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Simulations of a polydispersed two-dimensional silo were performed using molecular dynamics, with different
numbers of grains reaching up to 64 000, verifying numerically the model derived by Janssen and also the main
assumption that the walls carry part of the weight due to the static friction between grains with themselves and
those with the silo’s walls. We vary the friction coefficient, the radii dispersity, the silo width, and the size of
grains. We find that the Janssen’s model becomes less relevant as the the silo width increases since the behavior
of the stresses becomes more hydrostatic. Likewise, we get the normal and tangential stress distribution on the
walls evidencing the existence of points of maximum stress. We also obtained the stress matrix with which we
observe zones of concentration of load, located always at a height around two thirds of the granular columns.
Finally, we observe that the size of the grains affects the distribution of stresses, increasing the weight on the
bottom and reducing the normal stress on the walls, as the grains are made smaller (for the same total mass of
the granulate), giving again a more hydrostatic and therefore less Janssen-type behavior for the weight of the
column.
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I. INTRODUCTION

Many industrial processes require storing bulk solids
(grains) and the containers used for their storage are called
silos. When a silo fails, it can be devastating [1]. The design of
silos requires a depth analysis of the grain-silo system, there-
fore, the estimation of stresses is critical to their design. For
a granular system, the intergrain forces are entirely classical,
consisting of contact force. Stress chains, stable arcs, and voids
are generated in a silo, so that a vertical load may generate a
significant horizontal component [2,3]. Contrary to the normal
hydrostatic situation, the pressure at the base of the silo does
not increase indefinitely as the height of the material inside it
is increased. The pressure at the bottom saturates at a certain
height. The first to study this phenomenon was Roberts in 1884;
he noted that the pressure at the bottom ceases to increase
when the height of the granular column is twice the diameter
of the inscribed circle in the base. In 1895, the German engineer
Janssen proposed a model describing the redirection of forces
toward the walls. He derived the equivalent of the barometric
formula for granular material from the main assumption that
the walls carry part of the weight [4,5]. The model rests on
three principles:

(i) The medium is treated as though it was continuous.
(ii) A vertical stress applied to the granular material auto-

matically generates a proportional horizontal stress such that
σh = Kσv .

(iii) The frictional force between the particles and the walls
is at the point of Coulomb failure: Fs = μwFn, where Fs and Fn

are the magnitudes of the tangential friction force and normal
force at the wall, respectively, with static friction coefficient
grain-wall μw.

The Janssen’s model predicts the vertical stress σzz at the
bottom in a two-dimensional grains system with bulk density

ρb in a silo of width L as

σ Jan
zz = ρbgL

2μwK
(1 − e−2μwKz/L), (1)

where g is the gravitational acceleration and z is the depth
measurement, starting from the upper surface. Currently, sev-
eral studies have explored the limits of the Janssen’s model:
Vanel et al. [6] reported precise and reproducible measurement
on the static pressure at the bottom of a granular column,
showing the limit of the classical Janssen’s model and making
a simple extension by introducing an effective hydrostatic zone
in the upper part of the granular column. On the other hand,
de Gennes [7] mentioned that although Janssen proposed a
constant ratio between horizontal and vertical stress, σrr =
Kσzz in cylindrical coordinates, a granular system in certain
states of compaction will show a resistance to compression
measured by a macroscopic bulk modulus K (which is the
same K that appears in Janssen’s formula); since the forces
are mediated by small contact regions between two adjacent
grains and the contact areas increase with pressure, K will
increase with pressure. As the material in a silo is under
compression everywhere, in those situations the granular
medium may be described as a quasielastic medium where
one gets K = σp/(1 − σp) with σp the Poisson ratio of the
material. In a different approach, Vanel et al. [8] mentioned
a simple hyperbolic model (called “oriented stress linearity”)
giving a fundamental role to the network of force chains; this
model considers σrr = η1σzz + η2σrz with η1,2 depending of
the orientation of the force chains.

The friction coefficient between grains and walls is a
decisive parameter in the Janssen’s model. Landry et al. [9]
studied granular packing using large-scale discrete element
computer simulations in two- and three-dimensional domains,
showing the effective hydrostatic zone and finding that the
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interior of the packing is far from the Coulomb failure, while
the forces at the walls are close to it. Bertho et al. [10] reported
measurements at the bottom of granular packings inside a
vertical tube in relative motion, showing that the grain packing
reaches a dynamical equilibrium independently of the initial
state and of the relative velocity with respect to the walls. Also,
a state of nonhomogeneous friction fully characterized by a
generalized frictional coefficient dependent of the depth μ(z)
has been studied in [11].

The most difficult parameter to test in the Janssen’s model
is the factor K (known as the coefficient of earth pressure at
rest “K0” in geotechnical field); the dependence of Janssen’s
factor on the particle characteristics is mainly unknown. In
practice, the Jaky’s equation is the most widely used to estimate
K , relating it with the effective internal friction angle φ′ as
K = 1 − sin φ′; this definition implies that K is unique for
each type of granular material and independent of the initial
state; nevertheless, this equality fails in certain situations. Lee
et al. [12] measured K for sand particles and glass beads under
various conditions and found that denser sand showed lower K

values, that they attributed to the development of strong force
chains in the vertical direction, which leads to lower degrees of
stress transmission in the horizontal direction. They also tested
the effect of the particle shape and found that Jaky’s equation
was valid for uniformly round glass beads but not for sand
(irregular shape). The most popular method of experimental
determination of K is the uniaxial compression test, which has
been used to measure the ratio of lateral to vertical pressure
of different cereal grains. For these experiments, K ranged
from 0.37 to 0.74 [13]. While K is expected to range from 0
to 1, values larger than 1 have been found. In [14], a measure
of the pressure at the bottom for different amounts of glass
spheres in a smooth Perplex column was performed. The
authors’ fit is in agreement with the Janssen approach; they
considered a friction coefficient of 0.13 between glass-Perplex
and found K = 1.7. Numerical simulations have allowed to
studyK to grain level; Wiącek et al. [15] showed that the degree
of polydispersity of a granular assembly determines strongly
the average coordination number (number of contacts per
particle), however, the macromechanical response to applied
compressive pressure depends only slightly on particle size
heterogeneity. Lopera et al. [16] evidenced the dependency
of K with void ratio; K increases as void ratio increases.
Similar observations were reported by Gu et al. [17]; they also
found that K decreases as the coordination number increases
and reveled that the particle rearrangement is negligible when
the vertical stress approaches the maximum value. Recently,
Khalili et al. [18] studied one-dimensional compression of
granular materials with systems prepared in both isotropic
and anisotropic configurations, differing in solid fraction and
coordination number. They showed that K depends on the
initial state of the granular assembly: it is related to the
evolution of internal variables and it may exceed the value
1 in unloading.

In this work, we investigate the behavior of K when the
friction coefficient, polydispersity, size of silo, and size of
grains are varied. The silo’s bottom was slowly moved down,
with three purposes: (1) to simulate the experiments in [10],
(2) to use the fact that the frictional forces with the walls are
mobilized and demobilized from time to time, changing the

history of the system and increasing the statistics, and (3)
to drive the granulate to be close to the point of Coulomb
failure, improving the contact between Janssen’s model and
the simulation. Also, we study the large bottom limit of the
silo, which for a given grain size may begin to show some
quasihydrostatic effects. Finally, we compare the effect of
varying the grain average radius keeping the size of silo with
that of varying the size of silo keeping the grain average radius,
finding some unexpected results.

II. SIMULATION METHOD

The numerical simulation was performed with codes written
in CUDA-C and using molecular dynamics, including the
effects of the static friction via the Cundall-Strack approx-
imation [19,20] and a modified velocity-Verlet algorithm to
integrate the motion equations. A two-dimensional system
was configured, simulating different numbers of grains as
disks with three degrees of freedom (two translational and
one rotational), and radius Rα = Rave + a�R, where Rave is
the average radius, �R is the maximum fluctuation, and a

is a random number chosen between −1 and 1 with uniform
distribution. The container was rectangular with adjustable
width and indefinite height, the walls (perfectly rigid) obey
the same rules of interaction as the disks of the system.

The contact force between a disk α and a disk β is
decomposed into normal and tangential components Fαβ =
Fn + Fs . The normal force is described by a spring-dashpot
model considering that the disks experience a relative normal
compression in the vicinity of contact point given by

ξ = max(0,Rα + Rβ − |rβ − rα|), (2)

and the magnitude of the normal force is defined as

Fn = min(0, − knξ − γnξ̇ ), (3)

where kn and γn are elastic and viscoelastic constants, respec-
tively. It should be noticed that the real life realization of the
two-dimensional model used here implies an aggregate of short
parallel cylinders (for example, coins between two close flat
boundaries), which makes quite cumbersome to implement a
more realistic contact force; from the point of view of elastic
theory, this is a Hertz-type force. For the parallel contact
between two cylinders, see [21].

The tangential component is due to dry frictional forces
between disks that include a cinematic friction and a static
friction. The cinematic friction is proportional to the normal
force as μFn. To implement the static friction, we used the
Cundall-Strack approach, where it is assumed that it can be
represented by a stiff spring whose elongation is given by
the tangential displacement ζ accumulated from the instant
of contact t0:

ζ =
∫ t

t0

vs(t
′)�[μFn/ks − |ζ (t)|]dt ′, (4)

where ks is elastic constant, and the Heaviside function is used
to control the growth of ζ [20]. Following the spring-dashpot
model, the magnitude of the tangential force can be defined as

Fs = −min(|ksζ + γs ζ̇ |,|μFn|)sgn(ζ ), (5)
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with viscoelastic constant γs . We configure the viscoelastic and
elastic constants, respectively, as

γn = 1

5
γs = −mave log en

tcoll
, (6)

kn = ks = mave

2

(
π2

t2
coll

+ γ 2
n

m2
ave

)
, (7)

where mave = ρπR2
ave is the average disk mass with density ρ,

en is the normal restitution constant, and tcoll is the collision
time between two disks, both for typical situations [22]. The
simulations were run with fixed physical parameters: ρ =
4.0 g/cm2, tcoll = 10−4 s, and en = 0.5.

To integrate the motion equations, we used the velocity-
Verlet algorithm with a predictor-corrector modification, in-
troduced to account for the velocity dependence of the force.
The global form is

r(t + dt) = r(t) + v(t)dt + 1

2
a(t)dt2,

vp(t + dt) = v(t) + a(t)dt,
(8)

a(t + dt) = 1

M
F(r(t + dt),vp(t + dt)),

v(t + dt) = vp(t) + 1

2
[a(t + dt) − a(t)]dt,

where r , v, a, F are position, velocity, acceleration, and force
vectors, respectively, and M is the mass or inertia moment
of a particle [23]. The time step used in the simulations was
dt = tcoll/150.

The Janssen’s model assumed that the frictional force
between the particles and the wall are at the point of Coulomb
failure. In this work, the base of the silo was slowly moved
downward with velocity vb = 0.001

√
4gRave to mobilize the

frictional forces between grains and walls [10]; the process
ends up generating occasional internal avalanches, which
allows us to study the particle-wall interaction at all stages
before Coulomb failure.

Although for the practical design of silos the most important
part is the stress (in particular, normal stress) on the walls, it
is also interesting to study the internal distribution of stresses.
In the simulations, the stress tensor was defined as [24]

σij = 1

A

∑
Cαβ∈A

F
Cαβ

i b
Cαβ

j , (9)

where the sum is performed over the contact points Cαβ inside
a previously defined cell of area A (large enough to fit 20
cells across the width of the silo), FCαβ is the interaction force
between the grains α-β in Cαβ , bCαβ = rα − rβ is the vector
connecting the centers of the grains α-β, and the subscripts i

and j indicate Cartesian components [25]. For internal stress
considerations, the contact wall-grain was considered as two
grains of the same size in contact with each other.

III. DESCRIPTION OF THE TESTS

The silo width, the friction coefficient, and the dispersity
radius were varied for each simulation. The initial positions
were in an hexagonal mesh with a little more than one
maximum diameter of distance between centers of the grains

to avoid the overlapping of grains; the radii had a uniform
and random dispersion; each grain had an initial velocity
v0 = 1.0 cm/s in random direction. The grains fall by gravity
towards a static base; after some time, when the grains are
static, the base is slowly moved downward. The movement of
the base tends to eliminate much of the influence of the initial
condition, due to internal avalanches.

To test the algorithms, a static silo was run and the kinetic
energy was obtained. After ∼106 time steps, the total kinetic
energy decayed to ∼10−19 J, which compared to the scale of
kinetic energy∼10−4 J (one particle falling by gravity a distance
of one diameter) can be considered zero. The use of variables
with double precision was necessary to obtain these values.

In the first series of simulations, we considered a silo width
L = 20 cm, grains with Rave = 0.5 cm and �R = 0.10 cm.
The friction coefficients grain-grain and wall-grain were the
same, μw = μ, and for this series we tested the values μ =
0.2, 0.4, 0.6, and 0.8. The simulations were run with different
numbers of grains, reaching up to 4000 in steps of 200, using
9 × 106 time steps. Other simulations were performed in the
same way but with a fixed friction coefficient μ = 0.6 and
�R = 0.10, 0.20, 0.25, and 0.30 cm.

The next series of simulations was performed with silo
widths L = 40, 60, and 80 cm, friction coefficient μ = 0.6,
�R = 0.10, Rave = 0.5 cm, and the same type of initial
conditions. For the simulations of width L = 40 cm, the
maximum number of the grains reached was 16 000 in steps of
800, using 12 × 106 time steps. For L = 60 cm, the maximum
number of grains reached was 36 000 in steps of 1800, using
15 × 106 time steps. For L = 80 cm, the maximum number
of grains reached was 64 000 grains in steps of 3200, using
18 × 106 time steps.

Finally, a series of simulations were performed with friction
coefficient and time steps same as the previous and the total
mass was kept fixed. The average radii were varied to Rave =
0.5, 0.25, 0.167, and 0.125, for a maximum number of grains
equal to 4000, 16 000, 36 000, and 64 000 grains, respectively.
All these simulations kept a 20% dispersity of the radii.

FIG. 1. Force chains in silos with 4000 grains (left) and 8000
grains (right). Here, we use μ = 0.6.
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FIG. 2. Forces on the lateral walls and base of the silo as a function
of time, starting from the moment when the base starts to slide down.
This is a typical behavior of forces for 1600 grains and L = 20 cm.
A zoom view of the peaks due to internal avalanches is displayed.
We can observe that the peaks in the tangential force on the walls
are synchronized to the normal force on the bottom, although with
different sign. Notice that in general the tangential force in the left
and right walls is close but different, and that the avalanches affect
both sides of the silo simultaneously.

The simulations were performed on a cluster computer with
GPU acceleration using graphic cards NVIDIA Tesla K20 and
K40. A typical simulation with 64 000 grains and 18 × 106

time steps takes ∼24 h. The simulations were observed with the
open visualization tool OVITO [26,27], where the force chains
can be seen. An example is displayed in Fig. 1.

IV. RESULTS

Each simulation was run 16 times with different random
initial velocities and radii distribution, and we collected the
normal and tangential force on the walls, the normal force on
the base, the time and height distribution of forces over the
wall, and the internal stress matrix of the granular column. In
Fig. 2 we show the forces on the lateral walls and base of the silo
starting when the base starts to slide down. The tangential force
on the walls already exceeds the normal force on the bottom
for one simulation of 1600 grains. This indicates that most of
the weight of the granular column is carried by the walls. The
forces are in phase and it should be noted that well defined
peaks appear from time to time. The downward motion of the
base induces internal avalanches, and therefore the granular
column is subjected to a compression-decompression cycle.
Notice that the weight carried by the base reaches the saturation
(even moving downward) and is smaller than the saturation
of the weight on the static base (that is, at beginning of the
simulations); this confirms the experimental measurements in
[10]. It should be noticed, however, that the resolution achieved
in the experiments does not seem to be enough to show the
internal avalanches.

After a transient time, the normal stress on the base of the
silo was averaged and fitted to a modified Janssen’s model with
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FIG. 3. Vertical stress σzz on the bottom for a silo of width L =
20 cm, with different values of friction coefficient μ. The points are
averages over 16 runs. The lines are the fits to the Janssen’s model. A
perfect hydrostatic behavior can be observed when there is no friction
(μ = 0.0). Notice, however, in Table I that α becomes clearly smaller
than 1 for larger values of μ. Full fit data in Table I.

the free parameter K and a parameter of proportionality α, such
that σzz = ασ Jan

zz (with α = 1 we have the original Janssen’s
model). The two-dimensional bulk density was calculated with
the total mass of the grains and the area of the final granular col-
umn, obtaining an average value of ρb = 3.23 ± 0.02 g/cm2.
For lower values of friction coefficient, higher values of the
dispersity of the radii or larger bases, we obtained slightly
higher values of bulk density.

TABLE I. Fit parameters for the simulated silos.

Parameters of simulation K α

L = 20 cm; �R = 0.1 cm
μ = 0.10 0.92 ± 0.01 1.00 ± 0.01

0.15 0.87 ± 0.01 0.99 ± 0.01
0.20 0.86 ± 0.01 1.00 ± 0.01
0.40 0.66 ± 0.01 0.95 ± 0.02
0.60 0.46 ± 0.01 0.91 ± 0.02
0.80 0.39 ± 0.01 0.94 ± 0.03

L = 20 cm; μ = 0.6
�R = 0.10 cm 0.46 ± 0.01 0.91 ± 0.02

0.20 cm 0.55 ± 0.02 0.99 ± 0.03
0.25 cm 0.53 ± 0.02 0.95 ± 0.03
0.30 cm 0.49 ± 0.03 0.88 ± 0.05

�R = 0.10 cm; μ = 0.6
L = 20 cm 0.46 ± 0.01 0.91 ± 0.02

40 cm 0.36 ± 0.01 0.87 ± 0.02
60 cm 0.24 ± 0.01 0.80 ± 0.02
80 cm 0.16 ± 0.01 0.72 ± 0.02

L = 20 cm; μ = 0.6
R = 0.500 ± 0.100 cm 0.46 ± 0.01 0.91 ± 0.02

0.250 ± 0.050 cm 0.35 ± 0.02 0.84 ± 0.03
0.167 ± 0.033 cm 0.19 ± 0.01 0.71 ± 0.03
0.125 ± 0.025 cm 0.17 ± 0.01 0.72 ± 0.02
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FIG. 4. Vertical stress σzz on the bottom for a silo of width L =
20 cm, with μ = 0.6, and different values of dispersity of the radii.
The points are averages over 16 runs. The lines are the fits to the
Janssen’s model. The granular columns for larger �R are a bit higher
than for smaller �R, although their bulk densities are similar. We
obtained similar fits for larger dispersity of radii; the smallest �R has
a weight of saturation a bit higher. Full fit data in Table I.

A. Varying the friction coefficient

Figure 3 shows the vertical stress σzz for different friction
coefficients, where the Janssen profile can be clearly noted.
Due to the fact that the walls carry part of the weight by
frictional forces, systems with lower friction coefficient reach
a saturation stress greater than the systems with higher friction
coefficients. Also, we can observe the inverse relation between
the saturation of vertical stress and the friction coefficient,
although for values of friction coefficient greater than 0.5, the
saturation value of vertical stress does not decrease signifi-
cantly.

Table I shows the fit parameters obtained for the Janssen’s
model. The α parameter is close to one, which indicates that
the Janssen’s predictions for the vertical stress are acceptable
even for a silo with a slowly moving bottom. The K parameter,
which represents the deflection of vertical to horizontal stress,
varies and becomes smaller with a greater friction coefficient.
These results are in agreement with the expected limits of
K; the system with μ = 0.0 has a similar behavior to a
liquid where the horizontal and vertical pressures are the same
(Pascal’s principle).

B. Varying the dispersity of radii

The vertical stresses σzz at the bottom for different dis-
persity of radii are displayed in Fig. 4. This change has
no noticeable effect on the σzz profile, and Janssen’s model
fits well the averaged data of the simulations. This suggests
that the Janssen’s model is independent of the dispersity of
the radii. It has been reported that the force chain length
appears to be independent of the degree of polydispersity
[28]. It is clear, however, that small dispersities may lead to
crystallization, which could in principle give origin to different
results. We obtained the scalar order parameter for a sixfold
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FIG. 5. Graphic for σzz/L as a function of the aspect ratio z/L

of the column, where σzz is the vertical stress on the bottom for silos
with μ = 0.6 and different widths. The points are averages over 16
runs. The lines are the fits to the Janssen’s model. This vertical stress
in the bottom does not reach saturation for large values of L, even
for columns with aspect ratio as large as 10. In general, the behavior
becomes more hydrostatic as L grows. Full fit data in Table I.

symmetry ψ6 = |〈ei6θc 〉c|, and the average is taken over all
contact directions θc in the neighborhood of a reference grain;
the value of ψ6 is 0.2 for smaller systems and decreases to
0.01 for larger systems, implying an almost complete lack of
crystallinity in the column. The downward motion of the base
tends to break the order in the silo.

Table I shows the fit parameters for different dispersity of
radii. The system with greater dispersity of radii has a slightly
larger K . If we consider the slight increase of the bulk density
for higher values of �R, then these results disagree with

0

1

2

3

4

0 50 100 150 200

97

98

99

100

101

0 40 80 120 160 200

σ
z
z

at
th

e
b
ot

to
m

(N
/c

m
)

Base (cm)

Normal stress at the bottom
Hydrostatic behavior

H
ei

gh
t

(c
m

)

Base (cm)

Average height

FIG. 6. Normal stress σzz at the bottom for silos with different
bases but the same W/L ratio (W : weight, L: base size). In the inset
we show the behavior of the column height for growing size of the base
of the silo: for larger bases, some rearrangement of the disks reduces
slightly this height. The solid line is the fit of Janssen’s model with
α = 1, K = 0.45 ± 0.01 and we used an average height of 98.7 cm.
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FIG. 7. (a) Normal and (b) tangential stress distributions on the
walls, for different silo widths and keeping the aspect ratio fixed. The
data were smoothed with Gnuplot using the “acsplines” option, where
the standard errors of the data were used as smoothing weight. In (a),
for larger silos (L = 60 and 80 cm) notice the quasilinear behavior
on the upper half of the silo, similar to hydrostatic pressures (black
dashed lines obtained using σn = ρbgz), confirming [6]. Notice in (b)
the presence of negative tangential stress near the top of the column:
there are related to the fact that on the bottom slides down, the walls
“pull up” on the grains. Near the bottom, the weight of the column
cancels this effect. In general, tangential stresses in the upper half of
the silo are close to zero, confirming the observation of hydrostaticity.

[12,16], although the changes in bulk density are too small
to imply an important difference.

C. Varying the silo width

In Fig. 5 we show σzz/L as a function of the aspect ratio z/L

of the column for silos with different width. When this quantity
increases, the Janssen’s model starts to lose relevance and
the force propagation is decreased in the horizontal direction.
Although the aspect ratio height to width is kept equal for all

FIG. 8. Internal (a) normal and (b) tangential stress distributions
for silos with 4000, 16 000, 36 000, and 64 000 grains keeping the
aspect ratio fixed. The graphics are averages taken over 16 runs and
normalized with the maximum values found in each case. Notice that
for larger silos with aspect ratio fixed, the maximum normal stress
appears at the center in the horizontal direction, and around a depth of
∼2/3z. High tangential stress also tends to appear in chains, but small
and mostly linear, forming an acute angle with the walls, similar to a
herringbone pattern.
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FIG. 9. Histograms of internal (a) normal and (b) tangential stress distributions along the horizontal width for four silos with z/L = 10. The
first quintile corresponds to the bottom and the fifth quintile to the upper part. Notice how, as L grows, the internal normal stress concentrates
around the center, in particular for grains in the second and third quintiles. For large L the system displays an inversion in the direction of the
tangential stress since in the two lower quintiles this quantity goes from positive to negative going from left to right, but for the three higher
quintiles the little variation one finds goes in the opposite direction.

systems, the silos with larger bases do not reach the saturation
of vertical stress. As shown in Fig. 3, when the width increases
(even with the aspect ratio z/L kept), the pressure at the
bottom tends to a hydrostatic behavior. This indicates that for

larger systems the friction at walls plays a minor role for the
determination of the pressure at bottom.

Table I shows the fit parameters for different silo widths.
When the size of the base increases, the parameter K decreases
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quickly, which suggests that the stress chains are not long
enough to reach the walls and form stable arcs. The α

parameter, as well as K , decreases when the size of the base
increases. Since α is not included in the original model, its
getting away from 1 can be thought as a failure of the model.
On the other hand, a decrement in K and the general behavior
observed in Fig. 5 are within the bounds of consistency of the
model. However, the results indicate that for larger bases it
becomes difficult for the model to fit the data.

In order to observe the behavior of the pressure at bottom
when the width of the silo is increasing, in Fig. 6 we show
simulations with the same W/L ratio, when W is the weight
of the material. In principle, the pressure at bottom tends to a
hydrostatic behavior with larger bases since the borders lose
relevance. For larger bases, the friction between walls and
grains is relevant only for narrow strips close to the walls.
For this particular test, the Janssen’s model fits quite well the
average data with values α = 1 and K = 0.45 ± 0.01.

The stress distribution on the walls was obtained by averag-
ing several histograms generated for each time step. In Fig. 7
we show the normal and tangential stress distributions for silos
of different sizes. For the protocol followed here, the maximum
normal stress is around 2

3 of the column height, measured from
above, as can be clearly observed for the system with a large
number of grains (L = 80 cm). We can see that near the surface
of the silo the tangential stress changes direction (negative
zone); this is associated to our moving-down-bottom protocol.
The tangential stress is greater near the base, as expected from
the fact that much of the weight of the granular column is
carried by the lower half of the silo’s walls. If we observe the
graphics in Fig. 7, we can note that Janssen’s model is not
applicable in the upper half of the silo: in that zone, the normal
stress on the walls has a hydrostatic behavior and the tangential
stress is irrelevant. In the lower half of the silo, the tangential
stress distribution tends to be homogenized while the normal
stress distribution decreases; this suggests that K changes with
the depth, that is, K = K(z), at least for the larger systems.

To study the behavior of internal stress in the silos, we
got the full stress tensor. Figure 8 shows the internal normal
stress distributions (hydrostatic pressure) obtained using as a
measure the quantity (σxx + σzz)/2 and the internal tangential
stress distributions obtained using as a measure the quantity
(σxz + σzx)/2. The graphics are normalized with the maximum
values found in each case, which are, left to right, 3.8, 6.9, 11.0,
and 15.0 N/cm, respectively, for Fig. 8(a), and 1.8, 2.0, 2.4, and
2.9 N/cm, respectively, for Fig. 8(b). For systems with greater
number of grains, the maximum pressure is approximately in
the middle of the silo, in the horizontal direction, and a bit
below the middle in the z direction. The tangential stress at the
walls is maximum in the lower half of the silo, as shown in
Fig. 7(b). In general, near of the bottom the tangential stress
is positive at the left and negative at the right, but in the upper
half there is a slight inversion of signs.

It is convenient to observe the stress distribution along
the width of the silos for different regions of the granular
column. We divided the granular column into quintiles, each
one covering an area of 20 cells wide and approximately
40 cells high, where the cells have the area A defined in
Eq. (9); an average was made for each column in the quintile.
Figure 9 shows the internal stress distributions along the

FIG. 10. Distribution of (a) normal and (b) tangential forces
exerted at the walls for all times in simulations with a moving base.
We observe the exponential decay in the frequency as Fn grows,
regardless of the number of the grains. For normal forces very close
to zero (Fn/〈Fn〉 < 1), the distribution shows a power law behavior.
The tangential forces have a negative zone due to the moving base, but
the negative forces have a minor range than the forces in the positive
zone. The behavior is similar to the distribution of normal forces,
showing an exponential decay for larger values of |Ft |, and a power
law behavior for |Ft/〈Ft 〉| < 1.

horizontal direction for four silos with z/L = 10. The first
quintile corresponds to the bottom and the fifth quintile to the
upper part; in silos with larger bases, the difference is marked.
For larger bases, the normal stress is greater in the middle of
the base and it concentrates in the second and third quintiles.
The silo with smallest base has a homogeneous distribution in
the horizontal direction. The tangential stress is greater as it
approaches the walls and concentrates in the first and second
quintiles. In the remainder of the column, the distribution is
slightly homogeneous. This suggests that part of the weight of
the granular column is carried only by the lower walls where
the friction plays an important role. In the upper walls, the
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FIG. 11. Vertical stress σzz on the bottom for a silo of width L =
20 cm, with μ = 0.6, and different values of average radii. The points
are averages over 16 runs. The lines are the fits to the Janssen’s model.
We can note the similarity with Fig. 5. Full fit data in Table I.

stress behavior seems to be hydrostatic, however, we observe
a slight inversion of the signs with respect to that found for the
lower walls.

Figure 10 shows the distribution of forces exerted at the
walls. The distribution of forces seems to be independent of
the friction coefficient, radii of dispersity, and base of the silo.
We should notice the wide range of force amplitudes, reaching
up to 15 times the mean force. The frequency for larger forces
decays exponentially, but that for the low forces has a slight
increase. This results are in agreement with the experiments
carried out by Mueth et al. [29] where an empirical functional
form that captures the exponential tail at large forces and the
slight increase as forces decreased toward zero is proposed;
however, no model predicts the distribution of forces yet.
Currently, models are still being proposed [30].

D. Varying the average radii

The increase in hydrostaticity of the system as the size of
the base of the silo increases (even when the aspect ratio z/L is
kept fixed) suggests that a medium made with small particles
(small with respect to the silo size) should start to derive
from a pure Janssen’s behavior. The fundamental question
here becomes the following: Does a medium of very small
particles become hydrostatic, even if there still are tangential
frictional forces? Notice that the presence of the constants g

and tcoll means that there is no trivial scaling of dimensions on
the system, and therefore one cannot use the results shown to
predict in an easy way the behavior of silos with the same size
but smaller (or larger) particles. Accordingly, we simulated
silos with different grain average radii in a way similar to the
simulations with different bases of silo, keeping the total mass
in the silo constant. Figure 11 shows σzz at the bottom of the silo
for different average radii with 20% of dispersity of the radii.
If we compare with Fig. 5, we can note the loss of relevance
(in the sense of approaching hydrostaticity) of the Janssen’s
model when Rave/L < 0.008.

FIG. 12. Normal stress distribution on the walls, for different
average radii but keeping the mass. The data were smoothed with
Gnuplot using the “acsplines” option, where the standard errors of
the data were used as smoothing weight. The black dashed line is the
hydrostatic behavior of the pressure. When Rave decreases, the normal
stress on the walls decreases.

Table I shows the fit parameters for different average radii.
We can note that the values of K and α are similar to those
for silos with different bases, suggesting in this way that
the same Rave/L give the same behavior for the pressure on
the bottom. Nevertheless, we find a very different behavior on
the walls. Figure 12 shows the stress distributions on the walls
for silos with grains of different average radii. The normal
stress on the walls decreases as the average radius decreases;
this can be attributed to strong force chains along the vertical
direction which make the central part of the silo behave like
a solid material with little horizontal deflection; likewise, it
can be noted that K decreases as the average radius of the
grains decreases, in accordance with the observation above.
The tangential stresses on the walls for silos with particles of
smaller average radii have almost the same behavior, indicating
that the part of the weight of the material carried by the walls
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saturates for Rave/L < 0.008, and as before it is concentrated
in the lower half of the silo height.

V. CONCLUSIONS

Simulations of two-dimensional silos filled with disks with
different friction coefficients show a good fit to Janssen’s
model, reaching the saturation of normal stress on the base,
as a result from the friction between grains and walls. These
results are in general as expected, and a decrease in the friction
coefficient tends to give a hydrostatic behavior. The value of
K tends to one for smaller friction coefficients, and to zero for
larger ones. The parameter α included in this work does not
deviate much from 1, but a good fit requires α � 1.

Varying the dispersity of radii has no significant effect,
and Janssen’s model seems independent of polydispersity.
However, the model needs to be explored for a wider range
of dispersity, and clearly no conclusions should be made about
crystallizing cases.

When the aspect ratio height to width z/L is kept but the
values of z and L are changed, the parameters K and α change
strongly and, in principle, the Janssen’s model loses relevance.
These results seem to indicate that if L → ∞, the pressure
at bottom will be hydrostatic (even if the aspect ratio z/L is
kept); the friction loses relevance. On the other hand, if z is
kept and L increases, the normal stress at the bottom tends to its
hydrostatic limit, agreeing closely to the small z/L limit of the
Janssen’s model. These results suggest that for larger systems
(both in z and in L), the Janssen’s model is less applicable.

In these simulations, when the base is moved downward, the
walls are subject to greater normal stress in the middle of the
granular column, and to greater tangential stress near the base,

and change of direction of the tangential stress near the surface.
The internal stress distribution makes evident that the largest
normal stress concentration is in the middle of the horizontal
width and around 2

3 of depth of granular column, measuring
from the upper surface. The tangential stress is maximum near
the walls and minimum in the middle of the horizontal width,
and these effects are notorious for larger systems.

There are two very noteworthy findings in our simulations.
The first one is the presence of internal avalanches in the
silo, associated to the particular silo filling protocol used here,
namely, the slow descent of the silo’s bottom. We would like to
remark again that these avalanches were beyond the sensitivity
of the analogous experimental work [10]. One may also notice
that, as expected, the slow descent of the bottom keeps the
grain-wall tangential forces almost fully mobilized. A very
intriguing problem is the statistics of the avalanches, which
seem to vary widely in size. That will be considered in a
future work. The second one is the similarity of behavior when
increasing the base, keeping z/L fixed, with that obtained when
decreasing the average radius, keeping the mass: both tend to
the hydrostatic limits. The tangential stress on the walls seems
to saturate if we decreaseRave and the normal stress on the walls
becomes smaller; this implies that the length of force chains
does not reach the walls and most of the weight is supported
by the middle part of the base.
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