0)] − 1

τmw

[P + a3σcm∇φe(0)], (A13)

where

εcm = εp − εf

εp + 2εf

, σcm = σp − σf

σp + 2σf

, τmw = εp + 2εf

σp + 2σf

,

drr : Q
dt

= rr : {�×[2Q + 4a5ε′
cm∇∇φa(0)]} − 1

τ ′
mw

rr : [Q + 2a5σ ′
cm∇∇φa(0)], (A14)

where

ε′
cm = εp − εf

2εp + 3εf

, σ ′
cm = σp − σf

2σp + 3σf

, τ ′
mw = 2εp + 3εf

2σp + 3σf

.

Equation (A14) indicates

dQ
dt

= {� × [Q + 2a5ε′
cm∇∇φa(0)]} + {� × [Q + 2a5ε′

cm∇∇φa(0)]}T − 1

τ ′
mw

[Q + 2a5σ ′
cm∇∇φa(0)]. (A15)
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Note we always assume Q is symmetric to satisfy the original
Laplace equation.

Also, because

M = MT ⇒ tr(� × M) = 0 ∀ �,M ∈ R3×3, (A16)

Eq. (A15) guarantees tr(Q) = 0. Additional details can be
found in [28]. We note that Eq. (A13) can be found in [6].
Reference [6] has a form of Eq. (A15) but as written there it
will not preserve the symmetry of Q during numerical solution.

APPENDIX B: MULTIPARTICLE SYSTEM IN LINEAR
ELECTRIC FIELDS

In this appendix, we provide the details of the derivation
of equations of motion of many particles. The grand-mobility
formation for particle motion follows as

(
u∞ − u
�∞ − �

)
= M ·

(
η−1

f F

η−1
f T

)
. (B1)

For example of a two-particle system, the mobility equations
of particle 1 relate the hydrodynamic forces and torques to the
particle motion as

u∞ − u1 = η−1
f

(
a11FH

1 + a12FH
2 + b̃11TH

1 + b̃12TH
2

)
,

�∞ − �1 = η−1
f

(
b11FH

1 + b12FH
2 + c11TH

1 + c12TH
2

)
,

(B2)

where TH
i and FH

i are the torques and forces exerted by the
fluid on particle i. ηf is the viscosity of the external fluid. The
coefficient tensors a, b, c are called mobility functions which
are relative to particle separation.

Note that the full grand-mobility matrix involves the strain
if there is an applied shear flow. The model we present here is
directly extendible by adding the applied strain contribution.
The problem considered here has no applied shear flow. Such
flows do occur in the multiparticle problem considered here
but appear lower order in the analysis.

The coefficients in the mobility matrix are expanded as [29]

(a11)ij = xa
11didj + ya

11(δij − didj ),

(a12)ij = xa
12didj + ya

12(δij − didj ),

(b11)ij = yb
11εijkdk,

(b12)ij = yb
12εijkdk, (B3)

(b̃11)ij = (b11)ji ,

(b̃12)ij = (b21)ji = −(b12)ji ,

(c11)ij = xc
11didj + yc

11(δij − didj ),

(c12)ij = xc
12didj + yc

12(δij − didj ),

where d = R̂12. In a far-field approximation, assuming a
|Rij | ∼

γ  1 (∀ i,j ), and denoting R = |Rij |, the mobility functions

are

xa
11 = 1

6πa

[
1 + 15a4

4R4
+ O(γ 9)

]
,

ya
11 = 1

6πa
[1 + O(γ 6)],

xa
12 = 1

6πa

[
3a

2R
− a3

R3
+ O(γ 7)

]
,

ya
12 = 1

6πa

[
3a

4R
+ a3

2R3
+ O(γ 11)

]
,

yb
11 = O(γ 7),

yb
12 = 1

4πa2

[
− a2

2R2
+ O(γ 10)

]
,

xc
11 = 1

8πa3
[1 + O(γ 8)],

xc
12 = 1

8πa3

[
− a3

R3
+ O(γ 11)

]
,

yc
11 = 1

8πa3
[1 + O(γ 6)],

yc
12 = 1

8πa3

[
− a3

2R3
+ O(γ 9)

]
,

(B4)

with the indicated leading order errors.
Then, for multiple particles, the equations for particle

motion will be ((Rij = |Rij |)

ηf (u∞ − ui) = FH
i

6πa
+
∑
j �=i

[
5a3

8πR4
ij

(FH
i · R̂ij )R̂ij

− TH
j × R̂ij

8πR2
ij

+ 1

8π

(
1

Rij

+ 2a2

3R3
ij

)
FH

j

+ 1

8π

(
1

Rij

− 2a2

R3
ij

)
(FH

j · R̂ij )R̂ij

]
+O(γ 4), (B5)

ηf (�∞ − �i) = TH
i

8πa3
+
∑
j �=i

[
− TH

j

16πR3
ij

− FH
j × R̂ij

8πR2
ij

]

− 3

16πR3
ij

(
TH

j · R̂ij

)
R̂ij + O(γ 6). (B6)

Assume particles are forced balanced and no inertia effect
is considered. The hydrodynamic force FH imposed by the
fluid on particles should be balanced by the nonhydrodynamic
interactions, i.e.,

FH = −Fel − Frep. (B7)

For a given linear electric field, we can calculate the force
and torque exactly as

Fel
i = −4πεf

[
Pi · ∇∇φe(ri) + 1

6 Qi : ∇∇∇φe(ri)
]
,
(B8)

Tel
i = −4πεf [Pi × ∇φe(ri) + (Qi · ∇) × ∇φe(ri)],
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where φe = φa +∑
φd is the total external electric potential

which contains the applied potential and the disturbance
potentials.

Substituting the exact φe into Eq. (B8), up to the order of
O(γ 4), we obtain three terms of the force:

Fd1
i = 4πεf Pi · ∇∇φa(ri),

Fd2
i = −

∑
j �=i

12πεf

R4
ij

[(Pi · R̂ij )Pj + (Pj · R̂ij )Pi

+ (Pi · Pj )R̂ij − 5(Pj · R̂ij )(Pi · R̂ij )R̂ij ],

Fd3
i = 2πεf

3
Qi : ∇∇∇φa(ri). (B9)

The leading error is from truncating the quadrupole contribu-
tion in the disturbance potential, hence,

Fel
i = Fd1

i + Fd2
i + Fd3

i + O(γ 5). (B10)

Similarly when we deal with the hydrodynamic torque T H ,
we assume it is instantly balanced by the electric torque, i.e.,

TH = −Tel . (B11)

Then, also from Eq. (B8),

Tel
i = Td1

i + Td2
i + Td3

i + Td4
i + O(γ 5), (B12)

where

Td1
i =4πεf [Pi × ∇φa(ri) + (Qi · ∇) × ∇φa(ri)],

Td2
i = − 4πεf Pi ×

∑
j �=i

(
∇ r · Pj

r3

∣∣
r=Rij

)
,

Td3
i = − 4πεf Pi ×

∑
j �=i

(
∇ rr : Qj

2r5

∣∣
r=Rij

)
,

Td4
i = − 4πεf (Qi · ∇) ×

⎛⎝∑
j �=i

∇ r · Pj

r3

∣∣
r=Rij

⎞⎠.

(B13)

Substituting Eqs. (B7)–(B13) into the mobility equation
(B5), we obtain the evolution equation for the particle transla-
tional velocity and angular velocity

ui = u∞
i + Fel

i

6πaηf

+
∑
j �=i

Frep
ij

6πaηf

+
∑
j �=i

(
5Fel

i · R̂ij

)
R̂ij

8πaηf R4
ij

+ 1

ηf

∑
j �=i

[
− Tdep

j × R̂ij

8πR2
ij

+ 1

8π

(
1

Rij

+ 2a2

3R3
ij

)
Fel

j

+ 1

8π

(
1

Rij

− 2a2

R3
ij

)(
Fel

j · R̂ij

)
R̂ij

]
+ O(γ 5),

�i = �∞
i + Tel

i

8πa3ηf

+ 1

ηf

∑
j �=i

[
− Tdep

j

16πR3
ij

− 3

16πR3
ij

(
Tdep

j · R̂ij

)
R̂ij

−
(
Fel

j

)× R̂ij

8πR2
ij

]
+ O(γ 5). (B14)

As given above, the accuracy of both u and � is kept up
to O(γ 4). The quadrupole contributes to both the DEP force
and torque calculation. However, we need to clarify that while
this calculation holds well for any linear electric field, for
nonlinear fields it may not be quite accurate. One reason was
explained in the previous section that higher order moments
are coupled into the equation when quadratic or higher order
field components are nonzero. The other reason is that for a
rapidly or slowly changing field, the multipole moments have
different magnitude scale. Then, it is necessary to introduce
another asymptotic parameter. In Appendix C, we will discuss
a slowly varying electric field, which is more commonly seen
in practical applications.

APPENDIX C: SLOWLY VARYING NONUNIFORM
ELECTRIC FIELDS

For a single particle suspended in a general slowly varying
electric field, we want to look at the asymptotic behavior when
the particle radius is much smaller than the nonuniformity. The
classic DEP force and torque calculation gives Eq. (B8) when
the exact dipole and quadrupole moments are known. However,
we would like to point out that, for a general electric field that
induced nonzero octopole and higher moments, the error by
truncating octopole moments comes at the same scale of the
quadrupole contribution.

Suppose a potential φa is applied externally in a single
particle suspension. The Taylor expansion of the applied
electric field at the particle center is

∇φa(r) = ∇φa(0) + ∇∇φa(0) · r + 1
2∇∇∇φa(0) : rr + · · · .

(C1)

For slowly varying fields, we assume the length scale of
the gradient operator is L � a, where a is the particle radius.
Thus, we denote

−(∇)nφa ≡ E(n−1)
a = Ec

Ln−1
Ẽ(n−1)

a , n � 1 (C2)

where Ec is a characteristic electric field strength, i.e., Ẽ(0)
a

indicates the leading term of the scaled electric field and Ẽ(n)
a

is in general a tensor. All the Ẽ(n)
a are dimensionless and O(1).

In the following asymptotic analysis, we use the scaling
scheme as

t̃ = t/tehd , �̃ = �tehd, r̃ = r/a,

P̃ = P
Eca3

, Q̃ = Q
Eca4

,

where tehd = ηf

εf E2
c

is a characteristic electrohydrodynamic time
scale. Then, the dimensionless form of the expansion (C1) with
the remainder term is

Ẽa(r̃) = Ẽ(0)
a (0) + δẼ(1)

a (0) · r̃ + 1
2δ2Ẽ(2)

a (0) : r̃r̃

+ 1
6δ3Ẽ(3)

a (0)[·]3r̃r̃r̃ + · · · , (C3)

where δ = a/L  1 is a small asymptotic parameter.
Meanwhile, following Eq. (2), the dimensionless

form of the induced field in the outer space has the
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expansion as

Ẽd (r̃) = − P̃
|r̃|3 + 3r̃ · P̃

|r̃|5 r̃ − Q̃ · r̃
|r̃|5 + 5r̃r̃ : Q̃

2|r̃|7 r̃

− 3Õ : r̃r̃
2|r̃|7 + 7Õ[·]3r̃r̃r̃

2|r̃|9 r̃ + · · · . (C4)

From Eq. (24), when other particles are present, the induced
potentials from other particles should be introduced into the
total electric field. These disturbance fields contribute to the
total external field as

Ẽe,i = Ẽa,i +
∑
j �=i

Ẽd,j . (C5)

Assuming the particles are widely separated, Ed,j would be
expanded in a far-field form. At the center of particle i, the
field is

Ẽd,j = − 1

|R̃ij |3
1P̃j − 1

|R̃ij |4
2Q̃j , (C6)

where 1P̃j = P̃j − 3(̃Pj · R̂ij )R̂ij and 2Q̃j = Q̃j · R̂ij −
5
2 (Q̃j : R̂ij R̂ij )R̂ij . Here, we also have truncated the potential
due to octopole and higher moments.

Now, we encounter the second length scale, which is
the particle separation |R̃ij |. Assume a characteristic particle
separation R̃0 � 1. Denote γ = 1/R̃0, Rij = R̃ij /R̃0, and also
assume all the particle separations are at the same scale, i.e.,

1

|R̃ij |
= γ

1

|Rij |
∼ O(γ ). (C7)

Then, we need to carefully select an appropriate asymptotic
matching for the two small parameters δ and γ .

In order to incorporate particle interactions, we assume the
balance as

δ = γ 2, (C8)

which indicates an even slower varying applied field than the
particle disturbances.

Then, we are able to expand the multipole moments in terms
of the parameter γ , without causing fractal orders. Still from
Eqs. (24) and (25) and their derivation in the previous sections,
we obtain

P̃ = P̃(0) + γ 3P̃(3) + γ 4P̃(4) + · · · ,

Q̃ = γ 2Q̃(2) + γ 4Q̃(4) + · · · ,

Õ = γ 4Õ(4) + · · · ,

· · ·
�̃ = �̃(0) + γ 3�̃(3) + γ 4�̃(4) + · · · .

(C9)

Assuming �̃∞ = 0, the rotation is actually determined by
the multiple moments from Eq. (B14). In our balancing, the
leading order nonzero contribution will be �(0) and the next
nonzero orders should be �(3) and �(4).

Then, each order of dipole moment satisfies the following
evolution equations,

O(1):

dP̃(0)

dt
= �̃(0) × [

P̃(0) − εcmẼ(0)
a (0)

]− 1

D

[
P̃(0) − σcmẼ(0)

a (0)
]
;

(C10)

O(γ 3):

dP̃(3)

dt
= �̃(0) ×

[
P̃(3) + εcm

1

|Rij |3
1P̃(0)

j

]
+ �̃(3) × P̃(0)

− 1

D

[
P̃(3) + σcm

1

|Rij |3
1P̃(0)

j

]
;

(C11)

O(γ 3):

dP̃(4)

dt
= �̃(4) × [̃P(0) − εcmẼ(0)

a (0)] + �̃(4) × P̃(0) − 1

D
P̃(4).

(C12)

The next correction to the dipole moment will be at O(γ 4).
From Eq. (A15), similarly we obtain the leading nonzero

quadrupole moment comes at the order of O(γ 2), satisfying
the equation following:

O(γ 2):

dQ̃(2)

dt̃
= �̃(0) × [

Q̃(2) − 2ε′
cmẼ(1)

a (0)
]

+ [
�̃(0) × [

Q̃(2) − 2ε′
cmẼ(1)

a (0)
]]T

− 1

D′
[
Q̃(2) − 2σ ′

cmẼ(1)
a (0)

]
;

(C13)

O(γ 4):

dQ̃(4)

dt̃
= �̃(0) ×

[
Q̃(4) + 2ε′

cm∇̃Rij

(
1

|Rij |3
1P̃(0)

j

)]

+
{

�̃(0) ×
[

Q̃(4) + 2ε′
cm∇̃Rij

(
1

|Rij |3
1P̃(0)

j

)]}T

− 1

D′

[
Q̃(4) + 2σ ′

cm∇̃Rij

(
1

|Rij |3
1P̃(0)

j

)]
. (C14)

The next nonzero contribution is Q̃(6) at the order of O(γ 6).
Now, continue to look at the expansions of the force and

torque. The DEP force and torque are originally calculated
directly by integrating the Maxwell stress tensor � over the
particle surface

F̃ = 1

4π

∫∫
|r̃|=1

�̃ · ndS̃, T̃ = 1

4π

∫∫
|r̃|=1

r̃ × (�̃ · n)dS̃,

(C15)

where

�̃ = ẼẼ − 1
2 |Ẽ|2I, (C16)

and the Ẽ is the total field,

Ẽ = Ẽe + Ẽd , (C17)

where Ẽe is the total external field vector from Eq. (C5).
For a spherical particle which has the standard multipole

potential and exposed to a slowly varying external field, the
force and torque equations are given in the exact forms as

F̃ = P̃ · ∇̃Ẽe(0) + 1
6 Q̃ : ∇̃∇̃Ẽe(0) + · · · ,

(C18)
T̃ = P̃ × Ẽe(0) + (Q̃ · ∇̃) × Ẽe(0) + · · · .
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By substitution we obtain the force and torque in each order
of γ :

F̃i = γ 2P̃(0)
i · Ẽ(1)

a,i(0) + γ 5P̃(3)
i · Ẽ(1)

a,i(0) + γ 6P̃(4)
i · Ẽ(1)

a,i(0)

+ 1

6
γ 6Q̃(2)

i : Ẽ(2)
a (0)

− γ 4
∑
j �=i

P̃(0)
i · ∇̃Rij

(
1

|Rij |3
1P̃(0)

j

)
+ O(γ 7), (C19)

T̃i = P̃(0)
i × Ẽ(0)

a,i(0) + γ 3P̃(3)
i × Ẽ(0)

a,i(0) + γ 4P̃(4)
i × Ẽ(0)

a,i(0)

+ γ 4Q̃(2)
i × Ẽ(1)

a,i(0)

− γ 3
∑
j �=i

P̃(0)
i × 1

|Rij |3
1P̃(0)

j + O(γ 5). (C20)

The orders of error are kept at O(γ 7) and O(γ 5), respectively.
Adding up all the required terms in the order of accuracy,

the evolution equations of P̃ and Q̃ are

dP̃i

d t̃
= �̃i ×

⎡⎣P̃i − εcmẼ(0)
a (r̃i) +

∑
j �=i

1

|R̃ij |3
1P̃j

⎤⎦
− 1

D

⎡⎣P̃i − σcmẼ(0)
a (r̃i) +

∑
j �=i

1

|R̃ij |3
1P̃j

⎤⎦+ O(γ 5),

(C21)

dQ̃i

d t̃
= �̃i × [

Q̃i − 2ε′
cmδẼ(1)

a (r̃i)
]

+ [
�̃i × [

Q̃i − 2ε′
cmδẼ(1)

a (r̃i)
]]T

− 1

D′
[
Q̃i − 2σ ′

cmδẼ(1)
a (r̃i)

]+ O(γ 4). (C22)

The rotation and velocity are determined from the grand-
mobility matrix as well:

�̃i = T̃i

8
−
∑
j �=i

[
F̃j × R̂ij

8|R̃ij |2

+ T̃j

16|R̃ij |3
+ 3

16|R̃ij |3
(T̃j · R̂ij )R̂ij

]
+ O(γ 5), (C23)

ũi = ũ∞
i + F̃i

6
+
∑
j �=i

5

8|R̃ij |4
(̃Fi · R̂ij )R̂ij

−
∑
j �=i

[
T̃j × R̂ij

8|R̃ij |2
+ 1

8

(
1

|R̃ij |
+ 2

3|R̃ij |3
)

F̃j

+ 1

8

(
1

|R̃ij |
− 2

|R̃ij |3
)

(̃Fj · R̂ij )R̂ij

]
+ O(γ 7), (C24)

where

F̃i = 4δP̃i · Ẽ(1)
a (r̃i)

−
∑
j �=i

12

|R̃ij |4
[(̃Pi · R̂ij )̃Pj + (̃Pj · R̂ij )̃Pi

+ (̃Pi · P̃j )R̂ij − 5(̃Pj · R̂ij )(̃Pi · R̂ij )R̂ij ]

+ 2

3
δ2Q̃i : Ẽ(2)

a (r̃i), (C25)

T̃i = 4P̃i × Ẽ(0)
a (r̃i)

− 4P̃i ×
∑
j �=i

(
1

|R̃ij |3
1 · P̃j

)
+ 4δQ̃i × Ẽ(1)

a (r̃i).

(C26)

Thus, in the case of a spatially slowly varying field, Eqs. (C21),
(C22), (C23), and (C24) are the proper models to simulate
particle dynamics, where the error of the particle velocities is
kept at O(R̃−7

0 ).
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