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Kullback-Leibler divergence measure of intermittency: Application to turbulence
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For generic systems exhibiting power law behaviors, and hence multiscale dependencies, we propose a simple
tool to analyze multifractality and intermittency, after noticing that these concepts are directly related to the
deformation of a probability density function from Gaussian at large scales to non-Gaussian at smaller scales. Our
framework is based on information theory and uses Shannon entropy and Kullback-Leibler divergence. We provide
an extensive application to three-dimensional fully developed turbulence, seen here as a paradigmatic complex
system where intermittency was historically defined and the concepts of scale invariance and multifractality were
extensively studied and benchmarked. We compute our quantity on experimental Eulerian velocity measurements,
as well as on synthetic processes and phenomenological models of fluid turbulence. Our approach is very general
and does not require any underlying model of the system, although it can probe the relevance of such a model.
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I. INTRODUCTION

Complex systems are omnipresent in day life and as a conse-
quence in many scientific fields. These are as various as Internet
traffic [1,2], human genome exploration [3], geography [4],
financial markets [5,6], etc. In recent years, increasing compu-
tational power and storage has fueled interest in accumulating
and analyzing large amounts of data, and hence in developing
tools to characterize systems where traditional methods are not
relevant. Real-world systems are most commonly nonlinear,
and their complexity is difficult to model. Hence, any pertinent
tool must be able to probe nonlinear correlations and should
preferably be nonparametric.

A very common characteristic of such systems is the occur-
rence of quantities that exhibit a power spectral density (PSD)
with a power law, indicating that multiple scales are present, in
a continuous range. In addition, probability density functions
(PDFs) are most commonly non-Gaussian, suggesting that
nonlinear interactions are at work. When one defines and then
measures a global or local quantity which has both a power
law power spectrum and a non-Gaussian PDF, this quantity
is usually shown to have a fractal nature, with a deformation
of its PDF when the scale varies. Again, very few tools exist
to probe such systems correctly. We propose here a measure
of the evolution between Gaussian and non-Gaussian PDF.
Another wide class of problems considers a global quantity
defined as the sum or integral, e.g., over space or over time,
of alocal quantity that has non-Gaussian statistics. Estimating
or predicting the statistics of the global quantity is usually
not easy, because of, e.g., long-range interactions that lead
to long-range correlations. Nevertheless, for large integration
scales, larger than any possible correlation scale, large devi-
ation theory should reduce to the central limit theorem and
Gaussian statistics are expected. We also aim at quantifying
these transformations of the PDFs.
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One paradigm of multiscale complex systems is fluid
turbulence, for which many theoretical and phenomenological
developments have been proposed to describe very complex
behaviors such as energy cascade and intermittency.

Kolmogorov’s 1941 theory (K41) [7-9] provided a powerful
framework to describe fully developed turbulence, and in
particular to characterize its statistical properties. Considering,
for example, Eulerian longitudinal velocity increments 6;v at
scale [, K41 theory states that the p-order structure function
Sp(l) = ((6;v)?) behaves, for any positive integer p, as a power
law of the scale [,

S,(l) o I8P, (1)

in the inertial range n < / <« L, where L and 7 are the integral
and Kolmogorov scales. The scaling exponent ¢ (p) depends
on the order p, and K41 theory, assuming homogeneity and
isotropy at the small scales of the flow, predicts a linear
behavior of the scaling exponents as {(p) = p/3. Using the
relation between the kinetic energy and the second order
structure function S>(/), this implies the famous 5/3 law for
the distribution of kinetic energy in the inertial range. The
existence of the energy cascade from larger scales to smaller
ones has been shown by Kolmogorov to be related to the
4/5 law, which imposes the value of the third order structure
function S3(/).

Although very satisfying at first, this predicted linear be-
havior of the scaling exponents was later rejected by dedicated
experiments [10]. To describe the observed deviations, Kol-
mogorov and Oboukhov relaxed some of the K41 hypotheses:
in particular, they assumed a spatially intermittent distribution
of the local dissipationrate [ 11,12]. This led to the KO62 theory
and the definition of intermittency in turbulence: the scaling
exponents ¢ (p) do not depend linearly in p (see Fig. 3).

Intermittency was later related to the multifractal descrip-
tion of turbulence as stated by Frisch and Parisi [13]. It is now
recognized that the PDF of the Eulerian velocity increments
continuously deforms from Gaussian at large scales [ > L
to strongly non-Gaussian at smaller scales, and we use this
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consequence as an equivalent, but more practical, definition of
intermittency.

The deformation of the PDF can be quantified by the
evolution of its flatness [14], measured as the normalized
kurtosis of the distribution: {(8;v)*)/{(8;v)%)* = S4(1)/S>(1)%.
Atlarger scales, about or above the integral scale L, the PDF of
the velocity increments is almost Gaussian and has a flatness
very close to three. For smaller and smaller scales, the PDF is
less and less Gaussian as the PDF of the normalized increments
becomes wider and wider; therefore the flatness increases.
Fine evolutions of the PDF, and hence intermittency, have
been studied with the flatness, such as a rapid increase of
intermittency when the scale is reduced down or below the
Kolmogorov dissipative scale [15]. S, evolves according to the
2/3 law predicted by K41 theory, so, the kurtosis only involves
one higher-order structure function, namely, S4, and as such
it does not describe the deviation of all the scaling exponents
¢ (p) from their linear behavior in p. This is why we propose in
this article a measure of intermittency that involves all structure
functions.

Shannon founded information theory in 1948 and intro-
duced entropy as a measure of the total information of a
process [16]. Since then, information theory has been widely
used in very different fields: biomedical science [17-19],
physics of fluids [20-22], thermodynamics [23], and others.
Shannon entropy is a functional of the PDF of the process,
and as such it depends on all the moments of the distribution;
see Sec. II.

We propose a measure of intermittency, interpreted as the
deformation of a PDF which is Gaussian at large scales. To
do so, we consider the Kullback-Leibler (KL) divergence [24]
between the PDF and the Gaussian PDF defined with the same
standard deviation. The KL divergence has been scarcely used
in the field of turbulence, usually as an a posteriori quantitative
comparison of theoretically predicted PDFs with experimental
[25] or approximated ones [26]. We compute this quantity for
Eulerian velocity increments, in order to measure intermittency
in turbulence. We do so in a wide range of scales so that we
can observe how this measure of intermittency behaves in all
domains of fluid turbulence. By comparing the PDF, defined
by all its moments, and the Gaussian approximation of this
PDF, defined by the second order moment only, we measure
not only the growth of the pth order moment with respect to
the variance, but also the evolution of all the moments with
respect to the variance; i.e., we exhaustively characterize the
deformation of the PDF. Measuring the intermittency with a
KL divergence provides a generalization of measures such as
flatness (p = 4), hyperflatness (p = 6), etc.

Although we propose to study turbulence as an application
of our framework, our definitions are very general and require
only a signal to probe intermittency. Our approach does
not require any a priori knowledge of the signal or any
underlying model of the system that produced the signal.
As such, it can prove a very powerful tool to analyze com-
plex systems exhibiting power law behaviors or multiscale
dependencies.

This paper is organized as follows. In Sec. II we define our
information theoretical measure of intermittency that involves
Shanon entropy and a well-chosen Kullback-Leibler diver-
gence. In Sec. III we compute this quantity for experimental

measurements of the Eulerian velocity field in several setups
and several Reynolds numbers. We then turn in Sec. IV to some
phenomenological modelings in order to better understand and
describe our observations.

II. DEFINITIONS

A. Entropy and KL divergence from Gaussianity

Shannon entropy, H(X), of a process X of PDF p(x), is the
total information that defines the process [16]. It depends on
all the moments of the PDF p(x) except the first order one:

H(X) = —fRP(X)ln p(x)dx. @)

We know that a Gaussian process, X, is uniquely defined by
the prescription of its mean, variance, and two-point correlation
function. Therefore, its Shannon entropy depends only on its
variance 0)2(6, and we have the analytical expression of the
entropy H(X¢) of a Gaussian process X¢:

H(Xg) = 3In(2meoy, ). 3)

For a generic process X which is a priori non-Gaussian and
has the variance 0}2(, we define the “entropy under Gaussian
hypothesis” Hg(X) as the entropy that one would get assuming
the process is Gaussian and using Eq. (3):

Hg(X)=11In (27‘[6‘0)2(), 4

where o is the standard deviation of the generic process X. So
the “entropy under Gaussian hypothesis” of X is a measure of
the entropy of a Gaussian PDF with the same standard deviation
as the real PDF of X. If X is Gaussian, obviously Hg(Xg) =
H(Xg).

For any process X with probability density function p(x),
we can measure the difference between the “real” PDF p(x) of
X and the Gaussian approximation pg(x) using the Kullback-
Leibler divergence [24]:

_ p(x)
Kops(X) = /Rp(x)ln |:pc(x)i| dx. 5)
Using the definitions of H(X) and Hg(X), we have
Kplipa(X) = Ho(X) — H(X) = 0. (6)

K p1ips(X) is a measure of the distance from Gaussianity of the
process X, i.e., the distance between the PDF p(x) of X and a
Gaussian PDF pg(x) which has the same standard deviation.
The maximum entropy principle [27,28] states that for a given
standard deviation, the Gaussian PDF maximizes the entropy;
see also Ref. [29]. So this distance is also a comparison between
the total information needed to define the process and the total
information defining the most ambiguous process with the
same standard deviation. The maximization of the entropy for
the Gaussian case ensures that the difference Hg(X) — H(X)is
always positive, as expected for a KL divergence and vanishes
only when X has a Gaussian distribution.

B. Distance from Gaussianity across scales

We analyze the process X at scale t by studying its
increments of size t:

8. X(1) = X(t + 1) — X(1). (7
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We note D.(X), the KL divergence /Cp) . (6; X) which mea-
sures the distance from Gaussianity of the increments at scale
7 of a process X:

DT(X)ZIC[)Hpg((S‘[X): HG(STX)_H(STX)' (8)

This quantity measures the deformation of the PDF of the
increment as a function of the size 7 of the increment: it
quantifies the evolution of the shape of the PDF, which depends
on all the moments of the process, except its mean.

Indeed, at each scale 7, the increment 5, X has a different
standard deviation. The larger the scale 7, the higher the
standard deviation. So changing T changes quantitatively the
entropies H (5, X) and Hg (8, X), which both depend strongly
on the standard deviation. Subtracting the two entropies elim-
inates most of this quantitative variation because the standard
deviation is by construction the same in both expressions
Hg(6:X) and H(6; X). D (X) thus measures only more subtle
and delicate evolutions of the shape of the PDF than the trivial
rescaling induced by the standard deviation.

In the specific case of turbulence, the PDFs of the incre-
ments of size equal or larger than the integral scale L are
almost Gaussian. As a consequence, we expect that the distance
from Gaussianity D, (X) tends to zero when t approaches
the integral scale. Conversely, it is expected to increase in the
inertial range down to the dissipative scale where it should
increase (even) faster [15]. Our distance from Gaussianity
should therefore be able to probe intermittency of turbu-
lence by measuring the deformation of the PDF of velocity
increments.

C. Methodology

To compute the Shannon entropy H from experimental
time series, one can first estimate the PDF by constructing
the histogram and can then use Eq. (2), but this estimation pro-
cedure strongly depends on the size of the bins [30]. In order to
compute accurately H from experimental data, we use instead
a nearest neighbor estimator described by Kozachenko and
Leonenko [31,32]. The only parameter used in this algorithm
is the number of neighbors k involved in the nearest neighbors
search. We chose the usual value k = 5 which is large enough
to estimate the Shannon entropy correctly within a reasonable
computational time.

Following Theiler [33], we subsample the data in order
to remove spurious correlation effects: when computing the
entropy of §; X(¢), we retain only data points separated in time
by a delay time T4, defined as the size of the largest increment
that we compute. This prescription has two benefits. First, two
successive points of the subsampled data set are uncorrelated,
because the increments of size t are typically correlated over
atime T < Tpax. Second, the number N of points used in the
computation of the entropy of §; X is independent of 7, so
the bias due to finite size effects is constant when t is varied.
To compute the entropy under Gaussian hypothesis Hg, we
estimate the standard deviation of the process and then use
Eq. (3).

In the remainder of this article, all quantities are computed
using N = 512 points, Tmax = 4096, so signals with a total of
N Tmax = 2! points. We also average our results over indepen-
dent realizations, in order to compute the standard deviation of

the quantities and provide error bars to the estimations. We use
12 realizations for experimental signals and eight realizations
for synthetic processes.

In following sections we analyze the evolution of the PDF
along the scales for a longitudinal turbulent velocity signal.
We compare the obtained results with some synthetic and
theoretical models of turbulence.

III. TURBULENCE

A. Experimental signals

We analyze two different sets of experimental turbulent
data, in order to show the ability of our measures to grasp
inherent properties of turbulence.

The first system consists of a temporal measurement of the
longitudinal velocity (V') at one location in a grid turbulence
setup in the wind tunnel of ONERA at Modane [34]. The
Taylor-scale based Reynolds number R; is about 2500, with
a turbulence intensity about 8%. The inertial region spans
approximately three decades. The sampling frequency is f; =
25 kHz, and the mean velocity of the wind in the tunnel is
(v) = 20.5 m/s. The probability density function of the data
is almost Gaussian although there is some visible asymmetry:
the skewness is about 0.175 £ 0.001.

The second system is a set of temporal velocity measures
at different Reynolds numbers in a jet turbulence experiment
with helium [35]. The Taylor-scale-based Reynolds number
R, is respectively 89, 208, 463, 703, 929, with a turbulence
intensity about 23%.

Using the Taylor hypothesis [14] and the mean velocity
(v) of the flow, we interpret these time series as the spatial
evolution of the longitudinal velocity. The time scale T and the
spatial scale [ are related by / = (v)t. We note the integral time
scale T and the integral spatial scale L, and we have L = (v)T.
We present all our results as functions of the ratio t/T =1/L
between the scale of the increment and the integral scale.

B. Results

In Fig. 1, we present the analysis of the Modane experi-
mental velocity data. In the left column, we report the classical
viewpoint and compare it to the information theory viewpoint
in the right column.

We first plot the power spectrum of the velocity signal V
as a function of the inverse frequency 1/f = t in Fig. 1(a): it
shows the distribution of energy across scales following the
well-known 5/3 Kolmogorov law. In order to measure the
deformation of the shape of the PDF of the velocity increment
when the scale 7 is varied, we follow Frisch [14], and compute
the flatness as the kurtosis ((8;v)*)/((8;v)?)? of the velocity
increments normalized by three, the kurtosis of a Gaussian
PDF. Results are reported in 1(b). For > T, i.e.,l 2 L, the
flatness has the value expected for a Gaussian PDF. Reducing
7, the flatness increases. When t is smaller than the dissipative
scale [15], the increase of the flatness is sharper. Three different
regions can be distinguished in both figures: integral, inertial,
and dissipative.

The right column of Fig. 1 is devoted to the information
theory viewpoint on the same characteristics of turbulence.
We first plot the entropy of the increments in Fig. 1(c) and
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FIG. 1. (a) Power spectrum, (b) flatness, (c) entropies, and (d) KL distance from Gaussianity, for the Modane experimental data, as functions
of In(z/T) = In(l/L), the logarithm of scale normalized by the integral scale. In (a) and (c), the straight lines indicate the theoretical scaling

in the inertial region predicted by Kolmogorov K41 theory.

compare it with the PSD in Fig. 1(a). We then plot D, (V) in
Fig. 1(d) and compare its behavior in T with the flatness.

In Fig. 1(c) we see that the entropy of the increments
[H (8. V)] increases with t. The larger the scale, the higher the
total Shannon information needed to completely characterize
the increment. We can distinguish three different ranges with
different dependence of the entropy on the scale. For the large
scales, larger than the integral scale, the entropy reaches its
highest value and is then constant. So the most disorganized
or complex scales, the ones requiring more information to
be completely characterized, are the scales in the integral
domain. Within this region, the characterization of the scale
does not require more entropy when the size of the increment
increases. A linear behavior of the entropy in In(z/T) is
found in the inertial region, T € [10,400]. The complexity
of the scales, as measured by H(§.V), decreases linearly in
In(z/T) between the integral and the Kolmogorov scales. For
the smallest scales, below the Kolmogorov scale, which we can
measure atIn(z/T) &~ —5, we observe a steeper decrease of the
disorganization when the scale decreases. So, using the entropy
of the increments, we are able to recover the three different
regions. Moreover, we can state that H (8, V) increases from the
smallest scale to the integral scale and then remains constant.
In addition, the evolution of H(§,V) in the inertial region is
linear in In(z/T).

Both entropies H(5;V) and Hg(6;V) in Fig. 1(c) are
indistinguishable in the integral domain. The distance between
them starts to increase when we enter the inertial region. In
Fig. 1(d), we plot the difference between these two entropies,
which, according to Eq. (8) is the distance from Gaussianity
D, (V). Starting from zero at scales larger than the integral
one, it increases when the scale decreases. The vanishing of
D, (V) for largest scales implies that the PDF of the velocity
increments is almost Gaussian, which is the expected behavior

in turbulence at scales equal to or larger than the integral
scale. Below this integral scale the PDF starts to deform and
becomes less and less Gaussian when the scale decreases. The
evolution of D (V) is almost linear between the integral and
the Kolmogorov scales. Finally, in the dissipative range, we
observe an abrupt deformation of the PDF, in perfect agreement
with the rapid increase of the flatness in Fig. 1(b). [15]
The distance from Gaussianity D.(V) across scales T is a
measure of the deformation of the PDF of the turbulent velocity
increments and, as such, a measure of the intermittency.

In the four subplots of Fig. 1, the three different do-
mains of turbulence are distinguishable: integral, inertial, and
dissipative. Figure 1(c) allows us to interpret these three
domains in terms of organization and complexity of velocity
increments. Figure 1(d) shows that the KL divergence allows us
to quantify the evolution of intermittency among scales 7. We
not only recover the three different ranges with our measures
based on information theory, but the qualitative behavior of
intermittency in each domain is also in perfect agreement
with previous studies. Moreover, our measure of intermittency
doesn’t depend on a specific ratio between selected moments
of the PDFs like the kurtosis. D, (V) takes into account all the
moments defining the PDFs: this makes our KL distance from
Gaussianity across scales a good candidate for a quantitative
measure of intermittency.

We have compiled information theory results for all exper-
imental signals in Fig. 2, in order to study the influence of the
Reynolds number. The entropy as a function of the scale is
reported in Fig. 2(a); we observe how the size of the inertial
range varies with the Reynolds number, with the Kolmogorov
scale increasing when the Reynolds number decreases. This
classical behavior of the Kolmogorov scale is also recovered
with the KL divergence, represented in Fig. 2(b). The steeper
slope, which indicates the dissipative domain, appears at higher
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FIG. 2. (a) Entropy H(8,V) of the Eulerian velocity increments
as a function of In(z/T) = In(l/L). (b) KL divergence D.(V) =
Hg (8, V) — H(5.V). Different experimental signals with various
Reynolds numbers have been used.

scales when the Reynolds number is lower; we recover the
dependence of the Kolmogorov scales with the Reynolds
number.

The behaviors of both the entropy and the distance from
Gaussianity are qualitatively the same for different experimen-
tal setups and for any Reynolds number. The dependence of the
entropy H (8, V) of the increments is, at first order, in agreement
with the K41 theory: we recover the scaling law in the inertial
domain [36]. The KL divergence D.(V) then enlightens the
deformation of the PDF across scales, which is qualitatively
compatible with the K062 theory and hence the intermittency
in turbulence.

IV. MODELING

In order to get some insight on the quantitative results
obtained with our Kullback-Leibler divergence D,, we now
turn to some theoretical descriptions of the inertial domain of
fully developed turbulence.

First, we study different processes. Among the simplest,
popular, and most important is fractional Brownian motion
(fBm) [7,37], which, as a monofractal process, doesn’t display
intermittency. We also explore multifractal processes that ex-
hibit intermittency: multifractal random walk (MRW) [38,39]
and random wavelet cascade (RWC) with log-normal [39,40]
or log-Poisson distribution of multipliers [39-41]. We then
examine the propagator formalism [42], a phenomenological
model that provides an analytical expression of the PDF of the
velocity increments [43].

2 T T T T T -
Monofractal . 7
— LN e
15k ... LP %
7/

O Modane %

FIG. 3. Scaling exponents ¢(p) versus order p for three differ-
ent models of turbulence in the inertial domain, together with an
experimental Eulerian velocity measure (Modane, black symbols).
Models are monofractal fractional Brownian motion (cyan, contin-
uous straight line), multifractal log-normal (blue, dashed line), and
multifractal log-Poisson (red, dotted line).

A. Description of turbulence

We briefly introduce the models that we use. All are
characterized by the set of their scaling exponents, {(p), as
they appear in Eq. (1). One of the very few exact results
of Kolmogorov’s framework is the 4/5 law, which imposes
£(3) = 1; this should be respected by any model or process
representing turbulence; see Fig. 3. A linear behavior of the
scaling exponents with p characterizes a monofractal process.
On the other hand, a nonlinear behavior reveals multifractality;
see Fig. 3.

From these scaling exponents, one can define the log-
cumulants from the following Taylor expansion [44]:

2 3
_ p p
{p)=cip—croy oo, €))
So the existence of nonzero log-cumulants ¢, of order p > 2
indicates the multifractal nature of a process.
By taking the Legendre transform of the scaling exponents

we estimate the singularity spectrum of the process [13]:

D(h) = min,[ph — £(p)], (10)

where 4 is called the Holder exponent and describes the local
regularity of the signal. The singularity spectrum D(h) is
related to the probability of finding the Holder exponent 4.

For a monofractal process there is only one possible value
for the Holder exponent /i, which is notated H, the Hurst
exponent. The scaling exponent are linear in p (see Fig. 3):
¢(p) = Hp, so only the first log-cumulant c¢; is nonzero:
c; = H.Inthat case, the scale invariance implies the following
relation between the probability distributions ps, x and ps, x
of the increments of scales T and 7:

T\ " 0\ H
Pax @) = (2) pax| (2) 8ex .
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SO
H(8:X) = H(8;,X) + HIn(t/0). (11)

This relation is valid for all couples of scales (z,7p), and al-
though there is no integral scale 7' in a monofractal description,
we further note the reference scale o = 7. Following K41,
we set H = ¢; = 1/3 to model turbulence, although this is not
very satisfying for larger p; see Fig. 3.

Intermittent log-normal model for turbulence was intro-
duced by Kolmogorov and Oboukhov in 1962. It was the first
intermittent model of turbulence, with the following scaling
exponents: {(p) =cp — cz”;.

The nonlinear dependence of the scaling exponents in
p indicates the multifractal nature of the model, which is
quantified by c,. All log-cumulants c,, of order p > 2 are zero.
Its singularity spectrum is

(h —c1)?

Dh)y=1-
(h) .

(12)
This multifractal process offers a satisfying representation of
the scaling exponents of turbulence for ¢, = 0.025 and ¢; =
1/3 4 3¢2/2 = 0.371 (see Fig. 3).

The intermittent log-Poisson model was introduced by
She and Leveque [41]. This heuristic model leads to scaling
exponents of the form ¢(p) = —yp — A(BP — 1). It has later
been interpreted as a log-Poisson model with a singularity

spectrum
h_y{ln[ h—vy ]—1}. (13)
In(8) —AIn(B)

The corresponding log-cumulants are

Dh)y=1—r+

¢y =y +Aln(B), (14)

em = AIn(B)", m = 2. (15)

This model imposes A =2, f = (%)(1/3) and y =—-1/9
[41], and it describes the scaling exponents ¢ (p) as satisfyingly
as the log-normal model does (see Fig. 3).

B. Synthetic processes

We now briefly present the different processes that we
numerically generated, according to the above prescriptions.

Fractional Brownian motion is the only scale-invariant
process with Gaussian statistics and stationary increments.
This monofractal process was introduced by Kolmogorov [7]
and studied by Mandelbrot [37].

The Hurst exponent H = 1/3 and oy (the variance at
t = 0) define completely the process. The power spectrum of
fractional Brownian motion exhibits a 5/3 scaling, identical to
the one of the energy in the inertial region of turbulence, in
agreement with K41 [7]. We use the procedure presented by
Helgason to synthesize fBm [45].

Log-normal multifractal processes: We use two different
synthetic processes with log-normal statistics: a RWC [39,40]
and a MRW [38]. Multifractality requires the existence of an
integral scale T', from or towards which the PDF evolves. For
both processes, we impose the integral scale T to be equal to
the size of the signal.

TABLE I. The first three lines indicate the values of parameters
[c; and ¢, and hence ¢(2)] used in the generation. Estimates ¢, ¢5,
and Z(2) are obtained by classical multifractal analysis. The last line
reports the slopes Ay ) Hg (8; X) of the entropy Hg (8 X) as afunction
of In(z/ T), for the four different models, which according to Eq. (16)
provides another estimate of ¢(2)/2.

fBm MRW log-N log-P
c 1/3 0.371 0.371 0.381
&) 0 0.025 0.025 0.036
(2)/2 1/3 0.345 0.345 0.345
¢ 0.333 0.42 0.372 0.382
1) le™ 0.038 0.026 0.035
z@)/2 0.332 0.363 0.353 0.356

ApninyHg(6:X) 0.33£0.01 0.37£0.01 0.35£0.01 0.35£0.01

Log-Poisson multifractal process: We use a RWC with log-
Poisson statistics [40]. Again, our synthesis fixes the integral
scale T to the size of the generated signal.

Classical multifractal analysis offers a way to estimate the
log-cumulants ¢; and c;, but fails to estimate c3 and higher
order log-cumulants. It can therefore be interpreted as project-
ing the different models onto their log-normal approximation,
with varying (c;,c,). For example, the multifractal analysis of
a realistic log-Poisson model of turbulence leads the values
given in Table I, and no additional higher order log-cumulant.
As a consequence, such an analysis is not able to discriminate
which process, log-normal or log-Poisson, better represents
turbulence. For this reason, we compute in the next section the
KL divergence D, which takes into account all moments of
the PDF of increments, and hence higher order log-cumulants
[46], in order to obtain a finer analysis of the inertial domain
of turbulence.

C. Results

In Fig. 4(a) we plot for the four synthetic signals the entropy
H(§.X) as a function of In(t/T), the logarithm of the scale.
We also plot the entropy under Gaussian hypothesis, Hg(6; X),
but it is indistinguishable from H (5, X).

For any process, the entropy under Gaussian hypothesis Hg
is computed using Eq. (4). Itinvolves the second order moment
S»2(7) only, which we express using Eq. (1) as

Sy(7) = Grz _ 62(1>§(2>'

T
We then obtain the dependence of Hg on the scale t:
4]
Hg(8:X) = Ho(87 X) + ——=In(t/T). (16)

In Fig. 4(a), we observe that the slope of the curves, which
should be % is very similar for all processes: we report in
Table I the different values we measured and compare them
to the prescribed value (1/3 for fBM and 0.345 for all three
multifractal processes). The distribution of information along
the scales for the four different models is in agreement with
the prescribed Kolmogorov K41 scaling [36].

Up to this point, looking at the entropies, the four models
cannot be distinguished in the inertial domain. In Fig. 4(b) we
plot the Kullback-Leibler divergence D.(X) as a function of
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FIG. 4. (a) Entropy H (continuous curve) and entropy under
Gaussian hypothesis Hg (symbols) for mono- and multifractal pro-
cesses. Black lines represent the theoretical slope (1/3) for informa-
tion expected for turbulence within K41 theory. (b) Distance D, (X) =
Hg(6.X) — H(6:X) from Gaussianity. Four different models are
used: fBm (cyan A), MRW (magenta ), log-normal RWC (blue [J),
and log-Poisson RWC (v red).

In(r/T) = In(l/L), for scales ranging from 7/T = 1/2** to
/T = 4096/2% where the integral scale is T = 2%*.

For a monofractal process, the entropy is given by Eq. (11),
and the entropy under Gaussian hypothesis is given by Eq. (16)
with H =¢(2)/2, so D.(X) = Hg(6:X) — H(5:X) is con-
stant and does not depend on the scale t. If the monofractal pro-
cess has Gaussian statistics, which defines the fBm, D, (X) = 0
by construction. Looking at Fig. 4(b), D; for the fBm is not
exactly zero; this is due to the bias in the estimation of H (5, X)
and Hg(8;X). This bias is constant across scales, because our
procedure was built to use a constant number of points in the
range of T we use.

For the three multifractal processes, D.(X) decreases
monotonically when t increases and tends to zero when the
scale tends to the integral scale. So in the three multifractal
models, the PDF of the increments deforms into a Gaus-
sian PDF when approaching the integral scale. Moreover, in
Fig. 4(b) we observe that the three processes, which indeed
have different statistics, do not converge to zero in the same
way. The distance from Gaussianity D,, by involving all the
moments of the probability distributions, is able to reveal fine
differences between processes.

The synthetic processes used above are good representa-
tions of the inertial range only. They do not properly take
into account either the dissipative or the integral scales.
Nevertheless, the synthesis imposes an effective integral scale

— ¢y =0.025

0.9 + ¢y =0.025/2 (a) (b)
: - ¢y =0.025/4
— ¢y =0.025/8

¢y = 0.025/16

18 12 =6 0 04 02 0

In(r/T) coIn(7/T)

FIG. 5. Kullback-Leibler divergence D, for the log-normal prop-
agator model, for varying values of the log-cumulant c,, as a function
of In(z/T) = In(l/L) (a) or as a function of ¢; In(z/T) (b).

that corresponds to the size of the generated signal. In order
to study more precisely the deformation of the PDFs at large
scale, we now turn to descriptions that explicitly involve the
integral scale.

D. Phenomenological model: The propagator formalism

First introduced by Castaing [42], the propagator formalism
describes the statistics of the Eulerian velocity increment §;v
as identical, in the probabilistic sense, to the statistics of the
product of two random variables: the large-scale fluctuations
o8 and the propagator (I/L)". The large-scale fluctuations
are supposed Gaussian, with standard deviation o7, and §
is therefore a Gaussian variable with unit variance. The
propagator deforms the large-scale statistics when the scale
[ is reduced below the integral scale L. In the simple situation
where no dissipative scale is taken into account, and where the
propagator is supposed independent of large-scale statistics,
one can write formally the PDF of the Eulerian velocity
increments 8;v = o (I/L)"8 as [43]

s = [~ (1) R 22 (LY | pan
Dao( lv)—/_m;<z> s Z(Z) wlh]dh,
(17

where £ is the Holder exponent. We have notated Ps(6) and
Pn(h) the probabilities of the independent random variables
8 and h. The PDF P,(h) depends only on the singularity
spectrum D(h). See Ref. [43] for a detailed explanation.

We integrate numerically Eq. (17) to get the PDF of the
increments §;v, and then compute the KL divergence D, for
several singularity spectra, either log-normal or log-Poisson.

Log-normal model: We varied the value of the log-cumulant
c1 and didn’t observe any dependence of D, on c¢;. On the other
hand, varying c, strongly changes the convergence. Results are
presented in Fig. 5(a). We observe and report in Fig. 5(b) that
curves for different values of ¢, can be collapsed into a single
curve when plotted as a function of ¢; In(t/T) = ¢, In(l/L).

To understand this scaling behavior, we performed a saddle-
node expansion of expression (17) in the log-normal case and
obtained the following simplified expression for the PDF of
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FIG. 6. Kullback-Leibler divergence D, as a function of
¢, In(t/T) for the log-Poisson propagator model, for varying values
of A (a) and B (b). The dotted line represents the single curve obtained
for the log-normal propagator [Fig. 5(b)].

the normalized increments y = §;v/o; at scale [:

S 72\g+w2
2% ¢ cox
) = = (18)
D= A W
where we have noted x = —In(//L) the logarithmic scale,

and W the value of the Lambert W-function of argument
2cyxy?e**. Equation (18) is a non-Gaussian PDF which
converges to the Gaussian PDF of variance o when x — 0.
From Eq. (18), the PDF of the increments depends only on
In(//L) =1In(r/T) and ¢, via the product c;In(l/L). As a
consequence, the entropy of the increments depends on the
scale/ as ¢, Inl/L only. This implies that the KL divergence D,
for the log-normal process has the scaling observed in Fig. 5(b).

Log-Poisson model: We varied independently y, A, and 8.
We didn’t observe any change of D, when y was varied.
This can be understood as y changes only the value of ¢
[see Eq. (14)], which does not impact D,. Varying A changes
the convergence, as this amounts to change ¢, [see Eq. (15)],
but we observe again that D, depends only on ¢, In(t/T);
see Fig. 6(a). This can be understood by noting that all log-
cumulants are linear in A; thus varying A amounts to a change
of ¢, while keeping higher order cumulants within the same
ratio. On the other hand, varying B has more impact on the
convergence, and the rescaling in ¢, In(t/ T') is then not perfect,
albeit still relevant; see Fig. 6(b). This can be understood by
noting that changing 8 changes not only ¢, but also the ratio
of all higher order cumulants.

Comparison between models: The rescaling in ¢, In(t/T),
which absorbs most, if not all, the dependence of D; on c;,
allows a direct comparison of models. As can be seen in Fig. 6,
all curves obtained with the log-Poisson propagator model
clearly differs from the ones obtained with the log-normal
propagator, especially for smaller scales. This probably results
from the presence of higher order log-cumulants c¢,, p > 2
in the log-Poisson propagator. As a consequence, whatever
the choices of the propagators parameters, the KL divergence
behaves very distinctly in the log-normal and log-Poisson
models.

Comparison with turbulence data: Among open questions
regarding statistical descriptions of Eulerian turbulence is
the choice of a log-normal or log-Poisson modeling of its
multifractal nature. We of course want to address this issue, and

4 AV - ' '
v @
L \ i
§ \ — log-Poisson
5: 3 \ — log-normal |
\‘;N, " : — Modane J
=
T 2p |
=
1t : : : :

—— log-Poisson

0.08 — log-normal

Modane

BEErr-

FIG. 7. Comparison of the two propagator models of turbulence
[log-normal (continuous blue line) and log-Poisson (red dotted line)]
with Modane experimental data (in black with error bars), as a function
of In(z/T): (a) normalized flatness, (b) KL divergence. The dashed
(blue) and dotted (red) lines represent the modified models that take
into account the dissipative range [43].

we explore both the flatness and the KL divergence to compare
the two propagator models with experimental data in Fig. 7. In
both models, parameters are set to the values acknowledged for
turbulence (see Sec. IV A). For experimental data, we remove
the bias from the KL divergence estimation by subtracting the
small constant value that we measured for a fBm signal, see
Fig. 4(b). As the ¢, value for turbulence is a priori unknown,
we do not rescale the x axis with ¢,. Let us remark though
that the ¢, value we have used in the log-normal propagator
(c2 = 0.025) is exactly the one measured in experimental data,
using multifractal analysis [43].

In the inertial range, although the flatness behaves differ-
ently for the two propagator models, the difference is small
and remains within the error bars of the estimation performed
on experimental data. On the contrary, when looking at the
KL divergence, our results show a much better agreement of
the log-normal model with the experimental data. Although
this may be due to the very appropriate choice of ¢, in the
log-normal model, the log-Poisson model does not allow such
achoice and fixes all the log-cumulants [41]. As a consequence,
we can state that the deformation of the experimental velocity
increments PDF in the inertial range is better modeled by a
multiplicative cascade with log-normal multipliers.

In the dissipative range, i.e., for smaller scales In(t/T) <
—5, we observe a rapid increase of D, for the experimental
data, which the two models (continuous lines in Fig. 7) fail
to reproduce. This is expected, as both propagator models
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were proposed to describe the inertial range only, and as such
do not incorporate any modeling of the dissipative scales. To
probe the dissipative range, we use the extension described in
Ref. [43] and indicate the results for both propagators with
dashed lines in Fig. 7. The rapid increase of intermittency
in the dissipation range is captured by the flatness and the
KL divergence. Although great care should be taken when
commenting on the lowest accessible scales in the experimental
data (mainly due to the acquisition process), we observe once
again that the KL divergence indicates, much more clearly
than the flatness does, that the log-normal propagator model is
closer to the experimental observations.

V. DISCUSSION AND CONCLUSIONS

We have measured the Shannon entropy of the Eulerian
turbulent velocity increments and studied its dependence on
the scale. We have recovered three different behaviors in the
integral, inertial, and dissipative domains, in perfect agreement
with the classical analysis using, e.g., the power spectrum. In
particular, in the inertial range, a scaling law for the entropy
is observed, reminiscent of K41 theory, similar to what was
earlier reported for another information theory quantity [36].
A closer look at the entropy, and especially a comparison with
its Gaussian approximation, which takes into account only the
variance of the signal, exactly as the PSD does, allows a much
finer description and in particular a measure of intermittency,
as introduced in KO62.

We have proposed a quantitative measure of intermittency.
Although some quantities were already used as an intermit-
tency coefficient, most, if not all, were ratios of structure
functions [14], and as such, they were depending on the chosen
ratio: flatness, hyper-flatness [10], or higher order ratios. We
interpret intermittency as the distance from Gaussianity and
measure it as D;, the Kullback-Leibler divergence between
the complete PDF p(§.V) and its Gaussian approximation
pc(6:V); the first involves all the statistical moments, while
the second one only depends on the variance. Our measure
of intermittency, by comparing complete PDFs, takes into
account all the moments of the distributions, which leaves no
room for ambiguity on the choice of the moments.

We have checked the robustness of our approach by an-
alyzing several experimental data sets, from two different
experimental setups, and with varying Reynolds numbers.

The quantity D, is not only able to measure intermittency
in turbulence, but also to discriminate very easily monofractal
from multifractal processes. Furthermore, the evolution of D,
with the scale depends on the process: this provides a much
more precise characterization of the process than the bare set
of log-cumulant values (c;,cz) given by a regular multifractal

analysis. This may be exploited to discriminate log-Poisson
from log-normal models of intermittency in turbulence.

We have investigated the dependence of D; on the log-
cumulants. D, does not depend on c;, and we have captured
its dependence on c;,, and especially how it affects the con-
vergence to O at large scales. Because D, appears to mainly
depend on ¢;In(r/T), we can state that the speed of the
deformation of the PDF, starting from a Gaussian at large-scale
L, depends on c;. For a given scale /L, or equivalently t/T,
the deformation of the PDF, and hence the intermittency, is
an increasing function of ¢,. Conversely, for a fixed value of
2, the influence, or reminiscence, of the integral scale persists
down to scales [/L smaller and smaller when c; is reduced.
Because the typical ¢, of turbulence is small, the influence
of the integral scale persists in the inertial domain, down to
the dissipative domain, unless the Reynolds number tends to
arbitrarily large values. We have shown that D, depends on
higher order log-cumulants ¢, for p > 2, by looking at the
special case of log-Poisson statistics (Fig. 6). The dependence
seems weak, but is nevertheless present, and could be exploited.

Our measure of intermittency substantially differs from
the existing measure involving the flatness. KL divergence
gives a sharper contrast between propagator models; this is
not surprising as KL divergence offers a complete perspective
on the PDF and all its moments. In addition, the error bars of
the KL divergence of experimental data are sufficiently small
to allow a quantitative comparison of experiments with model
predictions. This comparison was not instructive using previ-
ously existing tools. Our results show that KL divergence offers
quantitative arguments in favor of a log-normal description
of the propagator for modeling the distribution of Eulerian
velocity increments across scales.

Although we have put a strong emphasis on turbulence,
we want to point out that our approach is extremely general
and should find successful applications in many other fields.
It should prove particularly interesting for non-Gaussian pro-
cesses, the most common in nature and society. Any multi-
fractal process, or process that may be considered multifractal
in some range of scales, can be analyzed with D,. The
local intermittency measure that D, provides can be used to
characterize the process at any scale.
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