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Anisotropic particles strengthen granular pillars under compression

Matt Harrington* and Douglas J. Durian†

Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA

(Received 27 September 2017; revised manuscript received 20 December 2017; published 11 January 2018)

We probe the effects of particle shape on the global and local behavior of a two-dimensional granular
pillar, acting as a proxy for a disordered solid, under uniaxial compression. This geometry allows for direct
measurement of global material response, as well as tracking of all individual particle trajectories. In general,
drawing connections between local structure and local dynamics can be challenging in amorphous materials due to
lower precision of atomic positions, so this study aims to elucidate such connections. We vary local interactions
by using three different particle shapes: discrete circular grains (monomers), pairs of grains bonded together
(dimers), and groups of three bonded in a triangle (trimers). We find that dimers substantially strengthen the
pillar and the degree of this effect is determined by orientational order in the initial condition. In addition, while
the three particle shapes form void regions at distinct rates, we find that anisotropies in the local amorphous
structure remain robust through the definition of a metric that quantifies packing anisotropy. Finally, we highlight
connections between local deformation rates and local structure.

DOI: 10.1103/PhysRevE.97.012904

I. INTRODUCTION

When a disordered solid is subject to a mechanical load,
various characteristics of its local structure and composi-
tion directly impact the observed response and performance.
For example, composite metallic glasses with interspersed
dendrites that arrest shear bands and cracks can counteract
the standard trade-off between material strength and fracture
toughness in brittle materials [1,2]. Other materials can fail in
a ductile fashion, in which material failure is marked by local
plastic flow and/or growth and coalescence of voids within the
bulk [3].

In general, characteristics of the local interactions between
constituent elements are critical in determining the response
of a disordered system. These descriptors can include bond
strength, dissipation, and elasticity. These considerations may
require, for instance, additional terms in the development
of a constitutive model for the disordered solid, in order to
best predict creep and the onset of failure. For example, the
Gurson-Tvergaard-Needleman (GTN) model currently serves
as a basis for constitutive modeling of ductile failure that can
incorporate either void coalescence or plastic flow [4–6]. We
would like to focus on one aspect that does not inherently
alter the interaction between material components, but can still
substantially influence behavior: particle shape.

If the shape of constituent particles (or grains) is changed,
that alone may not necessarily alter the inherent physics
of how particles interact with one another. The underlying
mechanisms of their interactions will remain, but one must
consider effects that the shapes have on contact distance,
surface curvature, and rotational frustration. Indeed, the effects
of grain shapes can be observed in a wide variety of systems,
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spanning several decades of particle sizes. These phenomena
include the toughening of disordered nanoparticle assemblies
with elongated particles [7] and colloidal packings of polygons
whose shape frustrates crystalline order [8]. On even larger
length scales, in which thermal fluctuations are negligible,
effects of particle shape become crucially important. Many
recent studies have considered the implications of grain shape
in granular flows, such as dense driven systems in which
nematic ordering can spontaneously occur [9–13], as well as
gaseous states in which random collisions impart both trans-
lational and rotational motion [14]. To better understand the
stability of packings of arbitrarily shaped particles, there has
also been interest in characterizing (near-)jamming attributes,
such as contact numbers and vibrational modes, of elongated
noncircular particles [15–20].

Recently, grain shapes have been explored as a way to
generate freestanding architectural structures [21]. Examples
include highly elongated and U-shaped particles with the capa-
bility to form geometrically constrained contacts [22–24] and
custom particle fabrication that is facilitated by evolutionary
searches for the strongest shapes under a specified load [25,26].
While an overall strength can be prescribed, stress relaxation
events, or avalanches, occur as a granular system is slowly
driven [27–33]. The distribution of sizes of these drops, defined
in terms of a global pressure or energy, often falls on a power
law with commonly observed exponents [34,35]. Coarse-
grained and depinning models have been proposed to associate
stress fluctuations with local plastic rearrangements [36,37].
Particle shape is thought to contribute to the micromechanics
of localized slip events [36], but to our knowledge has yet to
be explicitly studied within this framework.

When a granular material is slowly driven, it can behave
like a slowly deforming solid and provide a bridge to better
understanding much of the microscopic behavior within disor-
dered solids. Granular materials are, by definition, assemblies
of discrete macroscopic particles, so their constituents can
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be directly imaged in certain geometries, allowing for a full
characterization of microstructure that is not possible in other
materials. Other properties of disordered solids, such as bond
strength between component particles, can be represented
using fluid capillarity [38] or interparticle bonding with a
cured polymer [39]. In this study, we focus on altering particle
shapes, with varying amounts of circularity, that comprise a
dry granular packing.

This article is organized as follows. In Sec. II, we describe
the experimental apparatus, the granular system that is used
as a model disordered solid, the particle shapes we study,
and the techniques used to collect data on the global and
local responses of the material under uniaxial compression.
In Sec. III, we summarize the primary findings of our study.
Specifically, in Sec. III A we describe the effect of particle
shapes on the overall material strength, and in Sec. III B
we discuss stress relaxation events, or avalanches, that occur
during compression. Then, in Sec. III C, we describe how
we characterize structural anisotropies within the packings
through the adaptation of a previously defined metric for
noncircular grains. In Sec. III D we show how we quantify local
plastic strains within the system and test their relationship with
avalanches. In Sect. III E, we draw connections between local
structure and local dynamics in terms of how anistropies in
local plastic strain are correlated with structural anisotropies.
Finally, we discuss the broader implications of these findings
and motivate further study in Sec. IV.

II. MATERIALS AND METHODS

The granular system consists of bidisperse acetal (delrin)
rods with diameters 0.25 in. (6.4 mm) and 0.1875 in. (4.8 mm)
and uniform height 0.75 in. (19 mm), standing upright on an
acrylic substrate. The large and small rods are mixed with
a number ratio of 1:1. In order to alter the grain shape, we
bond individual rods together to form a composite shape that is
overall noncircular, but retains surfaces with a constant radius
of curvature. Particle shapes that are comprised of bonded,
sometimes overlapping, combinations of circles or spheres is a
common technique to explore generic grain shapes, especially
in simulations [17,18,25,40–45], so the technique used here is
another iteration of this general approach. While simulations
have been used to study the response of circular particles in
the apparatus described in this article [46], we choose to focus
on experiments to establish shape-dependent behaviors before
determining how to best incorporate material properties and
shape-dependent formulations of contact forces. From here,
arbitrary particle number, shape, and size can provide fruitful
ventures for simulation study.

The specific shapes we study in this article are monomers
(individual plastic rods), dimers (pairs of bonded rods), and
trimers (groups of three bonded rods in a triangular shape),
as shown in Fig. 1. Different particle shapes are constructed
by gluing rods together using a cyanoacrylate adhesive. The
entire fabrication procedure for a dimer is shown in Fig. 2.
A small amount of adhesive is placed near the top of a rod
standing upright on a horizontal table. Then, a second rod, also
standing upright, is brought into contact with the first. To ensure
both rods are straight, they are confined to stand within the
jaws of a vernier caliper set to the rod diameter. The adhesive

FIG. 1. Photographs of the particle shapes used in this study:
(a) monomers, (b) dimers, and (c) trimers. In (a), large and small
rods are labeled with their diameters and the height of each rod is
19 mm.

spreads down the pair of rods through capillarity, while also
curing to form a strong bond between the rods. The amount of
adhesive used is not precise, but it must be substantial enough
so that the cured bond is strong, yet limited so the adhesive
does not spread all the way down the rods, bonding them
to the table. When fully cured, the pair of rods now form
a dimer. To make a trimer, this same adhesive procedure is
repeated with a third rod brought in to form a triangle. This
type of trimer is preferred, as a linear chain of more than
two tall macroscopic rods is generally difficult to achieve by
hand with sufficient accuracy and consistency. Furthermore,
this allows us to isolate dimers as our case study in elongated
particles, while the trimers are more axially symmetric, but
with characteristic bumps. After allowing the adhesive to cure
overnight, the dimers and trimers require substantial effort to
break apart by hand. Without precisely measuring shear and/or
flexural strength, we observe that internal stresses within each
experiment never cause breakage.

Our experimental apparatus is shown in Fig. 3(a), with
its various components labeled. This is the same apparatus
used in Refs. [38,46–49] to study granular pillar deformation.
The entire apparatus lies on a horizontal tabletop, so gravity
does not directly drive or hinder the motion of grains. The
grains, all of one chosen shape, are arranged into a tall, narrow
pillar with an aspect ratio of approximately 2:1 using a rigid
frame. An initial pillar configuration is shown in Figs. 3(a)
and 3(b). Since the particle shapes have distinct area fractions
when packed randomly, we choose to keep the width of the
pillar consistent (W0 = 4.875 in. = 12.4 cm), while the initial
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FIG. 2. Schematic of the procedure for constructing dimers.
(a) A small drop of adhesive is placed near the top of a rod along its
side. A second rod is carefully moved toward the first, both standing
on a horizontal table. To ensure both rods are standing upright, they are
guided using a vernier caliper set to the rod diameter. (b) The rods are
brought nearly into contact, adhesive now adhering to both surfaces.
The callout shows a top view. (c) The adhesive spreads between the
rods due to capillarity, while simultaneously curing and forming a
strong bond. The final separation is exaggerated for clarity. In the top
view, the rods are in contact, also shown in Fig. 1(b). For trimers, a
similar procedure is repeated, adding a third rod to form a triangular
composite.

pillar height (H0 ∼ 9.75 in. = 24.8 cm) can vary slightly from
one trial to another, much less from one shape to another.
Differences in H0 between trials are especially apparent in
pillars comprised of dimers and trimers, since the particle
geometries frustrate random close-packing as opposed to the
circularly symmetric monomers. The initial area fraction of
monomers is φ = 0.823 ± 0.004; dimers, φ = 0.809 ± 0.007;
and trimers, φ = 0.805 ± 0.005. The uncertainties in φ are
determined from the range covered over all trials.

The pillar is uniaxially compressed from the top by a slowly
moving bar (vc = 0.033 in./s = 85 μm/s), while a static bar
remains in contact with the pillar bottom. As the pillar is
compressed and laterally spreads out, its interior structure
constantly evolves due to interspersed local plastic flow and the
creation and collapse of voids. These aspects are commonly
present in materials undergoing ductile failure [3], so our
apparatus can serve as a model system for this type of material
failure. An important distinction between this apparatus and
other uniaxially driven granular systems [41,50] is that we
do not restrict expansion of the system with any sort of hard
boundary or soft membrane, nor is the compression direction
along or against the direction of gravity. We performed five
trials for each type of pillar composition, with the specifics
of the microscopic initial structure varying from run to run,

FIG. 3. (a) A photograph of the apparatus from the top-down,
slightly off-line from the actual camera used to image the system. The
acquisition system and the stepper motor that drives the compression
bar are not pictured. (b) A raw unprocessed image of the granular pillar
comprised of dimers. The compression and static bars are visible in the
top and bottom of the image, respectively. The direction of gravity is
also labeled. (c) A close-up image of a neighborhood of dimers within
the interior of the pillar.

but initial dimensions remaining constant as described above.
Keeping the system dimensions consistent across shapes also
requires altering the total number of particles. N = 1000 for
monomers, N = 500 for dimers, and N = 334 for trimers. We
chose to keep the pillar size constant, rather than the discrete
particle count, in order to draw fair comparisons of material
strength and behavior. In fact, large pillars comprised of 1000
dimers or 1000 trimers would present practical challenges for
the present apparatus. Similar studies that can control for pillar
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size, particle count, and particle mass, via simulation or custom
particle fabrication, would make for interesting studies.

While the compressing bar is in motion, we acquire
4.2 megapixel (2048 × 2048) images of the pillar de-
formation using a JAI/Pulnix TM-4200CL camera with
a frame rate of 8 fps. For each image, we simultane-
ously record the forces exerted on the moving and static
bars using Omega Engineering LCEB-5 force sensors. Af-
ter acquiring images, we locate all circular particles us-
ing a circular edge-finding algorithm [49]. Figure 3(c)
demonstrates the sharp intensity contrast between the painted
caps of the particles and the background illumination. The
displacement of the compressing bar between successive
frames is about 10−3R, where R is the large monomer radius,
so linking position coordinates together into particle tracks
is a straightforward process. To suppress noise in particle
positions, we apply a Gaussian filter with a time window equal
to the time over which the compression bar moves 2

15R. This
becomes the effective time interval between filtered frames.
We also use this Gaussian smoothing to differentiate positions,
yielding approximations of instantaneous velocities.

When analyzing pillars with dimers or trimers, we group
rods together by measuring interparticle distances over time.
Since every dimer and trimer consists of equal sized rods,
we can deduce some of the combinations just from the initial
packing. Within portions of the pillar that significantly deform
over the full run (over which the bar moves about halfway down
the initial height), we usually find there is only one possible
combination to link dimers or trimers together. For regions that
do not significantly deform, especially large clusters of like-
sized particles at the bottom of the pillar, we group particles
such that interparticle distance fluctuations are minimized.
Ultimately, we can successfully group every dimer and trimer
together, particularly those that exhibit motion beyond our
noise level in calculating positions. The centroid positions
of the dimers and trimers are directly calculated from the
positions of their constituent rods, smoothed, and differentiated
as described above.

After particle tracking and the identification of monomers,
dimers, and trimers, we can measure various aspects of local
structure and motion. These shall be discussed in further detail
in Secs. III C and III D.

III. EXPERIMENTAL RESULTS

A. Material strength

As an analog to standard tests of material strength, we
measure the stress-strain response of the pillar as it is com-
pressed. Following the procedure set in Ref. [46], we quantify
the compressive stress, σ , as F/W where F is the driving force
exerted by the moving bar on the pillar and W is the current
width of the pillar in contact with the moving bar, making σ a
measurement of true stress. A rod is considered to be in contact
with the moving bar if its vertical position is within 0.25R of
the rod at the top of the pillar, where R is the large rod radius.
The pillar width W is calculated as the end-to-end horizontal
distance of these contacting rods. The forces on the static bar
are negligible for monomer runs, so to be consistent across
all trials we choose to focus on just the force actively driving

FIG. 4. Main: Stress-strain curve for a single trial of compression
of a pillar with dimers. The stress is the force applied by the moving
bar divided by the current width of the pillar, σ = F/W . The strain is
the change of the pillar height divided by the initial pillar height, γ =
�H/H0 = (H0 − H )/H0. Raw images of the pillar are interspersed
along the curve, corresponding to points when the pillar is in its initial
condition (γ = 0), at yield (γ ∼ 0.01), and undergoing long-term
deformation and failure (γ > 0.01). Inset: A zoomed-in area of the
failure portion of the stress-strain curve (outlined with a black box in
the main plot) exhibiting several avalanches. The largest avalanche in
this window is labeled S.

the pillar. As expected, both F and W tend to continuously
increase over the course of a pillar compression. While W

tends to grow steadily over the course of a compression, it
can exhibit a jump discontinuity if new particles(s) come into
or out of contact at either end of the pillar top, while new
contacting particles within the interior of the pillar top, the
primary mechanism of width increase, do not result in W

discontinuities or fluctuations. Indeed, jumps in W only occur
about five times in a single run, so it primarily behaves as
a smooth function without inducing substantial fluctuations in
stress, σ . In every plot showing stress, we quantify σ in derived
units of mgμ/D, where m and D are the mass and diameter,
respectively, of a large rod; g is the acceleration due to gravity;
and μ is the grain-substrate coefficient of friction, measured to
be 0.23 ± 0.01 [49]. Effectively, these units represent the stress
required to move an individual large monomer at constant
speed. The vertical strain γ is given by �H/H0, where H0 is
the initial height of the pillar and �H is the difference in height
between the initial pillar and the deformed system, H0 − H .

In Fig. 4, we show the stress-strain behavior for a single
compression trial of a pillar comprised of dimers and highlight
three regimes of pillar deformation: (1) an elasticlike initial
compression, which occurs over a very short strain range
(γ � 0.01), too short to confirm a linear response; (2) a yield
transition around γ ∼ 0.01 when stress reaches a maximum
value; and (3) long-term (γ � 0.01) deformation and failure
that is marked by a fairly constant material strength, with
irregular stress fluctuations. In Sec. III B we will consider
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FIG. 5. Stress-strain curves for (a) pillars comprised of randomly
packed shapes: monomers (closed circles), dimers (open circles), and
trimers (triangles), and (b) different preparation protocols of dimers:
random (open circles), horizontal (+’s), and vertical (diamonds). The
results shown in these plots are derived from five trials averaged
together. Strain is shown on a logarithmic scale, in order to highlight
both the modulus at strains below yield and the long-term material
strengths for strains well beyond yield. Before averaging, the point
of zero strain γ = 0 is adjusted to minimize contributions from
individual particle motions at the top of the pillar.

the distribution of stress drops, but for now we are motivated
by their relative size and irregular frequency to consider trial
averages as a way of better gauging the material strength of
pillars comprised of our three particle shapes.

We average five trials together to generate stress-strain
curves, shown in Fig. 5, significantly reducing the prevalence
of stress fluctuations during long-term deformation. Note
that Fig. 5 is presented with a horizontal logarithmic scale,
emphasizing low-strain behavior. Before averaging, the point
of zero strain,γ = 0, in each trial is set to minimize initial strain
readings that result from the motion of individual particles
within the top layer of particles.

We see in Fig. 5(a) that dimers exhibit more strength than
monomers, in terms of a compressive modulus that can be
estimated from the quasielastic regime, a larger yield stress,
as well as the stress required to continually deform the pillar

FIG. 6. Evolution of a two-dimensional order parameter,
〈2 cos2 θ − 1〉, for every dimer packing. θ is the angle between the
orientation of each dimer and the horizontal compressing bar and
〈·〉 is the ensemble average. The order parameter value at γ = 0
indicates the amount of order present in the initial state, either along
or perpendicular to the compression bar.

at large strains. Pillars comprised of trimers retain an average
long-term strength that is comparable to that of monomers.

Dimers are clearly the strongest shape tested in this study,
so we would like to further investigate why this is the case. The
specific question we would like to answer is: can we prepare a
pillar using dimers in a way that either strengthens the pillar to a
further degree or diminishes the apparent strengthening effect?
To do so, we note the unidirectional driving of the system,
in conjunction with the elongation of the dimers, to prepare
two types of highly ordered packings of dimers. In addition
to the disordered dimers previously measured, we prepare a
set of packings in which dimers are preferentially ordered
horizontally, along the compressing and static bars, as well as
a set of packings with dimers preferentially ordered vertically,
along the compression direction. These pillars are meticulously
created layer by layer, building upward in the horizontal case
and to the right in the vertical case, in an effort to minimize the
presence of orientational defects. The pillar dimen-
sions are kept consistent as before, which necessitates the
presence of some defects. Due to the high degree of ordering,
the initial packing fractions for ordered dimers is higher in
both cases, with φ = 0.813 ± 0.002 for horizontal dimers and
φ = 0.814 ± 0.003 for vertical dimers. We also quantify the
degree of orientational order present in the initial pillars, and
during compression, as shown in Fig. 6.

We note a marked distinction in the material response for
these three types of dimer packings, illustrated in Fig. 5(b).
Specifically, vertical dimers are substantially weaker than the
randomly packed dimers. From there, we see that horizontal
dimers reach an even higher compressive strength at γ ∼ 0.02.
The presence of noise in the low-strain behavior of the ordered
pillars should be noted. This noise can be attributed to the
presence of orientational defects, specifically those near the top
of the pillar, in individual trials. These compound the difficulty
of differentiating low-strain behavior to define a compressive
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FIG. 7. Snapshots of pillars comprised of dimers undergoing deformation at the same strain (γ ∼ 0.1). Each picture corresponds to a
different orientational packing protocol: (a) random, (b), horizontal, and (c) vertical. Note the buckling behavior in (b), as well as the smooth
pillar boundaries in (c). Full movies including overlays with D2

min can be found in the Supplemental Material [51].

modulus. Nevertheless, the pillar strength is substantially
impacted not only by the grain shape, but also the procedure
by which the packing is generated.

Looking at raw snapshots of these packing types under
compression, illustrated in Fig. 7, we also observe distinct local
behaviors as the dimers are compressed. These differences are
also apparent in full movies in the Supplemental Material [51].
The movies in the Supplemental Material include overlays with
D2

min, a metric that quantifies plastic deformation and local
rearrangement around each discrete particle [52]. We overlay
with D2

min, which is assigned to individual particles, rather than
J2, a measurement of local instantaneous strain rate (discussed
at length in Sec. III D), which is defined for regions of three
particles. J2 overlays would thus obscure dimer positions and
orientations. The horizontal dimers buckle outward, breaking
into separate columns with little slip between particles, as
shown in Fig. 7(b). Also, the shape of the pillar expands with
rough edges, the furthest outward extents lying about a quarter
of the way down the pillar. Meanwhile, the vertical dimers
deform much more gradually, shown in Fig. 7(c) with a smooth
symmetric plume right at the very top of the pillar. When
dimers are packed randomly, as in Fig. 7(a), contributions from
both types of deformation are present. The amount of structural
rupture occurring within the interior of the pillar is quantified
in Sec. III C.

We can now state that the material strength gained from
dimer packings comes directly from dimers that preferentially
lie ordered to each other, specifically interlocking along the
horizontal direction as to resist outward expansion of the pillar.
We can even see in the right side of Fig. 5(b), in conjunction
with Fig. 6, that as the random and vertical dimer pillars are
continually deformed, dimers rearrange so that those in contact
with the bar are mostly horizontal, while the strength of the
pillar continually increases. In fact, they are trending toward
the strength exhibited by pillars with horizontal dimers to begin
with. This result provides further motivation to investigate the
relationship between local structural and deformation features,
which shall be discussed in Secs. III C, III D, and III E.

B. Avalanches and stress relaxation

As previously mentioned in Sec. III A, the stress-strain
curve for each compression trial exhibits fluctuations about an

average strength during the regime of large strain. The same
trend is seen in other amorphous systems, the mechanism of
which can be owed to the buildup of local stresses, followed
by a relaxation that is associated with slip rearrangements
[27,33,34,36,37]. In this section, we consider the sizes of
stress relaxation events, or avalanches, and their frequency as a
function of particle shape. Later, in Sec. III D, we will consider
potential origins of the stress fluctuations at a more local scale.

To be clear, when we refer to avalanches and their sizes,
we are exclusively referring to continuous drops in stress, as
illustrated in Fig. 4. Avalanches are generally preceded by
a buildup of stress within the system, which the avalanche
at least partially relaxes away. It is worth noting that the
representative data in Fig. 4 includes stress accumulations
and avalanches that are roughly symmetric with respect to
strain. This aspect of symmetry is likely due to the hardness
of rods preventing elastic energy from being stored locally,
along with the lack of a confining boundary permitting the
pillar to constantly dilate globally. In each individual run, we
locate intervals over which the stress is decreasing, truncated
by peaks, valleys, and/or plateaus in σ . The dimensionless
magnitude of the stress difference of the entire interval is
defined to be S = �σ/(mgμ/D). In Fig. 8, we show the
distributions of S for the three particle shapes, measured over
all trials. The lower bound of the plotted range in S is chosen to
neglect a region where the distributions are increasing, which
coincides with avalanches that are below the noise level in our
stress measurements.

As we expect from other studies of avalanche distributions
within amorphous systems, we see that the distributions could
be described by a power law. In fact, the exponent for distri-
butions over the range S > 1 is approximately −3/2, which
has been observed in other amorphous systems [34,53] and
predicted by a coarse-grained model [36]. We should note
that, while we are estimating −3/2 as the exponent, we cannot
confidently calculate this exponent given the narrow range of
S. This is due to both the noise level in measuring stress, as
well as substrate friction, as the maximum observed value for
all avalanche sizes is determined by the force required to move
O(10) particles. Furthermore, while the applicability of power
laws in other amorphous systems motivates the conjecture of a
−3/2 power law, we find that the complementary cumulative
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FIG. 8. Distributions of avalanche sizes S = �σ/(mgμ/D)
across all trials for monomers, dimers, and trimers. An increasing
portion of the distributions, for values below the noise level of stress,
is not shown. It is difficult to assign fits given the lack of range,
although it seems all curves would fit a power law with exponent −3/2
reasonably well. We also see monomers have a smaller maximum S

compared to dimers and trimers.

distribution function of avalanche sizes can be fit over its full
range with a compressed exponential function, exp[−(S/S0)β].

While the avalanche distributions for all shapes have ap-
proximately the same rate of decay, Fig. 8 shows unique
features of the distributions. Monomers exhibit smaller
avalanches, while the distributions for dimers and trimers
are similar. This is also reflected in compressed exponential
fits for the complementary cumulative distribution function.
Monomers have β = 1.5 ± 0.2 and S0 = 0.89 ± 0.05, dimers
have β = 1.4 ± 0.2 and S0 = 2.4 ± 0.2, and trimers have
β = 1.4 ± 0.2 and S0 = 1.7 ± 0.1. In Ref. [35], increased
particle friction is observed to result in larger upper thresholds
in avalanche size. Since the bumpy concave shapes of dimers
and trimers effectively increase particle friction, we observe
a similar trend. We do not show the avalanche distributions
for the highly ordered dimer packings, as they are virtually
identical to the avalanche distribution of randomly packed
dimers.

Particle shape thus directly influences the global material
response, both in terms of averages and fluctuations of stress.
In Secs. III C, III D, and III E, we further explore the effects
of particle shape on both local structure and dynamics.

C. Local structure

While the granular pillars are initially set with consistent
dimensions, there are bound to be heterogeneities in the pack-
ing efficiency, much less additional structural heterogeneities
that are introduced as the pillar is compressed. Furthermore,
voids that form or collapse over time are crucial components
of ductile failure. To quantify these aspects of local structure,
we use the dimensionless quantity Qk , previously defined in
Ref. [48], to highlight anisotropies in the Voronoi tessellation
of the packing. In the simple case of monomers, we perform

FIG. 9. Illustration of two approaches for probing the local
structure of the pillar, using data from a packing of dimers. Voronoi
tesselation and Delaunay triangulation are drawn with respect to either
(left) individual rod positions (“Atoms”) or (right) composite particle
centroids (“Molecules”). The “molecular” approach takes the same
Voronoi tessellation produced using the “atomistic” approach and cuts
out edges drawn across dimer and trimer bonds. In both, the arrows
C point from the center of the rod or particle to the centroid of its
Voronoi cell (magnified 10×).

a radical Voronoi tessellation of the particle positions using
the software package voro++ [54], followed by a Delaunay
triangulation. Then, we define a vector field C that points from
the rod center to the centroid of its own Voronoi cell. Finally,
we define Qk for a triangle k from the divergence of this vector
field,

Qk = ∇ · Ck

Ak

〈A〉 , (1)

where Ak is the area of triangle k and 〈A〉 is the average area
of all triangles. Scaling the divergence by area sets 〈Qk〉 = 0,
with some residual contribution from the finite boundaries of
the experimental data. To minimize these boundary effects,
we ignore all triangles that lie on the boundary of the pillar.
Qk is highly correlated with relative free area fraction, where
Qk < 0 corresponds to underpacked regions, while Qk > 0
corresponds to overpacked regions. Furthermore, the distri-
bution of Qk values measured for either experimental hard
disks or simulated soft disks is nearly Gaussian and centered
at Qk = 〈Qk〉 = 0, in sharp contrast to distributions of local
free volume. The deviation from Gaussianity in the tail of Qk

indicates a surplus of underpacked particles, with both standard
deviation and skewness of Qk exhibiting kinks at the jamming
point φc [48].

Calculating Qk with the centroid positions of dimers and
trimers requires a small amount of adaptation in the method,
as performing the Voronoi tessellation of nonspherical particles
can often result in nonconvex Voronoi cells [55]. Fortunately,
given that the dimers and trimers both have circular curvature,
we can rely heavily on the initial Voronoi analysis. Starting
with the Voronoi tessellation for rods generated from voro++,
we can simply delete edges that cut across bonded particles.
This leaves a larger effective cell that now surrounds the entire
dimer pair or trimer group. A new triangular tessellation is then
computed, using knowledge of particles that share Voronoi
edges. Figure 9 illustrates the two approaches that can be
used for computing Qk for a region of dimers. While the
triangulation of dimers and trimers is no longer dual with its
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FIG. 10. Linear plot of the probability density functions of Qk ,
defined as the weighted divergence of the particle center-to-cell cen-
troid vector field in Eq. (1), derived from the “molecular” approach,
for deformed random packings of the different particle shapes. A
triangle over which Qk is calculated is considered deformed if at
least one of its constituent particles has moved at least one large
monomer radius R. A dashed line is drawn at Qk = 0, separating
underpacked (Qk < 0) and overpacked (Qk > 0). The solid line is
an ideal Gaussian curve for monomers, given the mean and standard
deviation of Qk . The semilogarithmic version of this plot is shown in
Fig. 11(b).

Voronoi diagram, this remains an effective way to determine
a packing tessellation with no gaps or overlaps. Moreover,
Fig. 10 indicates that Qk measured in this “molecular” sense
retains a Gaussian-like profile on a linear scale. When char-
acterizing local structure in the dimer and trimer packings,
we have actually found both pictures can be enlightening:
one where Qk is calculated based on individual rod positions
(“Atoms”) and one where we instead use the centroid of the
composite shape (“Molecules”).

The “atomistic” Qk , illustrated on the left side of Fig. 9,
highlights absolute areas of vacancies and has been shown to
correlate well with local free area [48]. Figure 11(a) shows
the probability density functions for Qk measured in regions
that have been driven at least one large monomer radius from
its initial position. From monomers to dimers to trimers, we
see that using larger shapes results in distinctly larger voids
during deformation. At the same time, bonded rods also allow
for additional regions that are overpacked, especially when a
triangle corresponds to a discrete trimer particle. These effects
are plainly visible by eye in the raw experimental data and are
quantified using this method of Qk measurement.

However, relative structural anisotropies are less apparent
when accounting for both the shape and orientation of the
discrete particles. While the dimers and trimers create large
voids, are they consistent with the fact that dimers and trimers
are themselves larger? Another question lies in whether sim-
ilarities in the random preparation protocol for all shapes can
be captured in a structural quantity. These questions can be
addressed by measuring the molecular Qk , illustrated on the
right side of Fig. 9, with distributions shown in Fig. 11(b).
Remarkably, despite the randomness of dimer and trimer
packings resulting in more physical void space, we see that the
Qk distributions are strikingly similar. All the distributions are

nearly Gaussian in the vicinity of Qk = 〈Qk〉 = 0 and retain
similar widths despite the manifestation of distinct global
dilation rates. The collapse of these distributions suggests that
Qk , as a metric for local packing anisotropy, may serve well
beyond characterizing local free area in packings of circles.
Rather, Qk seems to demonstrate promise to characterize local
packing structure with arbitrary particle shape, and that random
close packings of symmetric and asymmetric particles can
exhibit similar local structural fluctuations.

To quantify the collapse of Qk distributions that results from
moving from the atomistic picture to the molecular picture, we
compute the skewness and kurtosis of Qk distributions shown
in Table I. Indeed, similar values are reported for monomers
and the molecular dimers and trimers. It is also worth noting the
physical interpretations of skewness and kurtosis in the context
of Qk . Skewness provides a measurement of the asymmetry of
a distribution, while kurtosis quantifies the presence of tails,
either fat or broad relative to a Gaussian distribution. While
Qk appears near Gaussian in the linear plots shown in Fig. 10,
there are necessary deviations in its skewness and kurtosis. For
one, there is a finite limit to how closely hard particles, such as
the ones used in this study, can pack together, while void space
in underpacked regions is only restricted by the boundaries of
the system, which in this case are open. This allows a wider
accessible range in negative Qk values, resulting in a negative
skewness. Figures 10 and 11(b) illustrate this asymmetry, since
the empirical data in the left tail for monomers lies slightly
above the ideal Gaussian curve, while the right tail more closely
follows the ideal curve. In turn, the wider range of negative Qk

values requires its tail to decay slower than the Gaussian curve,
which is apparent throughout Fig. 11. Hence, the kurtosis
of Qk will be higher than that of a Gaussian. As expected,
these aspects of Qk are reflected in Table I for the collapsed
molecular distributions.

For a particular noncircular shape, Qk can also indicate
distinct structural characteristics. Figures 11(c) and 11(d) show
Qk distributions for the different dimer packings, using the
atomistic and molecular views of Qk for deformed regions.
As previously suggested in Sec. III A, horizontally ordered
dimers strengthen the pillar, while also giving way to additional
local rupture. While ordered dimers are initially packed with
similar global area fractions, Figs. 11(c) and 11(d) indicate the
formation of additional void space when dimers are initially
packed horizontally. Vertically packed dimers form voids at a
more gradual rate, while randomly packed dimers lie at a rate
between the two ordering procedures.

While the Qk distributions for different particle shapes
collapse very well in Fig. 11(b), it is worth nothing that
some deviation is seen for highly underpacked regions, where
Qk � −0.3. This kink is exacerbated in the case of horizontally
ordered dimers, shown in Fig. 11(d). To seek a dynamical
explanation for this feature, we now shift our attention to local
deformation.

D. Local dynamics

In addition to local structure, we can also quantify local
plastic strain within the pillar, another important feature of
ductile failure. In this study, we choose to quantify local
deformation by the deviatoric strain rate, J2, which describes
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FIG. 11. Semilogarithmic plots of the probability density functions of Qk , defined as the weighted divergence of the particle center-to-cell
centroid vector field in Eq. (1), for (a),(b) deformed random packings of the different particle shapes and (c),(d) deformed dimer packings
with different initial ordering protocols. The “atomistic” approach is used in (a) and (c), while the “molecular” approach is used in (b) and (d).
A triangle over which Qk is calculated is considered deformed if at least one of its constituent particles has moved at least one large monomer
radius R. In every plot, a dashed line is drawn at Qk = 0, separating underpacked (Qk < 0) and overpacked (Qk > 0). Solid lines are ideal
Gaussian curves for monomers in (a) and (b) and random dimers in (c) and (d), given the mean and standard deviation of Qk .

how the shape of a small region deforms. The procedure of
calculating J2 is as follows.

Over a triangle that is derived from particle positions
and Delaunay triangulation, one of the same triangles used
in calculating Qk , we calculate J2 using the constant strain
triangle formalism [56]. We must first note that for all results
related to J2 discussed, unless specified, we are focusing on
the molecular form of triangulation as defined in Sec. III C.
As such, we are treating each point in the triangle as discrete
particles, capable of moving independently of each other. For
the three particles that make up the triangle, we note the

TABLE I. Skewness and kurtosis of Qk distributions shown in
Figs. 11(a) and 11(b). All calculations are restricted to the range
−0.25 < Qk < 0.25, to highlight fluctuations in Qk near 〈Qk〉 = 0
and reduce the impact of low-frequency outliers. For reference, the
skewness of a Gaussian distribution is 0 and its kurtosis is 3.

Shape Skewness Kurtosis

Monomers −0.68 4.4
Dimers (Atoms) −0.36 3.3
Trimers (Atoms) −0.26 2.5
Dimers (Molecules) −0.63 4.6
Trimers (Molecules) −0.71 4.5

velocity of each particle, each having horizontal component vx

and vertical component vy . Subtracting off the average velocity
of the three particles, which is prescribed to the center of mass
of the triangle, we determine the local strain tensor e,

(
vx(x,y) − vx,CM

vy(x,y) − vy,CM

)
=

(
e11 e12

e21 e22

)(
x

y

)
, (2)

where x and y are Cartesian coordinates relative to the center
of the triangle. One way to conceptualize this formalism is
to place pins at the particle centroid locations, with some
sort of continuous triangular mesh in the middle. We can
deform the mesh by moving the pins relative to each other,
causing it to stretch, deform, rotate, or some combination
thereof. For this study, we choose not to incorporate particle
rotations, which are certainly present, into the formulation of
this strain tensor, in part because they substantially complicate
the local strain tensor. Also, Fig. 12 indicates that particle
motion within dimer and trimer pillars is primarily attributed
to translational motion, so a simple strain based on translations
alone is likely sufficient to characterize local deformations in
this study. Given that acetal rods are slippery compared to
the acrylic substrate, grain-grain friction is likely too small to
induce rotational velocities that are comparable to translational
velocities. Further studies could explicitly incorporate particle
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FIG. 12. Cumulative distribution functions of the ratio of tangen-
tial rotational velocity to translational velocity for dimers and trimers.
For each dimer, r is the diameter of one of its constitutive rods; for
each trimer, r is (1 + 2/

√
3) times the radius of one its constitutive

rods. ω is the rotational velocity of a particle at a particular time,
while v is its translational velocity at the same time. Only particles
that have moved at least one monomer radius R from its initial position
are considered. For a large majority of dimers and trimers, motion is
primarily associated with translations rather than rotations. Rotational
motion is not measured for monomers.

rotations as a component of a more complex local strain,
especially in systems of highly frictional grains.

From the empirical local strain tensor e, we deduce the
symmetric strain tensor ε,

εij = eij + eji

2
. (3)

This local linear strain tensor has a number of invariant quan-
tities that characterize the local relative motion of the grains;
for instance, the trace defines the dilation rate. We choose to
focus on the deviatoric strain rate, J2, as a measurement of the
amount of local plastic deformation,

J2 = 1
2

√
(ε11 − ε22)2 + 4ε2

12. (4)

With J2 defined, we should note that there exist other
metrics that can fill the role of quantifying local plastic
deformation in a similar fashion, e.g., D2

min [52]. For this
study, we choose to focus on J2 for a few reasons. First, as we
shall soon discuss, we would like to make direct comparisons
with stress, which is a single measurement made at each time
point. Thus, we would like to select a kinematic quantity
that can also be prescribed to a single time. By definition,
D2

min requires the choice of a substantial time interval over
which to measure plastic displacements. J2 is calculated from
velocities obtained through differentiation over a small time
interval as described in Sec. II, so it can naturally coincide
with the same time point of a stress measurement. Second,
D2

min requires the choice of an interaction cutoff length, while
J2, derived from Delaunay triangulation, requires no such
cutoff. Third, while calculated over the area surrounding a
single grain, D2

min is assigned to each individual grain. J2 is

rather assigned to a region connected to three grains, so it is a
slightly coarse-grained measurement, in line with the approach
of established avalanche models [36].

Note that J2 is a strain rate, so it has dimensions of inverse
time. J2 is thus scaled relative to the inverse time required
to compress the pillar by one large monomer radius, vc/R.
This is done for all grain shapes, which have distinct sizes
but are all undergoing the same global strain rate. For the
sake of comparisons with the global measurement of stress,
we take the ensemble average 〈J2〉 as a way to quantify the
total amount of plastic deformation throughout the system. We
exclude stationary triangles, those that have moved less than
a large monomer radius, from the ensemble average 〈J2〉. To
further confirm the utility of J2 in quantifying plastic strain,
we consider its relationship with stress fluctuations discussed
previously in Secs. III A and III B.

In Fig. 13(a), we see that peaks and troughs of σ and 〈J2〉
over the course of a single dimers trial generally correlate with
each other. We explore the relationship between σ and 〈J2〉
further in Figs. 13(b)–13(d), by plotting the two quantities
from all trials directly against each other. We see that in the
case of monomers, in Fig. 13(b), there is a general positive
correlation between the two quantities. This is indicative of
particle rearrangements within these pillars as significantly
contributing to the presence of avalanches. That is, as the
pillar is driven, stress builds up for some period of time.
These periods of large σ tend to be associated with large 〈J2〉,
suggesting that built up levels of stress are subsequently relaxed
away by particle rearrangements within the pillar. Figure 13(c)
shows that the correlation between σ and J2 for dimers is
less pronounced. In Fig. 13(d), we see that trimers do not
exhibit much of a correlation between σ and 〈J2〉. The Pearson
correlation coefficient ρ of the three sets of data shown in
Figs. 13(b)–13(d) are as follows: monomers, ρ = 0.66; dimers,
ρ = 0.33; and trimers,ρ = 0.087. Since the dimers and trimers
are incrementally more massive than the monomers, the shifts
in correlation may be due to the fact that stick-slip motion
between individual particles and the substrate becomes more
prevalent due to body friction. Still, the fact that we see
correlations for monomers, and even dimers to a degree, is
indicative that avalanches, derived from either global stress or
local strains, can be applied to systems of either symmetric or
elongated particles.

E. Structure-dynamics connections

Finally, we discuss connections that can be made between
our previous results to quantify both local structure and local
dynamics. As Qk quantifies local under- and overpacking
relative to the surrounding neighborhood of a localized region,
we can also measure the deviatoric strain rate J2 in a way to
highlight regions that are deforming relative to its surroundings
[49]. In this way, we emphasize rearrangements that are highly
localized as well as rigid areas that are adjacent to shear bands.
J2,rel, a relative deviatoric strain rate, for a given triangle
is defined by the difference of its J2 and the average of its
neighbors,

J2,rel = J2 − 〈J2,neighbors〉. (5)
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FIG. 13. (a) For the same trial of dimers as Fig. 4, a plot of both
stress σ and the average deviatoric strain rate 〈J2〉 throughout the
pillar. Note that many of the peaks and troughs of 〈J2〉 correspond
to those of σ . (b)–(d) σ plotted versus 〈J2〉 using data from all
recorded trials, demonstrating varying levels of correlation between
the global material response and local deformation profile for the
different shapes. In (b) and (c), we see a general positive correlation
for monomers and dimers, suggesting that local deformations are a
primary mechanism for stress relaxation. In (d), we see this trend is
mostly absent for trimers, suggesting that the particles are now so
large that stick-slip motion due to body friction between particles and
the substrate is contributing more to fluctuations in stress.

Neighboring triangles are defined to be those which
share at least one vertex, i.e., particle, with a given
triangle.

In Fig. 14, we show the raw bivariate histograms for values
of Qk and J2,rel, highlighting the amount of spread in J2,rel at
each value of Qk . In general, one should expect underpacked
regions are more likely to undergo strain than overpacked
regions, since a void region with open space can collapse more
easily. Meanwhile, overpacked regions are more constrained
by its neighbors, so those can be expected to be less likely
to strain. However, one must note that individual structural
metrics can be poor predictors of particle rearrangements [47].
Indeed, it is difficult to observe any trend in Fig. 14, although
a slight negative correlation between J2,rel and Qk may be
visible.

To specify an overall trend of J2,rel versus Qk , we bin
the data in Fig. 14 by intervals in Qk and take averages of
corresponding values of J2,rel to generate Fig. 15(b). Here,
the trend of J2,rel with Qk is much more apparent. The vertical
error bars represent standard deviation of the mean J2,rel within
each Qk bin. Given that bins near Qk = 0 contain O(105) data
points, these error bars are vastly suppressed compared to the
actual spread in raw data.

Indeed, we observe a negative correlation between these
two quantities, which is approximately linear in the region
around Qk = 0. This is in line with the expected trend of
how likely under- and overpacked regions are to deform. That
is, voids are readily collapsing, while constrained regions are
persisting. The linear dependence is more pronounced among
monomers, likely due to the absence of geometrical constraints
such as elongation and bumpy surfaces. However, we note two
important deviations from this general behavior that occur at
the opposite extremes in Qk .

At highly positive Qk , we see a dramatic upturn in J2,rel

for monomers and trimers, indicative of the onset of Reynolds
dilatancy [57]. The acetal rods are quite hard, so there is a
finite limit to how closely they can be packed until they must
deform locally. However, dimers do not demonstrate such a
dramatic increase, capturing the ability of many pairs of dimers
to interlock and actually form rigid structures, as demonstrated
in Fig. 7(b). The second notable deviation we see is that at
highly negative Qk values, which indicate large voids in the
packing, we see a dip in J2,rel toward zero for dimers, indicating
that the void regions that form in dimers can actually persist
for some time, unlike large voids in monomers and trimers that
readily collapse. The dip in J2,rel for discrete dimers is present
in Fig. 15(b), but is especially apparent when measured using
the atomistic approach shown in Fig. 15(a). This deviation
in the dynamical behavior of dimer molecules in Fig. 15(b)
coincides with a kink in the dimer Qk distribution shown in
Fig. 11(b) over the same highly negative Qk region, starting
near Qk ∼ −0.3.

To interpret these results, we note that highly packed regions
and large voids are actually quite interrelated. When a large
void opens up in the packing, for any particle shape, it is
always surrounded by a ring of tightly packed grains. As such,
the persistence of a void region requires similar persistence of
neighboring overpacked regions.
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FIG. 14. Bivariate histograms of J2,rel, defined in Eq. (5), versus Qk for (a) monomers, (b) dimers, and (c) trimers. The plots are colored by
the logarithm (base 10) of counts within each bin.

FIG. 15. Binned averages of J2,rel versus Qk for all particle shapes
as measured in (a) “atoms” and (b) “molecules.” The error bars are
standard errors of the mean of J2,rel values within each Qk bin.
In general, there is a negative correlation between the two, aside
from dilatancy effects at maximally packed regions (max Qk > 0)
for monomers and trimers. However, dimers do not exhibit this
dilatancy effect, while regions of dimers that are highly underpacked
[Qk � −1.0 in (a), Qk � −0.3 in (b)] show a lower likelihood to
deform compared to monomers and trimers.

IV. DISCUSSION

In this article, we presented an experimental study into
how a granular pillar, acting as a model disordered solid,
deforms under uniaxial compression with varying particle
shapes created from bonded groups of circular rods. We see that
dimers constitute the strongest pillars, the additional strength
originating from dimers that align and interlock perpendicular
to the compression direction. The capability of horizontally
oriented dimers to bear substantial loads can be seen in pillars in
which the initial configuration contains dimers that are prefer-
entially ordered horizontally. While dimers are clearly capable
of interlocking as a form of interparticle friction, it would
be interesting to investigate elongated convex shapes, such as
ellipses, to determine whether pillar strengthening, in addition
to other results presented, can be reproduced regardless of
convexity. For example, simulated systems with a similar
geometry have seen increased material strength that results
from increased contact area yielding additional sliding contacts
[58], so it would be informative to perform experimental tests.
Furthermore, when convex shapes are used, perhaps rotational
frustration will play a larger role in determining the response
of the pillar.

As is the case in other driven amorphous systems, the stress
response of our granular pillars exhibits stress relaxations, or
avalanches, over time. Furthermore, we see that particle shape
does not affect the exponent of the power-law distribution that
tends to be representative of avalanche sizes within a wide
range of amorphous systems. We do see that the more frictional
shapes, dimers and trimers, allow for larger avalanches. While
the local mechanisms for avalanches are seemingly unaffected,
particle shapes do affect the local threshold stress that precedes
local deformation, possibly by way of increased interparticle
friction for our concave shapes.

We also characterize local structure within the pillar using
the previously defined structure metric Qk [48] to highlight
local packing anisotropies, which manifest as both voids
and compacted regions. When Qk is computed based on
the positions of composite dimers or trimers, rather than
component circular rods, we see that the Qk metric re-
tains its Gaussian-like characteristic. This indicates promise
in the utility of Qk as a randomly distributed measure of
local free area in disordered packings of arbitrary particle
shape and size. Convex shapes would also prove to be a

012904-12



ANISOTROPIC PARTICLES STRENGTHEN GRANULAR … PHYSICAL REVIEW E 97, 012904 (2018)

valuable test for Qk , since Voronoi tessellation would require
curved facets and a more complex computation of local free
area [55].

Finally, we measure local strain rates within the pillar
and draw correlations with local structural anisotropies. For
all shapes we note a general average trend that underpacked
regions tend to be more likely to rearrange or undergo strain.
Meanwhile, an overpacked region is less likely, on average, to
deform, up to the limit where maximally packed grains must
undergo dilatancy [57]. While this trend is generally true for
all shapes, there is a clear deviation for highly underpacked
dimers, which are not as likely to deform. This feature captures
the observation that dimers can readily form voids that remain
even for large strains. We expect that the aggregation of local
rigidity can also play a key role in the global strengthening of
the pillar.

Using some of the techniques described in this article, in
conjunction with the machine-learning approach introduced in
Ref. [47], we are interested in pursuing studies that further con-
nect local structural defects with particle-scale rearrangements
of asymmetric particles. A probabilistic description of the
likelihood of a region within a material to fail, in conjunction
with structure functions that account for grain shape, may then
illuminate strategies to prevent vulnerable local structures from
forming in a wide range of disordered solids. While this study

focuses mostly on particle trajectories and local structural fea-
tures, further studies that include force measurements between
grains would elucidate local stress capacities and add another
consideration that influences whether a region is likely to
deform locally. Furthermore, measuring forces between grains
would allow for direct experimental comparisons to established
models of ductile failure, with uniquely direct knowledge of
the material microstructure. As mentioned in Sec. I, ductile
failure occurs due to local plastic flow and/or the growth and
coalescence of voids [3], both of which are present in the
deformation of our pillars. Ductile failure can be modeled
using the constitutive GTN model [4–6] and modifications
thereof. However, these models are governed by a balance
between locally applied stresses and yield stresses, both of
which are currently inaccessible in the present study. Still,
these prospective studies show promise for a more thorough
understanding of material failure in disordered solids, and
can illuminate methods for mitigating or avoiding catastrophic
failure events.
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