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Snap-buckling in asymmetrically constrained elastic strips
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When a flat elastic strip is compressed along its axis, it is bent in one of two possible directions via spontaneous
symmetry breaking, forming a cylindrical arc. This is a phenomenon well known as Euler buckling. When this
cylindrical section is pushed in the other direction, the bending direction can suddenly reverse. This instability
is called “snap-through buckling” and is one of the elementary shape transitions in a prestressed thin structure.
Combining experiments and theory, we study snap-buckling of an elastic strip with one end hinged and the
other end clamped. These asymmetric boundary constraints break the intrinsic symmetry of the strip, generating
mechanical behaviors, including largely hysteretic but reproducible force responses and switchlike discontinuous
shape changes. We establish the set of exact analytical solutions to fully explain all our major experimental and
numerical findings. Asymmetric boundary conditions arise naturally in diverse situations when a thin object is in
contact with a solid surface at one end. The introduction of asymmetry through boundary conditions yields new
insight into complex and programmable functionalities in material and industrial design.
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I. INTRODUCTION

Symmetry is one of the most fundamental concepts in the
natural sciences. Symmetry-breaking is often the first step in
the development of a variety of spatial and temporal patterns
from a featureless background in many natural systems. Con-
sideration of symmetries in a given system is thus essential to
classifying the characteristics of phase transition phenomena
in various fields, ranging from condensed matter physics
[1,2] and high-energy physics [3] to living systems [4–6]. To
understand emergent complex patterns that are diverse in both
length and time scales, we usually focus on their intrinsic
symmetries, which can be spontaneously broken in a bulk
system. Asymmetries, on the other hand, are often introduced
into a system in an extrinsic manner by external fields and,
most importantly, as boundary conditions (i.e., mechanical or
geometric constraints). A typical class in which asymmetry
imposed at boundaries plays an important role may be the dy-
namics of a flagellum or cilium of microswimmers [7–10]. One
end of a rodlike structure is attached to the body, typically either
by a clamped or hinged attachment, whereas the other end is
free. This boundary condition asymmetry, when driven at one
end or internally, can break the inherent symmetry of a system
itself, coupling it with the surrounding fluid for propulsion.

A thin geometric motif, such as a plate or strip, is a
building block for more complex solid structures in nature
[11–13], industry [14–19], and everyday life [20–24], and
is currently the target of active research in various scientific
fields [25–36]. In classical Euler buckling, one of two possible
bending directions is selected by spontaneous symmetry-
breaking. The bending direction can, however, be reversed
by indenting the cylindrical section; the reversal occurs as
another elastic instability, called snap-through buckling or
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snap-buckling. Although snap-buckling has a long history of
both academic and industrial applications, in keyboards and
switching devices [37–43], it is currently receiving increasing
attention [44–46] in various scientific fields, including studies
of mechanical metamaterials [47–50], small robots [51], and
nastic motions in plants [52–56]. To highlight the impact
of asymmetric boundary constraints on the mechanics of an
elastic geometric structure, we investigate boundary-driven
snap-through buckling of an intrinsically flat elastic strip.

In most studies on snapping problems, the strip’s ends
are symmetrically constrained by either clamping or hinging

FIG. 1. Experimental photographs of an asymmetrically con-
strained elastic strip (εy = 0.16). (a) Experimental apparatus with the
definition of key variables. θ (s) and t̂(s) are the bending angle from
the y axis and the tangent vector at arc length s, respectively. The
strip is initially bent leftward. The clamped end is moved from left
(L) to right (R) (i.e., forward process) and is moved back (from R to
L) (i.e., backward process). See also Movie S1 [57]. (b) Stroboscopic
pictures of the forward process. Dashed and solid arrows represent
the directions of motion and snap-through, respectively.
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[25]. In this study, we analyze simple snap-buckling behavior
induced solely by asymmetrically controlled boundaries. More
specifically, we study the snap mechanics of an elastic, one
end hinged and the other clamped, by shearing them apart
[Fig. 1(a)]. Our controlled physical experiment reveals that
the asymmetric boundaries produce highly anomalous, largely
hysteretic, but reproducible force responses. We establish a set
of exact analytical solutions for elastica under the clamped-
hinged constraints and for an arbitrary horizontal strain εx ,
which, to our knowledge, has never been reported. These
analytical solutions, as well as corroborative numerical simu-
lations, fully explain all the major findings in our experiments.
Furthermore, we construct the exact bending energy landscape
of an inextensible elastica, from which we can deduce a
scaling law in the fast dynamics of snapping. This result
may complement a recent study of snap-buckling dynamics
with variable clamped-clamped boundary conditions [28].
Importantly, we show that all the snapping properties newly
reported here are absent in the standard setup of symmetric
boundary conditions, which arise naturally in diverse situations
as a thin object makes contact with a solid surface at one end
[14–19,58–65]. Their profound consequences for the buckling
mechanics seem to be largely overlooked to date.

II. EXPERIMENT

A. Experimental apparatus

We cut a rectangular strip from a plastic sheet made of
rigid polyvinyl chloride (Acrysunday, No. 500). Our strip is
intrinsically flat; it has a uniform thickness, h = 1[mm], and
width, w = 20 [mm], and three total lengths, L = 156, 161,
and 172 [mm]. This is the effective length when it is mounted
in the experimental system. The strip is set vertically; its top
end is clamped, and its bottom end is hinged [see Fig. 1(b)].
Throughout our experiment, the origin of the coordinate
system is set at the hinged end, and the vertical height of the
clamped end is fixed at Y = 145 [mm]. The initial vertical
strains, εy ≡ 1 − Y/L, vary for strips of different lengths as
εy = 0.071, 0.099, and 0.16 for strips with L = 156, 161,
and 172 [mm], respectively. The horizontal position of the
clamped top, (X,Y ), is controlled by a stepping motor (Oriental
Motors, ARM46AC). X is changed sufficiently slowly to
maintain mechanical equilibrium at each position [Fig. 1(b)].
The Young’s modulus, E, of our strips, is determined by
measuring the horizontal component of the clamping force
Fx at X = 0, which yields E = 3.7, 3.3, and 3.9 [GPa] for
strips with L = 156, 161, and 172 [mm], respectively. These
are typical values for rigid polyvinyl chlorides. All measured
force data are shown in units of EI/L2, and the moment of
inertia of a strip is I = h3w/12. At the hinged boundary, the
strip’s end is glued to an empty hexagonal shaft (TAMIYA,
2 [mm] diameter, 72 [mm] length), which rotates around two
bearings (TAMIYA, inner diameter 2 [mm], outer diameter 6
[mm]). The bearings are inserted into two supports (Uxcell
Japan, A14071400UX0285, inner radius 8 [mm], outer radius
12 [mm]), which are fixed on a horizontally movable hinge
stage. We confirm that the shaft placed inside the bearing
rotates almost freely. Thus, rotational friction forces can safely
be neglected for our purpose. The hinge stage is placed on two
slender cylinders and tightly connected to the load cell (Kyowa

Dengyo, LTS-2KA) to measure the horizontal force acting on
the strips [Fig. 1(a)]. The apparatus is sufficiently rigid; the hor-
izontality of the load cell, hinge stage, and stepping motor is en-
sured during snapping and throughout the entire measurement.

We set the initial position of the clamped end as X < 0
to bend the strip leftward [Fig. 1(b)]. We then move (i.e.,
slide) the clamped end by increasing X by 1–10 [mm] per
step. The motion is thus from left (L) to right (R), maintaining
mechanical equilibrium of the system at each step (i.e., the
forward process). At the critical horizontal strain ε∗

x , the strip
snaps, and the buckling direction reverses. We then switch the
direction of motion of the clamped end, returning it to the
initial position at the same speed (i.e., the backward process).
See Appendix A, for experimental details.

B. Experimental results

In the main panel of Fig. 2(a), we plot the rescaled horizontal
force, fx = FxL

2/EI , as a function of the horizontal strain,

FIG. 2. Force vs. strain relations of an asymmetrically constrained
elastic strip and its corresponding shapes. (a) Force vs. strain
curves obtained from experiments, exact solutions, and numerical
simulations for εy � 0.1. Main panel shows the rescaled horizontal
force fx = FxL

2/EI ; inset shows the rescaled vertical force fy =
FyL

2/EI . Dashed arrow denotes the direction of sliding motion.
Filled circles and triangles are the experimental results in the forward
(L to R) and backward (R to L) processes, respectively. Open squares
and × symbols are data from our numerical simulations in the forward
(L to R) and backward (R to L) protocols, respectively. Solid lines are
the predictions from the exact analytical solutions. (b–e) Illustrative
snapshots that show typical configurations of an elastic strip during
the processes described in (a). In this experiment, the top end of a strip
is picked up with the fingers while its bottom end is in contact with
the palm of the hand. Here, the combination of the fingers and palm
mimic clamped-hinged boundary conditions. Note that (b–e) are for
illustration purpose only, and the data shown in (a) are obtained in the
controlled setup described in Fig. 1.
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εx ≡ X/L, for εy = 0.099, where filled circles and trian-
gles denote data obtained during the forward and backward
processes, respectively. When the strip is at rest at εx = 0
[Fig. 2(b)], it is pushed leftward from the hinge (i.e., fx < 0.)
As the clamped end moves and X increases, the magnitude of
fx decreases and approaches zero. Across εx � 0.13, its sign
changes (i.e., the loading changes from compressive to tensile
[Fig. 2(c)]). Note, however, that no shape instability is observed
at this point. The horizontal force, fx , increases continuously
as εx becomes larger beyond the point at which fx = 0 and the
strip eventually snaps when the hinged end becomes perpendic-
ular to the flat bottom stage at the critical strain ε∗

x = 0.34; see
Figs. 2(d) and 2(e). At this transition point, the horizontal force
from the substrate, fx , decreases discontinuously, whereas its
direction remains unchanged. After the snap, the direction of
the sliding motion of the clamped end is reversed. The force
curve in this backward process differs considerably from that
observed in the forward process. The force response in this
cyclic process is largely hysteretic, but at the same time, it
is absolutely reproducible, as is typical of athermal bistable
systems. Interestingly, although the configurations of the two
ends are identical, the configuration of the buckled strip is now
a mirror image of the original (i.e., the direction of buckling
is opposite). This is reflected in the main panel of Fig. 2(a).
At X = 0, fx has two values of the same magnitude, but with
opposite signs.

III. ANALYTICAL SOLUTIONS OF AN
ASYMMETRICALLY CONSTRAINED STRIP

The force response observed in our experiments is anoma-
lous and highly nonlinear. To rationalize it, we now construct
the set of exact solutions of the clamped-hinged elastica for
arbitrary εx . Despite the long history of the mathematics of
elastica [29,66], these solutions have, to our knowledge, never
been derived. Let �F (s) and the moment, �M(s), be the internal
force and moment, respectively, over the cross section of a strip
at position, s. The forces are exerted by the section of the strip
with an arc length greater than s on the section of the strip with
an arc length less than s. Note that s represents the arc length
measured from the clamped end. In the absence of any external
body forces and moments, the balance of these internal forces
and moments leads to the Kirchhoff rod equations [27,33],

�F ′(s) = �0, (1)

�M ′(s) + t̂(s) × �F (s) = �0, (2)

with the linear constitutive relation, �M(s) = EIθ ′(s)ẑ, and the
tangent vector, t̂(s) = (sin θ (s), − cos θ (s)), where the prime
(′), represents the derivative in terms of s; θ (s) is the bending
angle at s [Fig. 1(a)]. We apply both tangential and horizontal
forces at the clamped end: �F (0) = �F = (Fx,Fy). By solving
the first equation as �F (s) = (Fx,Fy), and substituting the result
into the second equation, we obtain the equation for ϑ(τ ) ≡
θ (Lτ ) as

ϑ̈(τ ) = −fx cos ϑ(τ ) − fy sin ϑ(τ ), (3)

Together with the boundary conditions at the top, ϑ(0) = 0,
and at the bottom, ϑ̇(1) = 0, where the dot (˙) represents the

derivative with respect to τ ≡ s/L. fx and fy are determined
from the constraints on the position of the clamped end,
(x(0),y(0)) = (X,Y ). Thus,∫ 1

0
sin ϑ(τ )dτ = −εx, 1 −

∫ 1

0
cos ϑ(τ )dτ = εy. (4)

Equations (3) and (4) can be solved using elliptic integrals
[66,67].

The exact solutions of Eqs. (3) and (4) are classified into
two cases. The first case corresponds to a presnap shape
satisfying |εx | � ε∗

x . Mathematically, this configuration has an
inflection point in terms of the elastica shape. The existence
of the inflection point allows two possible, but asymmetric,
buckling directions. As soon as |εx | exceeds ε∗

x , the solution
becomes unique and describes a post-snap shape without any
inflection points. With this classification, in either case, we
are left with two nonlinear algebraic equations consisting of
elliptic integrals for two undetermined coefficients, fx and
fy , which are readily solved numerically. In Fig. 2(a), we
show our exact analytical solution (i.e., solid line), accurately
predicting the experimental result. We also perform numerical
simulations using a discretized analog of a continuous elastic
strip [68], shown in Fig. 2(a) as squares (forward) and ×
symbols (backward). (See Appendices B and C for detailed
derivations and details of our numerical method, respectively.)
The numerical simulation data confirm our analytical predic-
tion and agree quite well with our experimental measurements.
Note that in our analytical and numerical analysis, all relevant
parameters are taken from those in our experiments, and
agreement among them is obtained without any adjustable
parameters.

To obtain the critical strains for the snapping transition,
we now focus on the small strain regime, εy � 1. A math-
ematical analysis of the governing equation suggests that
bistable solutions exist only for εx < ε∗

x , above which the
solution is unique. Physically, this bifurcation corresponds to
the snapping event, at which the hinged end becomes vertical.
Thus, the transition is geometrically controlled, rather than
mechanically. See also Fig. 7 in Appendix B for more details.
Given this argument, the critical strain for snapping, ε∗

x , can
be derived from the condition, θ (L) = 0. By introducing the
angle variable, ϕ as tan ϕ ≡ fx/fy , Eq. (4) is simplified in the
limit εy � 1 as

ε∗
x � ϕ, εy � 3ϕ2

4
, (5)

which leads to ε∗
x � √

4εy/3. We plot this in Fig. 3(b), together
with the exact result (see Appendix B for the derivation), which
agrees quite well with both the simulation and experimental
results.

A. Rapid force change at the onset of snapping

In the snapping transition, the boundary force necessary
to hold the elastic structure changes abruptly from (F+

x ,F+
y )

to (F−
x ,F−

y ). In fact, this discontinuous force change may be
ubiquitous in solid systems, including those in a wide range of
engineering applications. Knowing the magnitude of the force
changes, δFx = F+

x − F−
x and δFy = F+

y − F−
y in advance,

could, therefore, be helpful for assessing the potential risk in
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FIG. 3. Critical horizontal strain and magnitude of force change
upon snapping. (a) Experimental strip configurations immediately
before (top) and immediately after (bottom) the transition, captured by
high-speed camera. (b) Critical horizontal strain, ε∗

x , as a function of
preset vertical strain, εy . Squares and × symbols represent data from
our numerical simulations and physical experiments, respectively.
Solid and dashed lines are the exact analytical solution and its
approximate expression given in Eq. (5), respectively. (c) Magnitude
of the discontinuous increase in force at the snapping transition: δfx =
δFxL

2/EI (main panel) and δfy = δFyL
2/EI (inset). Circles and

squares represent the numerical and experimental results, respec-
tively. Solid and dashed lines are the predictions from the exact
analytical solution and its approximation given in Eq. (6), respectively.

different practical situations. The discontinuous changes in the
external forces are accurately predicted with our analytical
results. Taking the difference between the forces of the pre-
and post-snapped shapes at the onset of the transition, ε∗

x , we
obtain for εy � 1

δfx � 2π2
√

3εy, δfy � 3π2

(
1 − εy

2

)
. (6)

These analytical predictions agree quite well with the exper-
imental and numerical results for small εy in Fig. 3(c). Note
that the horizontal force change, δfx , depends nonlinearly on
εy as

√
εy , suggesting that it is particularly large compared to

the linear response for εy � 1. This rapid force change with
controlled nonlinearity could be used in the design of future
mechanical systems.

IV. ELASTIC ENERGY LANDSCAPE
AND SNAP DYNAMICS

Using the analytical results, we now reconstruct the land-
scape of the elastic deformation energy as a function of εx .
Note that for an inextensible strip, the total elastic energy
is the bending energy, E = ∫ 1

0 ϑ̇2(τ )dτ/2, given in rescaled

units. In Fig. 4, we plot the shape of E for εy = 0.16, together
with the corresponding shapes observed in the experiments
[see insets (i)–(viii)]. The initial Euler-buckled shapes, bent
left- and right-ward for εx = 0, are energetically degenerate
[Figs. 4(i) and 4(v)]. When, for example, a leftward-bent one is
slid toward the right (i.e., εx > 0), the bending energy initially
increases as the strip is subjected to compressional stress. At
approximately εx � 0.2, the energy reaches a maximum, and
the strip is then under tensile loading for larger εx [Fig. 4(ii)].
At approximately εx � 0.43, snap-buckling occurs [Figs. 4(iii)
and 4(iv)]. Mathematically, the analytical solution with an
inflection point no longer exists at this point. The energy
landscape in the backward process is distinctly different from
that in the forward process. The difference is the direct origin of
the hysteretic force response that we observed above. Because
of the way our protocol is constructed, the strip’s configuration
at εx = 0 is now a mirror image of the original [Fig. 4(v)]. To
restore it to the original configuration, the cycle needs to be
repeated for εx < 0, in which all the configurations are simply
mirror images of those observed for εx > 0 [Figs. 4(vi), 4(vii),
and 4(viii)].

From the energy diagram in Fig. 4, we can infer some
dynamical properties at the onset of snapping. In Fig. 4, the
red- and blue-shaded areas represent the bi- and monostable
regions, respectively. At |εx | = ε∗

x � 0.43, the upper branch
disappears, and snapping occurs. This sudden disappearance
of the energy branch implies a saddle-node/fold bifurcation
[69]. If we add an infinitesimally small strain, δεx , to the
strip’s critical state with 0 < δεx � 1 and δεx ≡ εx − ε∗

x , the
state of the strip immediately jumps to the lower branch. This
fast dynamic can be qualitatively understood according to
the following scaling argument. Suppose the dynamics of the
bending angle, χ (t), which is defined precisely in Fig. 5(a).
The dynamics of χ (t) could, in principle, be derived from
Newton’s equation of motion, which describes the balance of
the inertial force and internal elastic force on the strip. At this
scaling level, we assume that it is governed by the second-order
nonlinear ordinary differential equation, d2χ/dt2 = g(χ,δεx),
with initial conditions, χ (0) = 0 and dχ/dt |t=0 = 0, where
g = g(χ,δεx) is a nonlinear function of χ , and δεx . Expanding
g in terms of χ � 1 and δεx � 1, and leaving only the
leading order terms, one finds g(χ,δεx) � aδεx + bχ2, with
constants, a = ∂g/∂δεx |(0,0) and b = 1

2∂2g/∂χ2|(0,0). Here we
use the general properties of the fixed point, g(0,δεx) = 0 and
∂g/∂χ |(0,δεx ) = 0 [70]. Thus, the reduced dynamics for χ (t) is
written as

d2χ

dt2
= aδεx + bχ2, (7)

which is the normal form of saddle-node bifurcation. A more
sophisticated argument on the normal form in snap-buckling is
found in a recent paper by Gomez, et al. [28]. From the reduced
equation, χ is predicted to grow initially as χ ∝ t2. Indeed,
this blow-up dynamics is confirmed in our experiments using
a high-speed camera (Detect, HAS-D71, 2000 fps, Movie S2
[57]). In Fig. 5(b), we plot the fitting result for χ ∝ t2 as a
solid line. Note that the strip exhibits elastic oscillation after
the blowup.
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FIG. 4. Elastic energy landscape. Calculated bending elastic energy as a function of the horizontal strain, εx , for a fixed vertical strain,
εy = 0.16 (i.e., solid lines). Black arrows represent the sliding direction of the clamped end. Typical experimental configurations of a strip for
different εx are shown in insets (i)–(viii). Red and blue regions represent the bistable and monostable regions, respectively.

V. DISCUSSION

To demonstrate that our findings are unique to asymmetri-
cally constrained systems, we now compare them to the results
obtained from strips with either clamped-clamped or hinged-
hinged boundary conditions under the same cyclic protocol for
εy = 0.10. In Figs. 6(a) and 6(b), we plot the simulation results
for fx under clamped-clamped and hinged-hinged conditions,
respectively, with the corresponding strips’ shapes. Squares
and × symbols are data for the forward and backward pro-
cesses, respectively. One may notice that fx for the clamped-
clamped case changes sharply, but still continuously, at εx =
ε
†
x � 0.34. As soon as the horizontal strain, εx , exceeds ε

†
x , the

strip’s shape with an inflection point relaxes to the ground-state

FIG. 5. Fast-snapping dynamics. (a) Stroboscopic picture of the
strip during the snap transition and definition of the bending angle,
χ (t). (b) Experimental results of blow-up dynamics during the
snapping shape transition. Time evolution of the angle χ (t) is shown.
Dashed line is the best fit to the experimental data with our scaling
prediction, χ ∝ t2.

FIG. 6. Force vs. strain relations of a strip with (a) clamped-
clamped and (b) hinged-hinged boundary conditions, together with
typical configurations for different strains for εy = 0.10. Squares and
× symbols represent data obtained from our numerical simulations
for the forward (L to R) and backward (R to L) processes, respectively.
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shape (i.e., the fundamental buckled mode), which is supposed
to be the usual pitchfork bifurcation. Its dominant dynamics
would therefore be exponential-type, but this aspect needs to
be investigated further, in future research. The force, fx , for the
hinged-hinged case, also changes continuously until the strip is
fully stretched at εx = √

1 − (1 − εy)2 � 0.44. Furthermore,
the force responses in the reverse processes, for both cases, are
found to be almost identical to those in the forward processes;
the mechanical responses are not hysteretic. Most importantly,
in either case, there are no abrupt force changes, which is a
fundamental difference from the asymmetric case.

In snapping studies, a cylindrical section is typically sub-
jected to a point-load at its center. It appears that our system
could be viewed as one of the two sides of such a standard
system. However, this is not true for two reasons. First, in a
point-loading experiment, an asymmetric shape can develop
before snap-buckling [41,46]. Second, the point-loading is
moment-free; it is thus closer to the hinged condition. In
principle, point-loading with a clamped constraint, and con-
trolled displacement, is possible, but such a condition would
be rather artificial compared to our setup. Interestingly, in
the point-loading experiment, with controlled displacement,
a force response similar to that in Fig. 2(a) has been reported
for off-center indentation. Whereas, indentation at the center
produces a continuous force curve similar to that in Fig. 6(b)
[43]. Taken together, our present study with previous attempts
suggest that if any asymmetries in boundaries and indentation
point exist, discontinuous response in snapping will emerge. In
other words, the geometric asymmetry is used to tune the type
of bifurcation of elastic structures, independent of the material
properties and sizes. Although to elucidate the indisputable
connection between boundary asymmetries and discontinuous
responses needs further investigation, this idea may be useful
for industrial designs to rectify large and discontinuous, but
controlled, responses by purely geometrical constraints.

VI. SUMMARY

By combining experiment and theory, we studied boundary-
induced snapping of an elastic strip with one end clamped and
the other end hinged. In this setup, snapping occurs when the
hinged end becomes perpendicular to the flat bottom stage, and
then the inflection point of the elastica vanishes. Reflecting
the asymmetry of the boundary conditions, the force-strain
relation exhibits several remarkable features. The first is the
change in the direction of the horizontal force, fx , before
the snap instability. This occurs because the strip is initially
compressed and is then pulled before snapping. The second
is the discontinuous change in the forces at the onset of
the snap transition. The third is the largely hysteretic but
accurately reproducible force versus strain properties. With
the exact solutions that we established, we uncovered the
elastic energy landscape over the entire deformation process,
including snapping, and extracted the dynamical properties
of our peculiar snap-buckling system. Note that the rich
exotic mechanical behavior presented in this paper originates
purely from the asymmetry in the boundary constraints,
which could be explored in other low-dimensional elastic
systems.

In closing, we address several possible future directions
of study. Recently, new mechanical systems with emergent
functionalities (i.e., so-called mechanical metamaterials) have
been inspired by topological insulators, in which only the
surface boundaries behave as conductors [71]. Small mechan-
ically asymmetric building blocks are combined; it is now
possible to create materials with unusual order and machinelike
functionalities [72,73]. Several of the properties we report,
such as the switch between compressive and tensile loading,
the discontinuous force change upon snap-buckling, and hys-
teretic behavior, are all uniquely determined and predicted by
the externally controllable strain εy . Therefore, it would be
interesting to adopt asymmetrically constrained, but inherently
symmetric rods or strips, as metamaterial components. By
combining these asymmetrically constrained parts to form
large bulk material and scaling up the force-strain relation,
it might be possible to create a new mechanical design
controlling compressive and tensile responses.
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APPENDIX A: EXPERIMENTAL DETAILS

In this section, we explain the details of the experiments.
In Sec. A 1, we show the detailed procedure for obtaining the
force-strain curves. In Secs. A 2 and A 3, the procedures for
observing δfx and the snap-buckling dynamics are explained,
respectively.

1. Procedure for experimental measurement of ε∗
x

and force-strain curves

Before starting the force measurements, we shift the
clamped end continuously by forward (L-to-R) and backward
(R-to-L) protocols to confirm the left-right symmetry of the
system and then return the clamped end to its initial position.
We start measuring the force by moving the clamped end 1
[mm], minimum, and 10 [mm], maximum. When the clamped
end is close to the transition point or close to X = 0, we move
the clamped end by 1 [mm]. Otherwise, we move it by 10 [mm].
We observe the snap for both positive and negative X. Let
X+ > 0 and X− < 0 be the positions of the snap in the forward
(L-to-R) and backward (R-to-L) processes, respectively. We
define the zero of X as X0 ≡ (X+ + X−)/2, which is 1 [mm]
at most. By deducting the offset, X0, from the observed X+,
ε∗
x is determined as ε∗

x = (X+ − X0)/L. Note that the moving
speed is about 1 [mm/s], and we wait more than 10 [s] for
relaxation after every moving step so that the system reaches
mechanical equilibrium. The force data are recorded by a data
logger (Kyowa Dengyo, EDX10-B, EDX14-A).
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2. Procedure for experimental measurement of δ fx

We measure δfx after recording the force-strain curve for
each strip. We first move the clamped end to X � X+ to realize
the critical state before snapping. We then start recording the
force using the load cell at 100 [Hz], shifting the clamped end
by 1 [mm]. After snap-buckling occurs and the strip becomes
stationary, we stop recording the force. The force-released
onset of the snap is defined as the difference between the
maximum and minimum values in the recorded time series data
of the force. To obtain δfx for each experiment, we rescale the
data by EI/L2, which is used to obtain the force-strain curve
for each strip.

3. Procedure for observing snap-buckling dynamics

Using a high-speed camera, we record a movie showing the
onset of snap-buckling. We attach a plastic tip to the midpoint
of the strip with the horizontal prestrain, εy = 0.16. We move
the clamped stage close to the critical strain as X � X+. Then,
shifting the clamped end by 1 [mm], we record the dynamics
using the high-speed camera at 2000 fps.

APPENDIX B: THEORETICAL BASIS

We outline the derivation of our exact solution presented in
the main text. Our starting point is

ϑ̈(τ ) = −fx cos ϑ(τ ) − fy sin ϑ(τ ), (B1)

together with the boundary conditions at the top, ϑ(0) = 0, and
at the bottom, ϑ̇(1) = 0, and the constraints∫ 1

0
sin ϑ(τ )dτ = −εx,1 −

∫ 1

0
cos ϑ(τ )dτ = εy. (B2)

Let us rewrite Eq. (B1) as

φ̈(τ ) = −f sin[φ(τ )], (B3)

f ≡
√

f 2
x + f 2

y , (B4)

tan ϕ ≡ fx/fy, (B5)

together with the boundary conditions, φ(0) = ϕ and φ̇(1) = 0,
where we introduce the new angular variable,

φ(τ ) ≡ ϑ(τ ) + ϕ. (B6)

After multiplying Eq. (B3) by φ̇, we integrate Eq. (B3) from τ

to 1 as

−1

2
{φ̇(τ )}2 = f {cos φ1 − cos φ(τ )}, (B7)

where we introduce φ1 ≡ φ(1) and use φ̇(1) = 0. Equation
(B7) is further rewritten as

φ̇(τ ) = ±
√

2f [cos φ(τ ) − cos φ1], (B8)

which implies that an inflection point for the shape, τ ∗, exists
as φ̇(τ ∗) = 0. Because the strip is initially bent leftward in the
present choice of symmetry for εx = 0, we find:

φ̇(τ ) =
{−

√
2f (cos φ(τ ) − cos φ1) (0 � τ < τ ∗)√
2f (cos φ(τ ) − cos φ1) (τ ∗ � τ � 1).

(B9)

If the strip is bent in the opposite direction (rightward), we
simply need to flip the left-right symmetry as ϕ → −ϕ and
εx → −εx .

We first show the expressions for the exact solutions in the
next two subsections (Secs. B 1 and B 2). Detailed derivations
are presented in Sec. B 3. The exact results for the critical strain,
ε∗
x , or force-released snap onset, (δfx and δfy), are derived in

Secs. B 4 and B 5, respectively.
Before showing the exact solution, we define elliptic in-

tegrals [67]. The incomplete elliptic integrals of the first and
second kinds are defined as

F (φ,k) ≡
∫ φ

0

dω√
1 − k2 sin2 ω

, (B10)

E(φ,k) ≡
∫ sin φ

0

√
1 − k2t2

1 − t2
dt, (B11)

respectively. We also introduce the amplitude function, φ =
F−1(u,k) ≡ am(u,k). From Eqs. (B10) and (B11), we intro-
duce the complete elliptic integrals of the first and second kinds
as K(κ) ≡ F (π/2,κ) and E(κ) ≡ E(π/2,κ), respectively.

1. Solution with an inflection point

When the solution has an inflection point (i.e., the system
is bistable), we obtain the following two equations for two
undetermined coefficients ϕ and φ1:( −εx

1 − εy

)
= R(ϕ)

(
ux

uy

)
, (B12)

ux = −
√

2

f

√
cos ϕ − cos φ1, (B13)

uy = 2√
f

{3E(κ) + E(β,κ)} − 1, (B14)

√
f = F (β,κ) + 3K(κ), (B15)

R(ϕ) ≡
(

cos ϕ − sin ϕ

sin ϕ cos ϕ

)
. (B16)

Here, F (β,κ) and K(κ) are the incomplete and complete
elliptic integrals of the first kind, respectively. E(β,κ) and
E(κ) are the incomplete and complete elliptic integrals of the
second kind, respectively [see Eqs. (B10) and (B11) for the
definitions]. κ and β are introduced as

κ ≡ sin

(
φ1

2

)
, (B17)

β ≡ sin−1

(
sin(ϕ/2)

κ

)
, (B18)

respectively. On the basis of Eqs. (B12)–(B15), we can read-
ily determine the force-strain relation as fy = fy(εx,εy) =
f cos ϕ and fx = fx(εx,εy) = f sin ϕ, numerically. Note that
the solution of (ϕ,φ1) in the above equations exists if |εx | � ε∗

x

is satisfied, where we find φ1 = ±ϕ at εx = ±ε∗
x .

2. Solution without inflection points

For the post-snap-buckled states, |εx | > ε∗
x , we have a

unique monostable solution with τ ∗ = 0 in Eq. (B8). If we
consider the post-snap-buckled shapes with εx < 0, the sign
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appearing in Eq. (B8) is positive, and those with εx > 0 are
derived with a negative sign in Eq. (B8). Let us show the
solution for εx < 0. Note that the results for εx > 0 are derived
by considering the symmetry. Writing Eq. (B8) as

φ̇ =
√

2f (cos φ − cos φ1), (B19)

we find equations for the undetermined parameters ϕ and φ1

as ( −εx

1 − εy

)
= R(ϕ)

(
ux

uy

)
, (B20)

ux =
√

2

f

√
cos ϕ − cos φ1, (B21)

uy = −1 − 2E(β,κ) − 2E(κ)√
f

, (B22)

√
f = K(κ) − F (β,κ). (B23)

We stress again here that Eqs. (B21)–(B23) are valid for strips
without inflection points with εx < −ε∗

x . Combining the above
results, we can plot theoretically the exact force-strain relations
in the text.

3. Detailed derivation

Let us derive ux and uy for solutions with an inflection point,
as shown in Eqs. (B13), (B15), (B21)–(B23). We rewrite the
equations for the constraints [Eq. (B2)] as follows:( −εx

1 − εy

)
= R(ϕ)

(
ux

uy

)
, (B24)

with the integrals

ux ≡
∫ 1

0
dτ sin φ(τ ),uy ≡

∫ 1

0
dτ cos φ(τ ). (B25)

In integrating Eq. (B25), we need to consider the existence of
an inflection point.

a. Solutions with an inflection point

Here, we consider the solution with an inflection point.
Because an inflection point, τ ∗, exists, we divide the integration
region of Eq. (B25) into two as follows:

ux = u∗
x + u†

x,

u∗
x ≡

∫ τ ∗

0
dτ sin φ(τ ),u†

x ≡
∫ 1

τ ∗
dτ sin φ(τ ), (B26)

uy = u∗
y + u†

y,

u∗
y ≡

∫ τ ∗

0
dτ cos φ(τ ),u†

y ≡
∫ 1

τ ∗
dτ cos φ(τ ). (B27)

Let us integrate Eqs. (B26) and (B27), individually, using
Eq. (B8). First, we calculate ux :

u∗
x = − 1√

2f

∫ −φ1

ϕ

dφ√
cos φ − cos φ1

sin φ

= 1√
2f

∫ cos φ1

cos ϕ

dt
1√

t − cos φ1

= −
√

2

f

√
cos ϕ − cos φ1, (B28)

u†
x = 1√

2f

∫ φ1

−φ1

dφ√
cos φ − cos φ1

sin φ = 0. (B29)

Thus, we obtain

ux = −
√

2

f

√
cos ϕ − cos φ1. (B30)

Next, we calculate uy :

u∗
y = − 1√

2f

∫ −φ1

ϕ

dφ√
cos φ − cos φ1

cos φ

=
∫ ϕ

−φ1

1√
f κ

dφ

2

2 cos2(φ/2) − 1√
1 − k2 sin2(φ/2)

= − 1

κ
√

f
F (ϕ/2,1/κ) − 1

κ
√

f
F (φ1/2,1/κ)

+ 1√
f κ

∫ ϕ

−φ1

dφ

2

2 cos2(φ/2)√
1 − k2 sin2(φ/2)

. (B31)

We remark the following two formulas for E(β,k) and F (β,k)
with k ≡ 1/κ > 1:

∫ a

0
dω

cos2 ω

κ
√

1 − k2sin2 ω
= 1

κ

∫ sin a

0
d(sin ω)

√
1 − sin2 ω√

1 − k2sin2 ω

=
∫ sin a

κ

0
dt

√
1 − κ2t2

1 − t2

= E

(
sin−1

(
sin a

κ

)
,κ

)
, (B32)

1

κ
F (ω,1/κ) = 1

κ

∫ ω

0

dτ√
1 − sin2(τ )/κ2

=
∫ sin−1( sin ω

κ
)

0

dt√
1 − κ2 sin2(t)

= F

(
sin−1

(
sin ω

κ

)
,κ

)
. (B33)

Using Eqs. (B32) and (B33), we find the result for u∗
y :

u∗
y = 2E(β,κ) + 2E(κ) − F (β,κ) − K(κ)√

f
. (B34)

Similarly, we can push forward the calculation of u
†
y :

u†
y = 1√

2f

∫ φ1

−φ1

dφ
cos φ√

cos φ − cos φ1

=
√

2

f

∫ φ1

0
dφ

cos φ√
cos φ − cos φ1

= 4E(κ) − 2K(κ)√
f

. (B35)
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Summing Eqs. (B34) and (B35), we find

uy = 2√
f

{3E(κ) + E(β,κ)} − 1√
f

{F (β,κ) + 3K(κ)}.

(B36)

Finally, we need to write
√

f as a function of ϕ, and φ1. By
integrating Eq. (B8) in the range 0 < τ < τ ∗, we obtain√

f τ ∗ = 1

κ

∫ ϕ

−φ1

dφ

2

1√
1 − k2 sin2(φ/2)

= F (ϕ/2,1/κ)

κ
+ F (φ1/2,1/κ)

κ

= F (β,κ) + K(κ). (B37)

Furthermore, integration of Eq. (B8) in the range τ ∗ < τ < 1
reads, √

f (1 − τ ∗) = 2

κ

∫ φ1

0

dφ

2

1√
1 − k2 sin2(φ/2)

= 2F (φ1/2,1/κ)

κ

= 2K(κ). (B38)

The sum of Eqs. (B37) and (B38) is written as√
f = F (β,κ) + 3K(κ). (B39)

Equations (B24), (B30), (B36), and (B39) complete the exact
solution for clamped-hinged elastica with an inflection point
in the main text.

We remark the property of the inflection point, τ ∗. The
position of the inflection point is derived from Eqs. (B37) and
(B39):

τ ∗ = F (β,κ) + K(κ)

F (β,κ) + 3K(κ)
(B40)

is bounded by the following inequality in our parameter range,
|β| � π/2 and |κ| � 1:

0 � τ ∗ � 1

2
. (B41)

Here, equalities for τ ∗ = 0 and 1/2 hold at β = −π/2 and
π/2, respectively. Because we have chosen the strip that is
initially bent leftwards, we find that the shape with τ ∗ = 0
and 1/2 correspond, respectively, to (εx,ϑ(1)) = (−ε∗

x ,2ϕ) and
(ε∗

x ,0). Therefore, we identify the transition point for the left-
bent strip as τ ∗ = 1/2, at which the analytical structure of the
equation that allows two solutions vanishes. See Fig. 7 for the
behavior of τ ∗ as a function of εx . In contrast, we note, for
the strip bent rightward initially, τ ∗ = 0 and 1/2 respectively
correspond to (εx,ϑ(1)) = (ε∗

x , − 2ϕ) and (−ε∗
x ,0), from the

consequence of the left-right symmetry. Therefore, onset of the
snapping transition at ε∗

x , the hinged angle and the position of
the inflection point change discontinuously from (ϑ(1),τ ∗) =
(0,1/2) to (−2ϕ,0).

b. Solutions without inflection points

We derive the exact solution using Eq. (B19) in a similar
manner to that in the previous section. We calculate ux and uy

FIG. 7. τ ∗, as a function of εx , obtained from the set of exact so-
lutions, (εy = 0.10). Below ε∗

x � 0.35, τ ∗ has two solutions, whereas
the solution is unique for εx > ε∗

x .

as follows:

ux =
∫ 1

0
dτ sin φ

= 1√
2f

∫ φ1

ϕ

dφ
sin φ√

cos φ − cos φ1

=
√

2

f

√
cos ϕ − cos φ1, (B42)

uy =
∫ 1

0
dτ cos φ

= 1√
2f

∫ φ1

ϕ

dφ
2 cos2(φ/2) − 1√

cos φ − cos φ1

= −F (φ1/2,1/κ) − F (ϕ/2,1/κ)

κ
√

f
− 2E(β,κ) − 2E(κ)√

f

= F (β,κ) − K(κ) − 2(E(β,κ) − E(κ))√
f

. (B43)

Integration of Eq. (B19) from 0 to 1 reads,√
f = K(κ) − F (β,κ). (B44)

Equations (B24) and (B42)–(B44) complete the exact solution
without inflection points (i.e., the post-snap-buckled state in
the main text).

Above derived equations are valid for εx � −ε∗
x . Equations

(B24) and (B42)–(B44) smoothly connect to the solution with
an inflection point [(B24), (B30), (B36), (B39)] at εx = −ε∗

x .
Therefore, combining all equations [(B24), (B30), (B36),
(B39), and (B42)–(B44)], we can plot the force-response
curves for the strip that is initially bent leftwards. The results
for εx > 0 correspond to the blue curves in Fig. 2. We can
also plot the purple ones by exchanging left and right (i.e., by
changing εx → −εx and fx → −fx (ϕ → −ϕ) in the above
analytical results.)
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4. Critical strain for snap-buckling

The critical strain for snap-buckling in the text can be
derived from the exact solution as follows. From the discussion
of the position of the inflection point Eq. (B40), the critical
strain, ε∗

x , is realized at τ ∗ = 1/2, where the bistable solution
structure of the governing equation is lost. Physically, it occurs
when the hinged end is perpendicular to the bottom stage (i.e.,
ϑ(1) = 0.) Then, from Eqs. (B12)–(B15), with φ1 = ϕ, we
obtain the equations for the critical strain ε∗

x ,

−ε∗
x = −

(
2E(κ)

K(κ)
− 1

)
sin ϕ, (B45)

1 − εy =
(

2E(κ)

K(κ)
− 1

)
cos ϕ. (B46)

We can numerically estimate the critical strain, εx , which is
shown as a solid line in the main text, for any εy from Eqs. (B45)
and (B46). If we are interested in the small strain case εy � 1,
we can linearize Eqs. (B45) and (B46) as follows. Let us expand
E(κ)/K(κ) in terms of small κ:

2E(κ)

K(κ)
− 1 = 1 − κ2 + O(κ4)

� 1 − φ2
1

4
= 1 − ϕ2

4
. (B47)

Substituting Eq. (B47) into Eqs. (B45) and (B46), and compar-
ing both sides, we find the relations ε∗

x � ϕ and εy � 3ϕ2/4.
Thus, the critical strain is estimated as

ε∗
x �

√
4εy

3
, (B48)

which is the approximate solution in the main text.

5. Forces released at snap onset

Let us derive the magnitude of the change in forces at
the onset of snap. At snap onset, the hinged angle changes
discontinuously from ϑ(1) = 0 to ϑ(1) = −2ϕ (i.e., from
φ1 = ϕ to φ1 = −ϕ). From Eq. (B39), where we denote the
amplitude of the pre- and post-snap forces as f + and f −,
respectively, we find the following results:

√
f + = 4K(κ),

√
f − = 2K(κ). (B49)

Thus, the gap in the forces appearing at snap onset can be
written as

δfy = 16K2[sin(ϕ/2)] cos ϕ−4K2[sin(−ϕ/2)] cos(−ϕ)

= 12K2(κ) cos ϕ, (B50)

δfx = 16K2[sin(ϕ/2)] sin ϕ−{−4K2[sin(−ϕ/2)] sin(−ϕ)}
= 12K2(κ) sin ϕ, (B51)

where ϕ is the solution of Eqs. (B45) and (B46). The final
results, Eqs. (B50) and (B51), are plotted as a solid line in the
text.

We derive the results for small strain, εy � 1, from
Eqs. (B50) and (B51). Linearizing Eqs. (B45) and (B46),
we obtain ϕ � ε∗

x � √
4εy/3. Because the complete elliptic

integral, K(κ), can be expanded in terms of κ as K(κ) =
π/2 + πκ2/8 + · · · , we expand Eqs. (B50) and (B51) in terms
of εy as

δfy = 3π2

(
1 − 3

8
ϕ2

)
+ O(ϕ4)

= 3π2

(
1 − εy

2

)
+ O(ε2

y ), (B52)

δfx = 3π2ϕ + O(ϕ3)

= 2π2
√

3εy + O
(
ε3/2
y

)
, (B53)

which appear in the main text.

APPENDIX C: SIMULATION METHODS

To investigate the validity of the experimental and theo-
retical results, we adopt a discrete analog of the elastic strips
[68]. The strip is discretized into a chain of N = 30 particles.
Because we are interested in the final shape under a given
strain, we adopt the overdamped dynamics for the particles.
The particles are initially aligned in a straight line from the
hinged end, (0,0), to the clamped end, (X,Y ) = (0,L), with
sufficiently small horizontal displacement to induce initial
buckling. The clamped-end position, (X,Y ), is controlled with
sufficiently small speed to minimize the kinetic effect. First,
to realize the initial buckling of the clamped-hinged elastica,
we change the height of the clamped end to give the vertical
strain, εy ≡ 1 − Y/L. After the vertical strain is obtained, the
horizontal positions of the clamped-end particles are changed
to give the horizontal strain: εx = X/L. After snap occurs, the
reverse protocol is conducted.
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