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Three-dimensional instabilities for the flow around a heaving foil
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This paper investigates the three-dimensional instabilities of the flow past a periodically heaving airfoil. By
comparison with a pitching foil [Deng et al., Phys. Rev. E 92, 063013 (2015)], here we present distinctive
characteristics for the heaving foil, particulary regarding its Floquet modes. By increasing the frequency (Sr),
or equivalently decreasing the amplitude (AD) along the marginal stability curve in the (Sr,AD) phase space,
the critical Floquet mode emerges sequentially as A, quasiperiodic (QP), and B. It is interesting to note that
both modes A and B are synchronous with the base flow, in contrast to the quasiperiodic mode QP. To further
investigate the instability across the marginal curve, we fix the frequency at Sr = 0.187, of which the critical
Floquet mode is located in the synchronous regime, while varying AD around the critical point. We find that the
dominant mode switches from mode A to mode B, while mode QP never becomes critical as we increase AD .
We note that mode S, a subharmonic mode, can also be unstable, which, however, is not physically realizable,
because the magnitude of its Floquet multiplier is always smaller than that of mode B. We have also studied the
influence of various Reynolds numbers at the same critical point on the marginal stability curve, with the results
resembling that by varying the amplitude AD .
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I. INTRODUCTION

In recent years, the development of micro air vehicles and
small unmanned underwater vehicles has led to a growing
interest in aerodynamics and hydrodynamics of flapping wings
[1–7]. It is well known that most insects and birds flap their
wings in a so-called stroke plane employing a combination of
rotation with respect to the wing-body junction and pitching
with respect to the spanwise axis. As a rational simplifica-
tion, researchers have been restricting their attention to two-
dimensional (2D) airfoil configurations with the combination
of a vertical oscillation, so-called heaving or plunging, and a
rotation with respect to a pivoting point, so-called pitching.
An important parameter used in the study of flapping wings is
the Strouhal number, defined as SrA = f A/U , where f is the
flapping frequency and A is the amplitude. SrA characterizes
the wake dynamics, thus the propulsive performance of a
flapping foil. The cruise Strouhal numbers for a wide range
of flying and swimming animals lie within a narrow interval
0.2 < SrA < 0.4 [3], suggesting that natural selection has
tuned animals for high propulsive efficiencies [8,9].

The quasi-two-dimensional hypothesis is invalid when the
aspect ratio of the wing is small. Thus there have been many
studies on flapping wings with finite aspect ratio [10–13].
However, even in the situation of infinite aspect ratio, 3D
instabilities might develop and lead to modifications of the flow
around the flapping foil and, consequently, to modifications
of the hydrodynamic forces. Recently, the Floquet stability
analysis has been used to study the three-dimensional transition
in the wake of a pitching foil [14,15], as well as that of a
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flapping foil with combined motions [16]. In Ref. [15], a
pitching NACA0015 airfoil was considered at a fixed Reynolds
number Re = 1700. It was reported that the transition from a
2D wake to a 3D wake occurred always after when the wake
was deflected. Two distinct unstable modes were identified, of
which the subdominant long-wavelength mode, which is not
physically realizable, has certain points of similarity with the
so-called mode A for a circular cylinder [17,18], while the
short-wavelength mode appears to have a period of the order
of twice that of the base flow, which was conjectured to be a
subharmonic mode (mode S), and is dominant and physically
realizable. In Ref. [16], four cases were studied for a pitching
and heaving NACA0012 airfoil at Re = 1000. At a specific
case, a linearly unstable mode was found to occur in the range
of wavelength 2.24 � λ/c � 6.7, with the Floquet multiplier
peaking at λ/c = 4.078, which was identified as a mode A
instability.

So far, as we have known [14,15,19,20], for the wake behind
a flapping foil it is possible to divide the (Sr,AD) phase space
into different regimes by three boundaries: first, the transition
from the well-known Bénard-von Kármán (BvK) wake to
the reversed BvK vortex street that signals propulsive wakes;
second, the symmetry breaking of this reverse BvK pattern
giving rise to an asymmetric or deflected wake; and, third, a
further transition from a 2D wake to a 3D wake. It has been long
established that the reverse BvK vortex street was an indication
of thrust generation [8,21]. This statement has been corrected
later whereby the reversal of the vortex street occurs actually
before the drag-thrust transition in almost all cases except for
the high flapping frequencies in the (Sr,AD) phase space [15].
The deflection of the wake has also been extensively studied,
exhibiting that the clockwise and counterclockwise trailing
edge vortices shed in pairs and propagate at an angle to the
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streamwise axis [19,20,22,23]. The wake can be deflected to
either the lower side or upper side of the wake center line,
so-called dual modes. The deflected direction largely has been
recognized to depend on the initial flapping conditions [24,25].
Also, small disturbances could trigger the switch between the
modes in a random fashion [26,27]. Recently, a perturbation
analysis method was adopted to investigate the wake deflection
behind a pure pitching foil [28]. A Floquet stability analysis of
the time-periodic nondeflected wake showed that there exists
a synchronous antisymmetric mode which becomes unstable
at the critical flapping frequency where deflection occurs. To
our knowledge, the third transition boundary, i.e., the 2D-3D
transition for a flapping foil, has rarely been studied until the
recent research on a pure pitching foil [14,15].

The wake dynamics behind a pure pitching foil and that of a
pure heaving foil could be different, and thus they have usually
been studied separately [29]. Recently, a direct comparison was
made between a flapping foil with a pure pitching motion and
that with a pure heaving motion [30]. It was reported that at a
fixed Reynolds number, Re = 1700 (Re = Uc/ν, where c is
the chord length and ν is the kinematic viscosity of the fluid),
the drag-thrust transition took place approximately at SrA =
0.22 for the pure pitching foil, and the drag-thrust transition for
a pure heaving foil also closely followed an SrA contour line,
albeit at the lower value SrA = 0.14. This correlation between
the drag-thrust transition and the SrA has also be studied by
experiments, which were carried out in a soap film tunnel [29].
Two critical Strouhal numbers, SrA = 0.28 and SrA = 0.16,
were found to match the drag-thrust transitions for respectively
the pure pitching and the pure heaving foils.

It is not surprising to expect that the wake of a heaving foil
might respond differently to three-dimensional spanwise peri-
odic perturbations, in contrast to a pitching foil. In Ref. [15],
we have drawn a comprehensive map on the (Sr,AD) phase
space, with two typical unstable modes identified. In this
paper, by following the similar hierarchy of analysis engaged
in Ref. [15], we aim to perform a parametric study of three-
dimensional instabilities in the wake of a heaving foil. We focus
on the sequential emergences of different instability modes as
we vary the parameters, such as the heaving amplitude, the
frequency, or the Reynolds number [14].

II. PROBLEM FORMULATION AND COMPUTATIONAL
METHODS

A. Foil kinematics and dimensionless parameters

We consider a NACA0015 airfoil experiencing simultane-
ous heaving motion with a sinusoidal profile, as shown in Fig. 1,
and can be expressed as

h(t) = h0sin(2πf t), (1)

where h0 is the amplitude of heaving motion and f is its
frequency. The peak-to-peak amplitude of the trailing edge is
denoted by A, where A = 2h0. We define the Reynolds number
Re = Uc/ν, where c is the chord length, U is the streamwise
velocity far upstream, and ν is the kinematic viscosity. The
two parameters which characterize the wake dynamics are
the appropriately scaled amplitude AD and frequency or,
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FIG. 1. Schematic view of the foil profile, which is symmetric,
heaving with the peak-to-peak amplitude A. D denotes the thickness
of the foil, which is 0.15c for a NACA0015 airfoil.

equivalently, the Strouhal number Sr , defined respectively as

AD = A/D and Sr = f D/U. (2)

Another alternative Strouhal number, which has been widely
used to characterize the wake produced by a biomimic flapping
foil, is defined as

SrA = f A/U. (3)

We choose Re = 1700 for most of the following simulations,
which is consistent with the previous studies [15,19], and we
understand that at this intermediate Reynolds number, clear
wake transitions can be observed in the amplitude-frequency
parametric space covered by our studies.

B. Modelling the base flow

The base flow is governed by the two-dimensional in-
compressible Navier-Stokes and continuity equations. The
numerical simulations is mainly performed using the finite-
volume method [31]. The mass and momentum equations are
solved on a moving grid domain using the arbitrary Lagrangian
Eulerian (ALE) formulation. For a heaving foil, the whole
domain moves along with the foil. The integral form of the
governing (conservation) equations defined in an arbitrary
moving volume V bounded by a closed surface S is

d

dt

∫
V

ρUdV +
∮

S

ds · ρ(U − Ub)U

=
∮

S

ds · (−pI + ρν∇U), (4)

where ρ is the fluid density, U is the fluid velocity, Ub is the
boundary velocity of a cell, p is the static pressure, and ν is the
kinematic viscosity. For the discretization and implementation
of boundary conditions, one can refer to Ferziger and Peric
[32] for details.

The space discretizations are second-order upwind for the
convection terms and central differences for the Laplacian
terms, respectively. The temporal discretization is second-
order implicit Euler. The pressure-velocity coupling is ob-
tained using the pressure-implicit with splitting of operator
(PISO) scheme [32]. The preconditioned conjugate gradient
(PCG) method is used to treat the pressure equation and the
preconditioned biconjugate gradient (PBiCG) method is used
for the velocity equations. Numerical accuracy is set to double
precision and the initial conditions are chosen to be uniform.
We set the boundary condition on the foil to be moving wall,
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with no flux normal to the wall. A constant velocity is imposed
on the inlet boundary, and the pressure at the outlet boundary
is set to a constant value.

The computational domain is a rectangle, of which the
dimensions of its outer boundary is 20c × 18c. A mesh of
about 200 000 cells is used for the calculations. The same solver
has been validated in Ref. [15], in which a pitching foil with
prescribed motions was studied.

C. Floquet stability analysis

Floquet stability analysis can be used to determine the
stability of the periodic symmetric base flow to asymmetric
perturbations. By introducing a perturbation spanwise wave
number β = 2π/λz, where λz is the spanwise wavelength of
the disturbance, we can approximate the perturbation velocity
and pressure as a sum of Fourier modes in the spanwise
direction. Each mode of the perturbation field can then be
integrated forward in time within our linearized approximation
directly using the same algorithm used for the base flow and
renormalized at the end of each base flow period. According
to Floquet theory [33,34], only the dominant Floquet mode
remains after many cycles. Here we measure the Floquet
multiplier |μ| as the ratio of the current L2 norm of any
of the velocity perturbations to the L2 norm exactly one
period prior. If |μ| > 1, then the corresponding perturbation
field grows exponentially from one period to the next and
hence the base flow is linearly unstable to perturbations of
the selected spatial wavelength in the z direction. Conversely,
if the multipliers for all possible wave number β are less than
unity, the base flow is stable. For |μ| = 1, the base flow is
neutrally stable, where the imposed perturbation neither grows
nor decays. The implementation of the method in this case
is similar to that of Barkley and Henderson [35]. Effectively,
the perturbation field satisfying the linearized Navier-Stokes
equations is evolved at each time step in parallel to the base
flow. The present numerical technique has been successfully
applied to various problems [36–39]. (More technical details
about Floquet stability analysis and its application to a flapping
foil are presented in Refs. [14,15].)

III. RESULTS

A. Flow regimes within the (Sr,AD) phase space

To identify the different regimes for the flow around a
heaving foil, we perform a parametric study at a fixed Reynolds
number Re = 1700, with varying Sr and AD . In Fig. 2, three
distinct transition boundaries are found in the (Sr,AD) phase
space: the transition from a well-known BvK vortex street to
a reverse BvK vortex street, the transition from a symmetric
flow wake (with respect to the wake center line) to a deflected
wake, and a further transition from a 2D wake to a 3D wake.

We note that the third transition boundary (red dash-dot-
dot line in Fig. 2) is a neutral stability curve on which the
maximum magnitude of Floquet multipliers over the range of
β equals to unity. It is not surprising that the 2D-3D transition
boundary lies to the top right of the boundary between the
reverse BvK streets and the deflected wakes, implying that
the 2D-3D transition occurs after the wake deflection, which
has also be found for a pitching foil [15]. The difference is

FIG. 2. AD vs. Sr map for Re = 1700. Red (dash-dot-dot) line:
the curve of marginal three-dimensional stability or the transition
boundary from 2D to 3D flows, with computational points labeled as
stars and dots for further discussion. Blue (dotted) line: transition be-
tween BvK and reverse BvK wakes. Green (dash-dot) line: transition
from symmetric to asymmetric wakes with respect to the wake center
line. The shaded area corresponds to the SrA = 0.2−0.4 interval.

that the 2D-3D transition boundary for a heaving foil stays
closer to the wake deflection boundary in contrast to that for
a pitching foil. For more comparisons between pitching and
heaving foils, particularly in their propulsive performance, one
can refer to the previous paper [30], which is, however, not
the main scope of the current study. In the follow discussion,
we focus specifically on the instabilities for a heaving foil,
depicted primarily by the Floquet modes in the neighborhood
of its marginal stability curve.

B. Floquet modes on the marginal stability curve

In Fig. 2, we have determined that there is a single curve of
marginal stability for the breaking of the spanwise translation
invariance, or 2D-3D transition. By examining these Floquet
modes, we find that there are two distinct types of behavior,
depending on whether the critical Floquet multipliers are
real and positive or occur in complex-conjugate pairs. As
we have discussed in Ref. [40], it is possible to distinguish
these two different modes by studying the time history of
the Floquet multiplier |μ|. We integrate both the numerical
simulation (NS) equations and the linearized equations forward
in time over several base flow periods T , until |μ| reaches a
constant value, suggesting that the Floquet multiplier is real
or fluctuates periodically around a constant value, suggesting
that it also has an imaginary component. Moveover, if the
oscillation of |μ| suggests that it has a secondary period
Ts = 2T , i.e., the bifurcation solutions are period doubled or
subharmonic. To further distinguish the subharmonic mode
from the quasiperiodic mode, we can examine the evolution of
the perturbation vorticity field.

We select several calculated points approximately on the
marginal curve, marked with dots in Fig. 2. The variation
of the Floquet multipliers with β for these critical points are
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FIG. 3. Variation of Floquet multiplier magnitude |μ| with wave
number β at Re = 1700 for different (Sr, AD): (a) (0.157,2.118),
(b) (0.187,1.431), (c) (0.200,1.303), (d) (0.215,1.200),
(e) (0.225,1.150), (f) (0.235,1.105), (g) (0.250,1.042), (h)
(0.275,0.955), (i) (0.300,0.884), and (j) (0.375,0.747). The line
|μ| = 1 corresponds to a neutral stability line.

shown in Fig. 3. As we increase Sr along the marginal curve,
the critical Floquet mode emerges sequentially as mode A,
mode quasiperiodic (QP), and mode B. For example, as shown
in Fig. 3(a) for Sr = 0.157, the mode A instability, which is
synchronous (with respect to the base flow), becomes critical
at β = 6 or with a wavelength λ/c = 1.05. Mode QP becomes
critical for Sr in the range of 0.200–0.225, with the wave
number β = 28−32, as shown in Figs. 3(c)–3(e). We note that
within this quasiperiodic regime, the peak values of |μ| for
mode B are also very close to the neutral line, though slightly
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FIG. 4. Time histories of |μ| for the Floquet modes. (a) (Sr, AD) =
(0.200,1.303), (b) (Sr, AD) = (0.215, 1.200), and (c) (Sr, AD) =
(0.225, 1.150) correspond to Fig. 3(c), 3(d) and 3(e), respectively.

lower than that of mode QP. As Sr increases to 0.235, mode B
appears to be the first to become critical. The corresponding
wave number increases from β = 45 to β = 60 as Sr increases
from Sr = 0.235 to Sr = 0.375, as shown in Figs. 3(f)–3(j).
We note that mode B is also synchronous with the base flow.

If we write the Floquet multiplier as a complex number,
μ = |μ|e±iθ , then we can obtain a complex-conjugate pair for
the QP modes, corresponding to a Neimark-Sacker bifurcation
which introduces the secondary period, Ts = 2(π/θ )T , where
T is the period of the base flow. It is also possible to obtain
the secondary period Ts by examining the |μ| time history,
as shown in Fig. 4. The secondary periods for the critical
QP modes in Figs. 3(c), 3(d) and 3(e) are Ts = 9T , Ts =
23T , and Ts = 14T , respectively. It is interesting to compare
the current study with the primary instabilities of the flow
generated by an oscillating circular cylinder in quiescent
fluid [41,42], in which the marginal stability curve within
an amplitude-frequency control space was divided into two
regimes labeled with “S” and “QP,” representing synchronous
and quasiperiodic instabilities, respectively. They identified
a transition point, at which location the quasiperiodic mode
“freeze” into a synchronous one. Similarly, in the current study,
we can identify two transition points, Sr+

f and Sr−
f , at which

points the instability modes transit between synchronous and
quasiperiodic modes. The exact transition points are possible
to identify, which requires more calculated points along the
marginal stability curve but is not the main concern of the
current study. It is reasonable to compare the current study
with Refs. [41,42], because the current configuration can be
regarded as an oscillating foil superposed by a uniform incom-
ing flow. We also note that it is significantly different between
the previous [41,42] and the current studies. In Ref. [41]
two-dimensional instability was considered, which breaks the
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FIG. 5. Variation of Floquet multiplier magnitude |μ| with wave
number β at Re = 1700 and Sr = 0.187 for different AD: (a) 1.420,
(b) 1.430, (c) 1.431, (d) 1.432, (e) 1.433, and (f) 1.435. The line
|μ| = 1 corresponds to neutral stability of the Floquet modes.

left-right symmetry of the flow induced by an oscillating
circle, with a restriction to a two-dimensional subspace, while
the current study considered the secondary instability, which
breaks the spanwise translation invariance of a foil with an
infinite span length. Further discussions about the different
types of instabilities in terms of their symmetries and flow
structures will be made in the following sections.

C. Effects of AD on the instabilities

To examine how the flow becomes unstable when across
the marginal stability curve, in Fig. 5 we present the variation
of |μ| with spanwise wave number β for different AD at Re =
1700 and Sr = 0.187. By increasing AD , as it reaches AD =
1.431, mode A becomes critical, as shown in Fig. 5(c). As we
further increase AD to AD = 1.432, mode A becomes the only
unstable mode [Fig. 5(d)]. It is interesting to find that both
mode S and mode B appear to be unstable, as we increase AD

to AD = 1.433, as shown in Fig. 5(e). In Fig. 5(e), mode B is
the dominant mode with the maximum amplitude of Floquet
multiplier, occurring at β = 31, and the other unstable mode,
mode S, which is subharmonic, occurs at β = 16, while the
third one, mode A, stays below the neutral line. This sequence
of mode emergence is similar to that for the flow around a
square cylinder [38]. It is interesting to note that before mode
S becomes unstable the Floquet mode appears to be mode A′,
which resembles mode A while at a different wave number, as
shown in Figs. 5(a)–5(d).

As we have known that the T -periodic base flow, such
as a BvK vortex street, obeys a reflectional symmetry about
the wake centerline (y = 0) after a translation along the time
axis whereby a half-period. Here we refer to this reflection-
translation symmetry as RT symmetry for short. For mode A,
each perturbation velocity component has the same symmetry
as the two-dimensional base flow. Therefore, the streamwise
vorticity for mode A obeys an odd RT symmetry expressed by

ω̃x(x,y,z,t) = −ω̃x(x, − y,z,t + T/2). (5)

By contrast, for mode B, the velocity components display a RT
symmetry; thus mode B obeys an even RT symmetry, and the
corresponding expression of the streamwise vorticity is

ω̃x(x,y,z,t) = ω̃x(x, − y,z,t + T/2). (6)

Therefore, according to these properties, we can distinguish
mode A instability from mode B instability.

As for mode QP and mode S, which are not T periodic
(as presented in Ref. [43]), we can distinguish them from the
regular modes or T -periodic modes (mode A and mode B),
which have Floquet multipliers containing only a positive real
component and the time variation of |μ| maintain constant.
Instead, the mode QP arises from a complex-conjugate pair
of multipliers with a nonzero imaginary part. For mode S, the
Floquet multipliers have only a negative real component, and
the structure of the streamwise vorticity repeats over two base-
flow periods. Therefore, the vorticity has a temporal symmetry
represented as:

ω̃x(x,y,z,t) = −ω̃x(x,y,z,t + T ). (7)

Accordingly, we can make a distinction between mode QP and
mode S.

To study the characteristics of these modes, we consider a
specific case at Sr = 0.187 and AD = 1.433 for Re = 1700,
of which the Floquet multipliers are shown in Fig. 5(e). At
this point we have identified one stable mode, mode A, and
two unstable modes, mode S and mode B. We present their
respective perturbation streamwise vorticities in Figs. 6–8
with β = 6 (λ/c = 1.05), β = 16 (λ/c = 0.393), and β = 32
(λ/c = 0.196), respectively.

Figure 6 shows the streamwise vorticity of the instability
mode A, which is very similar in characteristics to that for
the flow around a cylinder. As seen from Figs. 6(a)–6(e),
it is clearly shown that this mode is T periodic, with the
streamwise vorticity changing its sign every half-period about
the wake center line. Figure 6(f) shows the time variation of
|μ|, indicating that the dominant mode has been isolated in the
perturbation field 35 cycles after its initialization. The constant
|μ| means that mode A contains no imaginary component,
which implies a synchronous bifurcation.
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FIG. 6. [(a)–(e)] Instantaneous streamwise perturbation vorticity
for mode A of the flow past a heaving foil at Re = 1700 for (Sr,
AD) = (0.187,1.433) and β = 6. Blue (dark gray) and red (light gray)
colors denote negative values and positive values, respectively, for
continuous contour levels from −6 to 6. Spanwise vorticity contours
of the base flow are also shown with solid and dashed lines for positive
and negative values, respectively. (f) Time variation of |μ|.

Figure 7 shows the streamwise vorticity of the instability
mode S, in which we plot a series of streamwise perturbation
vorticities taken 1/4T periods apart. It is evident that the
perturbation vorticity field for this mode is not T periodic. It is
apparent that the streamwise vorticity of the flow field repeats
every period but with a sign change. The oscillating Floquet
multiplier |μ| shown in Fig. 7(j) indicates that this mode has
the secondary period Ts = 2T , i.e., the bifurcated solutions
are period doubled or subharmonic, which also implies that
this mode has only a negative real part. Therefore we can
distinguish it from mode QP, which arises from a complex-
conjugate pair of multipliers with a nonzero imaginary part.

In Fig. 8, we plot the streamwise perturbation vorticity of the
instability mode B. Seen from Fig. 8(a)–8(e), it is apparent that
mode B is also T periodic. However, unlike the vorticity plot
of mode A which changes its sign every half-period about the
wake center line, for mode B, the streamwise vorticity repeats
every half-period on the other side of the wake centerline. The
constant Floquet multiplier |μ| shown in Fig. 8(f) indicates
that this mode contains no imaginary component and only has a
positive real part, which also implies synchronous with respect
to the base flow.

To illustrate the characteristics of mode QP, we consider a
specific example and plot its wake topology in Fig. 9 for Sr =
0.187, AD = 1.432, at Re = 1700 with the spanwise wave
number β = 29, corresponding to a wavelength λ/c = 0.217.
We note that although the mode QP is stable at this point, it is
still interesting to examine the characteristics of this mode and
make comparisons with the others. Figures 9(a)–9(p) show a
series of images of the perturbation field taken one base-flow
period apart. The series of images span approximately the
secondary period of the Floquet multiplier oscillation. We

FIG. 7. [(a)–(i)] Instantaneous streamwise perturbation vorticity
for mode S of the flow past a heaving foil at Re = 1700 for (Sr,
AD) = (0.187,1.433) and β = 16. Blue (dark gray) and red (light
gray) colors denote negative values and positive values, respectively,
for continuous contours levels from −6 to 6. Spanwise vorticity
contours of the base flow are also shown with solid and dashed lines
for positive and negative values, respectively. (j) Time variation of |μ|.

observe that the perturbation vorticity field for this mode is
not quite periodic due to the gradual growth and decay of
the perturbation field on a much longer time scale. This is
highlighted, for instance, by focusing on the initially positive
region of perturbation vorticity inside the vortex at the im-
mediate rear of the foil in the first image at 0T . By scanning
through the images, the perturbation vorticity field experiences
a series of growth, weakens, and eventually repeats at 15T . This
illustrates that the mode is truly quasiperiodic and the structure
of streamwise perturbation vorticity of the flow field repeats
every 15 base-flow periods. Moreover, as shown in Fig. 9(q),
the Floquet multiplier |μ| is seen to oscillate over time with a
secondary period Ts = 15T , consistent with the evolution of
the perturbation field.

To get a better understanding of the inherent three-
dimensionality of these modes, we rebuild the three-
dimensional perturbed flow fields, with their streamwise vor-
ticities shown in Fig. 10. Since the amplitude is arbitrary due
to it being a linear (and hence infinitesimal) perturbation, we
rescale the vorticity field with its instantaneous maximum
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FIG. 8. [(a)–(e)] Instantaneous streamwise perturbation vorticity
for mode B of the flow past a heaving foil at Re = 1700 for (Sr,
AD) = (0.187,1.433) and β = 32. Blue (dark gray) and red (light
gray) colors denote negative values and positive values, respectively,
for continuous contours levels from −6 to 6. Spanwise vorticity
contours of the base flow are also shown with solid and dashed lines
for positive and negative values, respectively. (f) Time variation of |μ|.

value, similarly to the approach used in Figs. 6–9. For each
representation, the spanwise domain is defined as 3λz, allowing
three wavelengths to be observed in the spanwise direction for
each mode to fit inside the domain. In addition to the observed
spatiotemporal symmetries of these modes, we note that for
the high β number [see Fig. 10(c)], the perturbed streamwise
vorticities cluster around the foil, instead of distributing in the
flow wake [see Fig. 10(a)].

D. Effects of Reynolds number on the instabilities

To further explore how the flow becomes unstable under the
effects of Reynolds numbers, in Fig. 11 we plot the variation
of the Floquet multiplier magnitude |μ| with spanwise wave
number β for various Re at Sr = 0.187 and AD = 1.432. We
consider the Reynolds numbers in the range 1680 � Re �
1720. By increasing Re, the Floquet modes exhibit similar
behavior with that by varying the amplitude AD . For 1690 �
Re � 1705, as shown in Figs. 11(c)–11(e), the mode A with
the spanwise wave number β = 9 is the only unstable mode,
while the other two Floquet modes, mode A′ and mode QP, are
below the neutral line of |μ| = 1. As we increase the Reynolds
number to Re = 1708, as shown in Fig. 11(f), A′ changes to
mode S at approximately the same wave number, and both
mode S and mode B appear to be unstable, in which mode B
is the dominant one with the maximum amplitude of Floquet
multiplier, occurring at β = 31, and the other unstable mode,
mode S, which is subharmonic, occurs at β = 16, while the
third one, mode A, stays below the neutral line. We note that
this sequential emergences of different instability modes is
similar to that by varying the amplitude AD .

FIG. 9. [(a)–(p)] Instantaneous streamwise perturbation vorticity
for mode QP of the flow past a heaving foil at Re = 1700 for (Sr,
AD) = (0.187,1.432) and β = 29. Images are set at one base-flow
period apart. Blue (dark gray) and red (light gray) colors denote
negative values and positive values, respectively, for continuous
contours levels from −6 to 6. Spanwise vorticity contours of the
base flow are also shown with solid and dashed lines for positive
and negative values, respectively. (q) Time variation of |μ|.
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FIG. 10. Isosurfaces of the streamwise vorticity fields rebuilt from
the Floquet modes for Re = 1700, (Sr, AD) = (0.187, 1.433): (a)
mode A at β = 6, (b) mode S at β = 16, and (c) mode B at β = 32.
Blue (dark gray) and red (light gray) colors denote, respectively, the
negative values and positive values of the vorticity.

IV. CONCLUSIONS

In this paper, Floquet stability analysis is applied to quantify
the inherent three-dimensional instability arising in the wake
of a periodically heaving foil. First, by using the similar
hierarchy of analysis engaged in Ref. [15], we identify three
key dynamical features relevant to wake vortex systems on the
heaving frequency-amplitude phase space: the transition from
BvK to reverse BvK vortex streets, the wake deflection, and
the transition from 2D to 3D wakes. In contrast to a pitching
foil, here we concentrate primarily on the distinctive charac-
teristics for the heaving foil, particulary regarding its Floquet
modes.

At a fixed Reynolds number Re = 1700, by increasing
the frequency (Sr) or, equivalently, decreasing the amplitude
(AD) along the marginal stability curve in the (Sr,AD) phase
space, we observe that the critical Floquet stability mode
emerges sequentially as modes A, QP, and B. It is interesting
to note that both modes A and mode B are T periodic, or
synchronous with respect to the base flow, in contrast to the
quasiperiodic mode QP, which contains a longer secondary
period.

To investigate the Floquet modes across the marginal
stability curve. We fix the frequency at Sr = 0.187, of which
the critical Floquet mode is located in the synchronous regime,
while varying AD around the critical value. We find that the
dominant mode changes from mode A to mode B, while
mode QP never becomes critical as we increase AD . We also
notice that another instability mode, mode S, arises, which is
subharmonic. Physically, mode S is not realizable, because the
magnitude of its Floquet multiplier is always smaller than that
of mode B.
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FIG. 11. Variation of Floquet multiplier magnitude |μ| with wave
number β at (Sr, AD) = (0.187, 1.432) for different Re: (a) 1680,
(b) 1685, (c) 1690, (d) 1700, (e) 1705, (f) 1708, (g) 1710, and (h)
1720. The line |μ| = 1 corresponds to neutral stability of the Floquet
modes.

Moreover, we also consider a specific example at Sr =
0.187,AD = 1.432 to explore the effect of Reynolds number.
As the Re increases, mode A becomes critical first. For Re
up to 1708, the dominant mode switches from mode A to
mode B, exhibiting behavior similar to that by varying the
amplitude AD . It is important to point out that the stability
characteristics are similar for increasing Re number and that by
varying AD as crossing the transition boundary. We understand
that the effect of increasing the Re number is equivalent
to shifting the transition boundary to the lower left of the
amplitude-frequency parametric space.

It is important to appreciate that the flow around a heaving
foil differs significantly from that of a pitching foil in three-
dimensional instabilities. The latter presents two unstable Flo-
quet modes, of which only the subharmonic mode is physically
realizable, while for the heaving foil, two physically realizable
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modes, mode A and mode B, are identified. Both modes are
synchronous with the base flow. They emerge sequentially as
we increase the oscillating amplitude or increase the Reynolds
number.

It is meaningful to perform fully three-dimensional direct
numerical simulations to investigate if the finite-amplitude
saturated forms of the Floquet modes would be consistent with

the solutions from the nonlinear 3D NS equations, although it
is computationally expensive.
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