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Effect of particle stiffness on contact dynamics and rheology in a dense granular flow
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Dense granular flows have been well described by the Bagnold rheology, even when the particles are in the
multibody contact regime and the coordination number is greater than 1. This is surprising, because the Bagnold
law should be applicable only in the instantaneous collision regime, where the time between collisions is much
larger than the period of a collision. Here, the effect of particle stiffness on rheology is examined. It is found that
there is a rheological threshold between a particle stiffness of 104–105 for the linear contact model and 105–106

for the Hertzian contact model above which Bagnold rheology (stress proportional to square of the strain rate)
is valid and below which there is a power-law rheology, where all components of the stress and the granular
temperature are proportional to a power of the strain rate that is less then 2. The system is in the multibody
contact regime at the rheological threshold. However, the contact energy per particle is less than the kinetic
energy per particle above the rheological threshold, and it becomes larger than the kinetic energy per particle
below the rheological threshold. The distribution functions for the interparticle forces and contact energies are
also analyzed. The distribution functions are invariant with height, but they do depend on the contact model. The
contact energy distribution functions are well fitted by Gamma distributions. There is a transition in the shape
of the distribution function as the particle stiffness is decreased from 107 to 106 for the linear model and 108 to
107 for the Hertzian model, when the contact number exceeds 1. Thus, the transition in the distribution function
correlates to the contact regime threshold from the binary to multibody contact regime, and is clearly different
from the rheological threshold. An order-disorder transition has recently been reported in dense granular flows.
The Bagnold rheology applies for both the ordered and disordered states, even though the rheological constants
differ by orders of magnitude. The effect of particle stiffness on the order-disorder transition is examined here. It
is found that when the particle stiffness is above the rheological threshold, there is an order-disorder transition as
the base roughness is increased. The order-disorder transition disappears after the crossover to the soft-particle
regime when the particle stiffness is decreased below the rheological threshold, indicating that the transition is a
hard-particle phenomenon.

DOI: 10.1103/PhysRevE.97.012902

I. INTRODUCTION

An intriguing feature of the dense granular flows, repeatedly
reported in simulations of simple shear flows or flows down
an inclined plane, is the validity of the Bagnold relationship
[1–3] between the stress and the rate of deformation [4–7].
All components of the stress are found to be proportional
to the square of the strain rate. The Bagnold relationship
is a dimensional requirement if the only time scale is the
inverse of the strain rate, and there is no “material” time scale
associated with the interparticle contacts. This, in turn, implies
that the period of a contact is small compared to the inverse
of the strain rate, and is often interpreted as implying that the
system is in the rapid flow regime where the contacts between
particles are through instantaneous collisions. However, the
Bagnold relationship is found to be valid even when the
system is in the multibody contact regime, and the coordination
number (number of particles in simultaneous contact with a
test particle) is greater than 1. Further, it is now established
that there is very little change in the rheology as the strain rate
is changed and the system transitions from a binary contact
regime to the multibody contact regime [8,9]. There have
been some explanations for this unusual behavior, such as the
dominance of one contact even in a multibody contact regime in

the force transmission to a particle [5]. However, this puzzling
phenomenon has still not been well understood.

Here, simulations using the LAMMPS simulation package
are carried out for the flow of spherical particles down an
inclined plane. The flow down an inclined plane is a apt model
flow for studying rheology, since the volume fraction in the core
of the flow is a constant to within the simulation resolution
[4–6]. This is counterintuitive; it would naively be expected
that the volume fraction would increase with depth due to
the greater overburden. However, simulations have repeatedly
shown that the volume fraction is independent of height in the
bulk. Here, we examine whether the volume fraction continues
to be a constant as the particle stiffness is reduced to very small
values.

The particle stiffness is usually expressed in dimensionless
form, [k/(mg/d)], for the linear contact model (where the
stiffness k has dimensions of force per unit length), and
[k/(mg/d1/2)] for the Hertzian contact model [where the
stiffness k has dimensions of (force/length3/2)]. Here, m is
the mass of a particle, d is the particle diameter, and g is the
acceleration due to gravity. Real particles such as sand grains
and glass beads with size 100 μm to 1 mm have dimensionless
stiffness in the range 108–1011. Simulations are typically
carried out with much softer particles with stiffness in the
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range 104–106 in order to reduce the computation time, since
the contact time scales as

√
m/k for the linear contact model,

and the simulation time step has to be much smaller than the
contact time.

The effect of particle stiffness on the rheology and the
contact time was analyzed by Silbert et al. [10] for the flow
down an inclined plane. In the simulations of Silbert et al.
[10], the velocity profile was fitted to a combination of a linear
and a Bagnold profile, and the ratio of the relative measures
of the linear and Bagnold profiles was used to identify the
parameter regimes under which the Bagnold rheology was
valid. The deviation from the Bagnold profile was found to
be less than 10% when the nondimensional particle stiffness is
greater than about 104 for the linear contact model, and greater
than about 105 for the Hertzian contact model. The authors
reported, for the first time, a correlation between the contact
lifetime and the rheology. The probability distribution of the
time of contact is strongly peaked at the collision time, and has
an exponentially decaying tail for large contact times. Based on
a criterion for identifying the lifetime of long-lived contacts τl ,
the authors showed that the deviation from Bagnold rheology
is strongly correlated to γ̇ τl , the product of the strain rate and
the characteristic contact time of long-lived contacts.

We examine the validity of the Bagnold rheology in relation
to the coordination number, the granular temperature (kinetic
energy per particle), the contact force, and contact energy
magnitudes. One open question is why Bagnold rheology
appears to be valid even in the multibody contact regime,
though the theoretical justification is limited to the binary
contact regime. Clearly, Bagnold rheology has a validity wider
than its derivation, and it is of interest to examine other
parameters which correlate with the particle stiffness regime
for the validity of Bagnold rheology. Another important issue is
the magnitude of the kinetic energy per particle, contact forces
and contact energies in the flowing state, and whether these
depend on the particle stiffness.

The contact forces and force distributions have been mea-
sured for static piles, and there has been a lot of work on the
distribution of forces at the bottom of a static heap [11] or under
quasistatic deformation [12,13]. Theoretical studies [14–16]
using diverse approaches have predicted exponential distribu-
tions for the magnitude of the interparticle contact forces in
a static granular pile. Velocity distributions for the particles
in the flowing state have been extensively studied for vibrated
[17–19] and sheared [20–25] granular materials. Kinetic theory
methods have also been used to derive constitutive relations
[26–30] and the effect of correlations on the constitutive
relations has been examined [31–33]. Kinetic theories have
been used for dense granular flows down an inclined plane
[7,24,25]. Attempts have been made to bridge the gap between
the flowing and static states by including a finite period of
contact in the context of kinetic theories [34], and critical
scalings have been extracted for the rheology as a function of
volume fraction near jamming [35,36]. However, the evolution
of the contact energies and forces in the flowing state has
not been examined so far. It is of interest to relate the force
and energy distributions to the strain rate and the fluctuating
velocities, in order to smoothly progress from the flowing to
the static state as the angle of inclination is decreased for the
flow down an inclined plane. Here, we study the distribution of

contact forces and energies in the flowing state, and examine
whether these depend on the particle contact model and the
binary or multibody contact regime. It is also of interest to
examine whether there is a shift in the distribution functions
when the system progresses from the Bagnold to non-Bagnold
rheology as the particle stiffness is decreased.

A recently reported phenomenon is the transition from
a disordered to an ordered state as the base roughness is
decreased in the dense granular flow down an inclined plane
[37–39]. Different types of base roughness have been studied,
such as ordered and disordered frozen-particle bases where
the base consists of a layer of static particles in random or
hexagonally ordered arrangements, as well as sinusoidal bases
with modulation in the flow and spanwise directions [40]. The
base roughness is defined as the ratio of the frozen and moving
particle diameters for frozen-particle bases, and the ratio of
the sinusoidal amplitude and the moving particle diameter for
sinusoidal bases. A discontinuous transition from a disordered
to an ordered state is observed when the base roughness is
decreased by as little as 1%. The ordered and disordered states
have very different properties. There are distinct layers of
particles parallel to the base sliding over each other in the
ordered state, with in-plane hexagonal ordering of particles
within the layers. There is no ordering in the random state
when the base particle roughness exceeds the critical value.
The volume fraction in the ordered state is higher than that in
the random state, and could even exceed the random close
packing volume fraction of 0.64. The Bagnold relation is
satisfied in both the ordered and random states, but the Bagnold
coefficients (ratio of stress and square of strain rate) are very
different. For equal stress, the strain rate in the ordered state is
one order of magnitude higher than that in the random state.

The order-disorder transition in the granular flow down
an inclined plane appears to be similar to the crystallization
transition in rigid hard-particle systems, where there is a
transition from a random state to face centered cubic ordering
at a volume fraction of 0.49 for spherical particles in three
dimensions [41–45]. While the reasons for ordering in an
inclined plane flow, which is the base roughness, are different
from those for hard spheres at equilibrium, which is the balance
between configurational and communal entropy [46], there are
aspects of both transitions which are poorly understood; this
is despite decades of research on the ordering in hard-particle
systems. Here, we study a more basic question, whether the
order-disorder transition in the dense granular flow down an
inclined plane is in fact a hard-particle phenomenon, by exam-
ining the transition for different values of the particle stiffness.

II. SYSTEM AND SIMULATION METHODOLOGY

The simulations are carried out using LAMMPS, a molec-
ular dynamics package, for the flow of monodisperse spheres
over an inclined plane. The linear and Hertzian spring-dashpot
models [47] are used for the interparticle interactions; these
are not described in detail here, because they have been
discussed extensively elsewhere [4,39]. The models consist
of a resistive particle force perpendicular to the surface of
contact which depends on the normal overlap δn (the difference
between the center-to-center distance of the particles and the
sum of particle radii) and a normal damping force which
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TABLE I. The average normal overlap δ̄n as a function of the
particle stiffness for the linear and Hertzian contact models.

Linear model Hertzian model

kn δ̄n kn δ̄n Symbol

5 × 102 6.33 × 10−2 2 × 103 5.58 × 10−2 ◦
103 3.50 × 10−2 104 2.25 × 10−2 �
104 4.75 × 10−3 105 5.94 × 10−3 �
105 5.47 × 10−4 106 1.42 × 10−3 �
106 6.26 × 10−5 107 3.81 × 10−4 �
108 1.07 × 10−6 108 9.15 × 10−4 �

depends on the relative velocity perpendicular to the surface
of contact. The resistive force is proportional to δn for the
linear model, and δ

3/2
n for the Hertzian model. In the direction

parallel to the surface of contact, the tangential force is
first computed as the sum of a spring force which depends
on the tangential displacement, and a damping force which
depends on the tangential velocity. There are also two types
of contacts, sticking and sliding contacts, depending on the
relative magnitudes of the tangential and normal forces. If the
computed tangential force is less than the friction coefficient
times the normal force, the sticking contact model is used,
where the tangential force is computed from the tangential
displacement and velocity. If the computed tangential force
is greater than the friction coefficient times the normal force,
the tangential force is set equal to the product of the friction
coefficient and the normal force. In the simulations, the normal
spring constant kn is varied over 6–8 orders of magnitude, while
the ratio of the tangential and normal spring coefficients (kt/kn)
is set equal to (2/7). The normal damping coefficient γn for
the linear model is selected such that the normal coefficient of
restitution en = exp (−γntcol/2) is 0.6, where γn is the damping
constant and the collision time tcol = π (2kn/m − γ 2

n /4)−1/2.
This requires that (γ 2

n /kn) = 0.20. The ratio of the tangential
and normal damping coefficients, (γt/γn), is set equal to 1/2.
The friction coefficient is 0.4 in all the simulations. The reasons
for selecting these ratios were discussed in detail in [4].

When the particle stiffness is decreased, the overlap in-
creases. The linear and Hertzian approximations for the re-
sistive forces are valid only when the overlap is small, and
these cannot be used when the overlap becomes comparable to
the particle diameter. Therefore, care is taken to ensure that the
maximum overlap is less than about 6% of the particle diameter
for the lowest values of the particle stiffness used here. The
average overlap in the simulations δ̄n, averaged over the entire
flow, is shown as a function of the particle stiffness in Table I.

The length of the simulation box is 40 particle diameters, the
width is 20 particle diameters, and 64 000 moving particles are
simulated, resulting in a height of about 70 particle diameters.
The angle of inclination is 22◦ in all our simulations, since
we are interested in the effect of particle stiffness on rheology.
Periodic boundary conditions are employed in the flow and
spanwise directions with a solid surface below and a free
surface at the top. The base is either a bumpy base with a
disordered or ordered configuration of particles glued to it, or
a smooth wall with a sinusoidal modulation. The properties
in the bulk are independent of the base configuration. Most

of the results presented here are for a hexagonally ordered
frozen-particle base with a base particle diameter 1.5 times
the moving particle diameter for the disordered flow. The base
particle diameter is decreased below 1.34 times the moving
particle diameter to attain an ordered state. The preparation
of these different base topographies and their influence on the
rheology have been elaborated in [40].

The simulations are advanced in time steps of 0.02 times√
m/kn for the linear contact model since the period of a

collision is comparable to
√

m/kn, where m is the particle
mass and kn is the particle stiffness. The same numerical value
is also used for the Hertzian contact model, though the collision
time is greater for the Hertzian contact model. The simulation
box is initially prepared with the base horizontal, and particles
are poured in at random locations. The box is then tilted to
an angle of 22◦ to initiate the flow. The time required for
reaching steady state is about 800 dimensionless time units,
where the time is scaled by

√
d/g, where d is the particle

diameter and g is the gravitational acceleration. After this, the
properties are measured over 1000 configurations spanning
8 time units. The mean value is the average over the entire
simulation run of 8 time units, while the standard deviations
are calculated from the average values for four subsequences of
2 dimensionless time units each. The standard deviation in the
volume fraction is much smaller than the symbol size, so these
are not shown in Figs. 1(a) and 1(c). The standard deviations
for the coordination number are shown in Figs. 1(b) and 1(d),
those for the strain rate are shown in Fig. 2, the force magnitude
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FIG. 1. The variation in the volume fraction φ [(a) and (c)] and
the coordination number Z [(b) and (d)] with height z for different
values of the particle stiffness kn for the linear contact model [(a) and
(b)] and the Hertzian contact model [(c) and (d)]. The parameters for
the different symbols are provided in Table I.
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FIG. 2. The variation of the strain rate with height for different
values of the particle stiffness kn for the linear contact model (a)
and the Hertzian contact model (b). The parameters for the different
symbols are provided in Table I.

in Fig. 6, and the kinetic and potential energies in Fig. 8. The
standard deviations in the coordination number and the strain
rate are about 5%. There are larger standard deviations of about
8%–10% in the force magnitude, and the kinetic and contact en-
ergies per particle, but these appear relatively small because the
variations in these quantities span many orders of magnitude.

In the analysis, the x axis is along the flow direction
parallel to the base, the z axis is perpendicular to the base,
and the y axis is in the spanwise direction perpendicular to the
flow and parallel to the base. The results are all expressed in
nondimensional form, where the particle diameter d is used to
scale length, the particle mass m is used to nondimensionalize
mass, and time is nondimensionalized by

√
d/g, where g is

the acceleration due to gravity.

III. RHEOLOGY

The density profiles for different values of the particle stiff-
ness for the linear and Hertzian models are shown in Figs. 1(a)
and 1(c), respectively. The symbols used for the different
particle stiffnesses are given in Table I. For particle stiffness in
the range 108–104 for the linear model and in the range 108–105

for the Hertzian model, the volume fraction is independent of
height in the bulk. There are regions of height about 5 particle
diameters at the top and at the base where the volume fraction
deviates from the constant value due to boundary effects. This
constant volume fraction in the bulk is now well understood
for hard-particle systems where the Bagnold rheology is valid.
When the particle stiffness decreases to 103 and below for the
linear contact model and 104 and below for the Hertzian contact
model, there is a distinct increase in the volume fraction with
increased depth due to the greater overburden. In fact, at the
lowest value of 5×102 for the linear model and 2×103 for
the Hertzian model, the volume fraction at the base is higher
than the random close packing volume fraction of 64%. This is
not surprising, because the random close packing limit of 64%
is applicable only for hard-particle systems, and the overlap
between very soft particles could increase the volume fraction
beyond this limit. It is also noteworthy that due to the increase
in the volume fraction, the height of the flowing layer has
decreased from about 70 particle diameters to about 65 particle
diameters when the particle stiffness is decreased to 5×102 for
the linear model and 2×103 for the Hertzian model.

In contrast to the volume fraction, the average coordination
number Z increases continuously as the particle stiffness is
decreased, as shown in Figs. 1(b) and 1(d). The coordination
number is less than 1, as assumed in the binary collision
approximation, only for the highest stiffness of 107 and higher
for the linear contact model, and 108 and higher for the
Hertzian contact model. For all other values of the particle
stiffness, the coordination number is 1 or larger. Interestingly,
the coordination number increases with depth even for cases
where the volume fraction is independent of depth, such as for
104 � kn � 107 for the linear model and 105 � kn � 108 for
the Hertzian models. Thus, there is a range of values of the
particle stiffness for which the coordination number increases
with height, but the volume fraction is independent of height.
In this range, the effect of the increased overburden is reflected
in the increased coordination number even though there is no
increase in the volume fraction.

The strain rate, shown in Fig. 2, is plotted on a log-linear
graph, in order to accommodate the variation of over a decade
in the strain rate with height. The salient feature of the strain
rate profiles is that they are relatively invariant with particle
stiffness when the stiffness is above a threshold, but there is
a sharp increase in the strain rate when the stiffness decreases
below this threshold. For the linear contact model, there is
virtually no change in the strain rate when the particle stiffness
decreases from 108 to 105, but there is an increase by a factor of
4 when the particle stiffness is decreased from 104 to 5×102.
Similarly, for the Hertzian contact model, the strain rate shows
very little variation with particle stiffness for kn � 106, but
there is a significant increase when the particle stiffness is
decreased to 2×103. More importantly, there is a significant
change in the scaling of the strain rate profiles with height. The
dashed lines show fits of the form

(dux/dz) ∝ (h − z)ηγ , (1)

where ηγ is the power-law exponent. For particle stiffness 105

or greater for the linear model and about 106 or greater for the
Hertzian model, the strain rate is proportional to (h − z)1/2.
This is expected from the Bagnold law where the stress is
proportional to the square of the strain rate. However, when the
particle stiffness is decreased, the exponent ηγ decreases. For
the lowest particle stiffness of 5×102 for the linear model and
2×103 for the Hertzian model, the strain rate is proportional
to (h − z). This is expected for a Newtonian fluid where the
stress is proportional to the strain rate at constant density. The
variation of the exponent ηγ with particle stiffness is discussed
a little later in Fig. 5.

The relationship between the stress and the strain rate is
shown in Fig. 3. The normal stresses σxx and σzz are equal
to within the resolution in the simulations, and so these are
shown on the same graph. The ratio (σxz/σzz) = tan (θ ) from
momentum balance, where θ is the angle of inclination. Since
the angle θ is set to 22◦ in our simulations, the stress σxz =
0.404σzz, and so the shear stress has not been plotted separately.
Though the normal stress in the spanwise direction, σyy , is
smaller than σxx and σzz by about 8%, the scaling between
σyy and (dux/dz) is the same as that for the other normal
stress components within simulation resolution, and so σyy

is not plotted separately. It is evident from Fig. 3 that the
stress-strain rate relationship is well described by a power-law
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FIG. 3. The variation of the normal stresses σxx and σzz as a
function of (dux/dz) for different values of the particle stiffness
kn for the linear contact model (a) and the Hertzian contact model
(b). The dashed lines are power-law fits [Eq. (2)], the dotted line
on the left shows σij ∝ (dux/dz)2, and the dotted line on the right
shows σij ∝ (dux/dz). The parameters for the different symbols are
provided in Table I, and the values of ησ are shown as a function of
the particle stiffness later in Fig. 5.

fit. For high values of the particle stiffness kn > 104 for the
linear contact model and kn > 105 for the Hertzian contact
model, all components of the stress are proportional to the
square of the strain rate. When the particle stiffness decreases
below 104 for the linear model and 105 for the Hertzian model,
there is a significant departure from the Bagnold rheology,
and the stress-strain rate relationship is linear for the lowest
values of the particle stiffness. This appears to be similar to
Newtonian rheology. However, it should be noted that for
Newtonian fluids, the shear stress is proportional to the strain
rate, and the pressure is determined from the incompressibility
condition; in contrast, here, all components of the stress are
proportional to the strain rate.

The scaled normal stress differences, N1 = (σxx − σzz)/σ
and N2 = (σzz − σyy)/σ , have also been calculated where
σ = (σxx + σyy + σzz)/3 is the negative of the pressure. The
first normal stress difference is close to zero, while the second
normal stress difference is about 10% in the simulations. The
second normal stress difference is found to be nearly invariant
with the particle stiffness.

The granular temperature, which is the kinetic energy per
particle, is shown as a function of the strain rate on a log-log
graph in Fig. 4. The dashed lines in this figure show power-
law fits, and the dotted lines show slopes of 2 and 3/2 on a
log-log graph. When the particle stiffness is high, Fig. 4 shows
that the granular temperature is proportional to (dux/dz)2; this
is expected for the hard-particle model where the collisions
are considered to be instantaneous. As the particle stiffness
decreases, the granular temperature is found to scale as T 3/2

for the lowest value of the particle stiffness considered here.
Power-law relations of the form

σij ∝ (dux/dz)ησ , (2)

3(σzz − σyy)

σxx + σyy + σzz

∝ (dux/dz)ηN2 , (3)

T ∝ (dux/dz)ηT (4)
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FIG. 4. The variation of the kinetic energy per particle as a
function of (dux/dz) for different values of the particle stiffness
kn for the linear contact model (a) and the Hertzian contact model
(b). The dashed lines show the fits to Eq. (4), the dotted line on
the left shows K ∝ (dux/dz)2, and the dotted line on the right
shows K ∝ (dux/dz)3/2. The parameters for the different symbols
are provided in Table I, and the values of ηT are shown as a function
of the particle stiffness later in Fig. 5.

have been fitted to the data in Figs. 3 and 4, where ησ is the
exponent for the stress fitted from the dashed lines in Fig. 3,
ηN2 is the exponent for the second normal stress difference,
and ηT is the exponent for the granular temperature fitted
from the lines in Fig. 4. These exponents are shown in Fig. 5,
along with the coordination number and the exponent ηγ in
Eq. (1), at different values of the particle stiffness. It is clear
that there is a “rheological threshold” for the particle stiffness,
which is in the interval 2×104 to 6×104 for the linear model
and 2×105 to 6×105 for the Hertzian model. Above this
threshold, the rheology is well described by Bagnold rheology,
all components of the stress are proportional to the square of the
strain rate, and the granular temperature is proportional to the
square of the strain rate. The strain rate increases as the square
root of the depth above the threshold. Below this threshold,
there is a decrease in the exponent ησ , to a minimum of 1 at the
lowest particle stiffness considered here. The exponent for the
granular temperature ηT decreases to about 1.5 for the smallest
value of the particle stiffness considered here. The exponent
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FIG. 5. The height-averaged coordination number Z (◦), the
exponents ησ in Eq. (2) (�), ηT in Eq. (4) (�), ηN2 in Eq. (3) (�),
and ηγ in Eq. (1) (�), as a function of the particle stiffness kn for the
linear contact model (a) and Hertzian contact model (b). The dotted
horizontal lines show the exponent values 0.5, 1.0, 1.5, and 2.0 for
reference.
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for the normal stress difference, ηN2, is found to be close to
zero for both the linear and Hertzian contact model, and is
invariant with particle stiffness, indicating that all components
of the stress have the same power-law scaling with the strain
rate.

Two other results are worth noting. First, the volume
fraction profiles in Fig. 1 show that the volume fraction is
independent of height when the particle stiffness is above
the rheological threshold, while there is a variation in the
volume fraction with height when the particle stiffness is below
the rheological threshold. Second, the coordination number is
about 1.5 or more at the rheological threshold for both the
linear and Hertzian model, indicating that the system is not
in the binary contact regime. Thus, Bagnold rheology appears
to apply even when the system is in the multibody contact
regime, and the invariance of the volume fraction with height
is a consequence of the Bagnold rheology.

IV. CONTACT FORCE AND ENERGY

The time-averaged force on a particle due to interparticle
interactions is equal to the gravitational force on the particle.
However, the instantaneous magnitude of the net force on a
particle could be higher than the time average of the force
on a particle, and it provides a measure of the contact force
fluctuations in the system, analogous to the kinetic energy
fluctuations represented by the granular temperature. The
contact regime is assessed using two force measures, the
average magnitude of the instantaneous resultant force on a
particle FR , and the instantaneous sum of the magnitude of all
the forces on a particle, FM . If Fij is the contact force between
particles i and j , FR and FM are defined as

FR = 1

N

N∑

i=1

∣∣∣∣∣∣

ni∑

j=1

Fij

∣∣∣∣∣∣
, (5)

FM = 1

N

N∑

i=1

ni∑

j=1

∣∣Fij

∣∣, (6)

where N is the total number of particles considered for
averaging, ni is the number of particles instantaneously in
contact with the particle i, and the summation is carried
out over all neighboring particles. The measures FR and FM

provide some insight into the contact regime in the flow. If
the particle interactions are due to to instantaneous collisions
in the hard-particle limit, the value of FR and FM will be
comparable. In the dense multibody contact regime where
the particle weight is balanced by multiple contact forces of
approximately equal magnitude, the sum of the magnitude of
all the forces FM is expected to be much greater than the
magnitude of the resultant FR . The contact energy Ec is the
integral of the force dotted with the differential displacement
over the duration of a contact. For a contact between particles
i and j , the contact energy is defined as a summation over the
simulation time steps,

Ec =
∑

k

Fk
ij ·
xk

ij , (7)
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FIG. 6. The variation of the magnitude of the average resultant
force on a particle FR defined in Eq. (5) for the linear contact model
(a) and the Hertzian contact model (b). The dashed lines show linear
fits for the data. The parameter values for the different symbols are
shown in Table I.

where Fk
ij is the force acting on particle i due to particle j in

time step k, and 
xk
ij is the differential relative displacement

between the two particles in time step k. The summation is
initiated when there is overlap, that is, the distance between
two particles decreases below one particle diameter, and the
contact energy is set to zero after breakage of the contact. The
total contact energy over all contacts is divided by the number
of contacts to determine the energy per contact, and by the total
number of particles in the simulation to determine the contact
energy per particle.

The average magnitude of the resultant force measure FR

is shown as a function of height for different values of the
particle stiffness for the linear and Hertzian contact models in
Fig. 6. The qualitative variation of the force measure FM is
similar to FR . Figure 6 shows that FR increases approximately
linearly with depth, as expected from the linear increase of
the overburden. To clearly discern the linear behavior in the
log-linear graphs in Fig. 6, the linear fits are also shown by
the dashed lines. The instantaneous force magnitude decreases
faster for the lowest values of the particle stiffness, 5×102 for
the linear model and 2×103 for the Hertzian model, due to
the decrease in height that was also observed in Fig. 1. The
instantaneous force magnitude increases by a factor of 4 when
the particle stiffness increases by 5 orders of magnitude for the
linear contact model, and when the particle stiffness increases
by 7 orders of magnitude for the Hertzian contact model. Thus,
the variation in the magnitude of the forces is relatively small
compared to the variation in the magnitude of the particle
stiffness for the linear and Hertzian models.

The height-averaged values of FR and FM are shown as
a function of the particle stiffness in Fig. 7. The averaging
is carried out only in the bulk of the flow, and particles in
regions of height 5 particle diameters at the top and bottom are
excluded, to avoid the effects of the ballistic layer of particles
at the top and the particles in contact with the base at the
bottom. The height-averaged values of FR and FM vary very
little when the particle stiffness is varied over 5 orders of
magnitude for both the linear and Hertzian contact models.
The ratio (FR/FM ), shown referenced to the right y axis on
a linear scale in Fig. 7, does decrease monotonically as the
particle stiffness is increased. However, this ratio varies in a
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FIG. 7. The height-averaged values of FR defined in Eq. (5) (◦)
and FM defined in Eq. (6) (�) referenced to the left y axis on a log
scale, and the ratio (FM/FR) (�) referenced to the right y axis on a
linear scale, as a function of the particle stiffness for the linear contact
model (a) and Hertzian contact model (b).

relatively narrow range from 1.8 and 1.2 as the particle stiffness
is increased over five orders of magnitude for the linear model,
and between 1.8 and 1.1 when the stiffness is increased over
seven orders of magnitude for the Hertzian model. This appears
to indicate that the resultant force on a particle is not due to
a quasistatic balance between much larger forces exerted by
neighboring particles even at the lowest value of the particle
stiffness, but the contact forces are dominated by the largest
force on a particle.

The contact energy per particle, Ec, exhibits characteristics
that are very different from the force magnitude. The variation
of the contact energy per particle Ec, along with the granular
temperature T , is shown in Fig. 8. The granular temperature
exhibits a power-law decrease with height in the bulk, and
then a slower decrease near the top due to the ballistic layer of
particles at the top. The contact energy per particle decreases
much faster, because the frequency of collisions decreases to
zero in the ballistic layer at the top. The contact energy is also
found to be well fitted by power laws, as discussed below.

The contact energy per particle shows a large decrease as
the particle stiffness is decreased, and there is a more modest
decrease in the kinetic energy per particle. This is in contrast to
the force magnitudes in Fig. 6, which increase as the particle
stiffness is increased. There is a significant decrease in the
contact energy per particle, by a factor greater than 104, when
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FIG. 8. The variation of the kinetic energy per particle T (open
symbols) and contact energy per particle Ec (filled symbols) as a
function of height. The parameters for the different symbols are shown
in Table I. The dashed lines show the power-law fits [Eq. (8)].

the particle stiffness is increased from 5×102 to 108 for the
linear model. Similarly, for the Hertzian contact model, there
is a decrease in the contact energy per particle by a factor of
104 when the particle stiffness increases from 2×103 to 108. In
contrast, there is a modest decrease by a factor of about 10 in
the kinetic energy per particle when the stiffness is increased
from 5×102 to 108 for the linear model, and 2×103 to 108

for the Hertzian model. The height profiles of the kinetic and
contact energies per particle are qualitatively similar, though
the contact energy decreases faster with height than the kinetic
energy near the top.

At low particle stiffness, for kn � 103 for the linear model
and kn � 104 for the Hertzian model, the contact energy per
particle is larger than the kinetic energy per particle. As the
particle stiffness is increased beyond 104 for the linear contact
model and 105 for the Hertzian contact model, the kinetic
energy exceeds the contact energy per particle. For the highest
particle stiffness considered here, T is greater than Ec by a
factor greater than 103 for the linear contact model, and greater
than 10 for the Hertzian contact model. Even though the contact
energy per particle is numerically small compared to the kinetic
energy per particle, a systematic variation is discernible in the
height profiles of the contact energy per particle.

The dashed lines in Fig. 8 are power-law fits for the kinetic
and contact energy per particle of the form

T ∝ (h − z)ηT z ,

Ec ∝ (h − z)ηEz . (8)

Only the temperature variation in the bulk is used for the fits for
the granular temperature, and the ballistic layer of height about
5 particle diameters at the top is excluded while calculating
ηT z in Eq. (8). From Fig. 8, it is evident that the exponents ηT z

and ηEz are different from 1. This is in contrast to the fits for
the force magnitudes in Fig. 6, which were found to increase
linearly with depth. The power-law exponents ηT z and ηEz are
shown as a function of particle stiffness in Fig. 9. Also shown
is the exponent in the scaling relationship,

Ec ∝ T ηET , (9)

between the contact and the kinetic energies per particle,
derived from plots of the contact energy versus kinetic energy
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η E
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FIG. 9. The exponent ηT z in Eq. (8) (�), ηEz in Eq. (8) (◦), and the
exponent ηET in Eq. (9) (�). The predicted exponent ηT E , from the
scaling relationship between the kinetic and contact energies, ηET =
1.5 for the linear contact model and ηET = 1.4 for the Hertzian contact
model, is shown by the dotted lines.
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similar to Fig. 4, which are not shown here for conciseness.
The kinetic energy per particle increases linearly with depth
when the particle stiffness is greater than 104 for the linear
contact model and 105 for the Hertzian contact model. The
scaling exponent for the contact energy with height ηEz is close
to 1.5 for particle kn > 104 for the linear contact model and
kn > 105 for the Hertzian contact model, and it shows a modest
increase as the particle stiffness is decreased. The exponentηET

[Eq. (9)] is about 1.5 for the linear contact model for kn > 104

and about 1.4 for the Hertzian contact model for kn > 105.
A scaling relationship between the kinetic and contact

energies per particle can be derived in the collisional regime.
The time-averaged ratio of the contact energy and kinetic
energy per particle scales as the ratio of the maximum contact
and kinetic energies times the period of a collision divided by
the time between collisions. When particles interact through
discrete collisions, the maximum contact energy during a
contact is comparable to the maximum kinetic energy between
collisions, both scaling proportional to T . The period of a
collision τc depends on the type of contact model used. For
the linear model, the period of a collision is independent of
the maximum displacement and is proportional to (m/kn)1/2,
where kn is the normal particle stiffness and m is the particle
mass. The average time between collisions scales as T −1/2.
Therefore, the ratio of contact and kinetic energies is expected
to scale as (m/kn)1/2T 1/2. For the Hertzian model, the average
period of a collision does depend on the average overlap
between the particles, τc ∼ (m/knδ

1/2)1/2. Since the maximum
contact energy ∼ knδ

5/2 in a collision is comparable to the
kinetic energy T between collisions, the characteristic overlap
scales as δ ∼ (T/kn)2/5, and the period of a collision is τc ∼
(m1/2k

−2/5
n T −1/10). The time between collisions is proportional

to T −1/2. Therefore, the ratio of the contact energy and kinetic
energy per particle scales as (m1/2T 2/5/k

2/5
n ).

The results for ηET in Fig. 9 are consistent with those
predicted by the above scaling arguments shown by the dotted
lines, above the rheological threshold. Figure 9(a) shows that
the exponent ηET in Eq. (9) is close to 1.5 for high particle
stiffness kn > 104 for the linear contact model, consistent with
the above reasoning that the ratio of the contact and kinetic
energies is proportional to T 1/2. Similarly, for the Hertzian
contact model, Fig. 9 shows that ηET is close to 1.4 for kn >

105, consistent with the above scaling analysis that the ratio of
the contact and kinetic energies is proportional to T 2/5. Below
the rheological threshold, the exponent ηET systematically
decreases as the particle stiffness is decreased, and approaches
a value close to 1 for the lowest particle stiffness considered
here.

The scaling of the height-averaged contact and kinetic
energies per particle and the energy ratio is shown as a function
of the particle stiffness in Fig. 10. The kinetic energy per
particle decreases by about one order of magnitude for the
range of particle stiffnesses considered here, and approaches
a constant value in the limit of high particle stiffness for
both the linear and the Hertzian models. In contrast, the
contact energy per particle exhibits a monotonic decrease as
the particle stiffness is increased. The ratio of the kinetic and
contact energies per particle shows the scaling k

−1/2
n for the

linear contact model and k
−2/5
n for the Hertzian contact model
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FIG. 10. The height-averaged kinetic energy per particle (◦),
contact energy per particle (�), and the ratio of the contact and kinetic
energies � a function of the particle stiffness for the linear contact
model (a) and the Hertzian contact model (b). The dotted line has a
slope −1/2 in panel (a) and −2/5 in panel (b).

when the particle stiffness exceeds the rheological threshold,
as expected in the collisional regime.

V. FORCE AND ENERGY DISTRIBUTIONS

The distribution of the magnitude of the contact force
between pairs of particles, F = |Fij |, and the energy of the
contacts between pairs of particles, Ec, are considered. Since
the magnitudes of the contact force and energy change as the
height changes, the distribution functions are plotted for (F/F̄ )
and (Ec/Ēc) at a fixed height. Height intervals in the z direction
of thickness 4 particle diameters are used for determining
the average values F̄ and Ēc, and the probability distribution
functions P (F/F̄ ) and P (Ec/Ēc) are determined as a function
of height.

A striking feature of the force and contact energy distribu-
tions is the invariance with height. The form of the distribution
function is found to be independent of height, even though
the average values of the contact forces and energies do
vary significantly with height. In Fig. 11, the distribution
functions for the magnitudes of the contact forces are shown
at four different heights, ranging from 6 particle diameters
from the base to 62 particle diameters from the base. There is
virtually no difference, to within the simulation resolution, in
the distribution function for the force when the height changes
from 6 to 62 particle diameters. This is despite the variation of
a factor of 10 in the magnitude of the force when the height
changes from 6 to 62 particle diameters, as shown in Fig. 6.
The variation of the contact energy distribution function with
height, shown in Fig. 12, also shows almost no variation when
the height is varied between 6 and 62 particle diameters from
the base, despite a variation of a factor of 10 in the value
of the contact energy, as shown in Fig. 8. This feature is
observed for the statistics of the normal and tangential forces at
contact, as well as the tangential and normal components of the
contact energies. Thus, there seems to be a universality in the
form of the distribution of forces and contact energies, and an
invariance with height, for both the linear and the Hertzian
contact model. However, it is also clear from Fig. 11 that
the force distributions do depend on the contact model. The
force distribution has a maximum at the origin for the Hertzian
contact model, whereas the maximum is at a finite value of the
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FIG. 11. The distribution function for the contact force magnitude
at a height of 6 particle diameters from the base (◦), 26 particle
diameters from the base (�), 46 particle diameters from the base
(�), and 62 particle diameters from the base (�) for the linear contact
model with particle stiffness kn = 103 (a) and 108 (b), and for the
Hertzian particle contact model for particle stiffness 104 (c) and
108 (d).

force for the linear contact model. Though the contact energy
distributions appear more uniform in Fig. 12, there are subtle
differences in the form of the contact energy distribution, which
are discussed next.

Since the distributions are invariant with height, we use
height-averaged distributions in order to examine the effect
of particle stiffness on the force and energy distributions. In
the following analysis, the particle distribution functions are
averaged over the bulk of the flow excluding regions of height
5 particle diameters at the bottom and at the top.

The height-averaged force and contact energy distributions
are shown as a function of the particle stiffness for the linear
contact model in Fig. 13, and the Hertzian contact model in
Fig. 14. In contrast to Figs. 11 and 12, the distributions in
Figs. 13 and 14 are specifically shown on log-log graphs to
highlight the differences in the distribution functions for small
force/energy values. For the linear contact model, there is
a maximum in the force distribution at a nonzero value of
the force, as shown in Fig. 13. In addition, a clear transition
in the form of the distribution function is observed as the
particle stiffness is decreased for the linear contact model.
There is very little variation in the force distribution when
the particle stiffness is increased from 5×102 to 106, and
when it is increased from 107 to 108. However, there is a
significant change in the force distribution when the stiffness
is increased from 106 to 107. The same features are observed in
the contact energy distribution shown in Fig. 13. The contact

FIG. 12. The distribution function for the contact energy at a
height of 6 particle diameters from the base (◦), 26 particle diameters
from the base (�), 46 particle diameters from the base (�), and 62
particle diameters from the base (�) for the linear contact model with
particle stiffness kn = 103 (a) and 108 (b), and for the Hertzian particle
contact model for particle stiffness 104 (c) and 108 (d).

energy distribution shows two distinct forms, one for kn � 106

and the second for kn � 107. There is a distinct shift in the form
of the contact energy distribution when the particle stiffness
increases from 106 to 107.

For kn � 107, the contact force distribution is very well
fitted by an exponential distribution, P (F/F̄ ) = exp (−F/F̄ ),
shown by the dotted line in Fig. 13(a). This is also evident in
the comparison on a linear-log scale in Fig. 11(b). However,

FIG. 13. The height-averaged distribution function for the force
magnitude (a) and the contact energy (b) for the linear contact model
for particle stiffness kn = 5×102 (◦), kn = 106 (�), kn = 107 (�),
and kn = 108 (�). In panel (a), the dotted line is the exponential
distribution. In panel (b), the dashed line is the Gamma distribution
P�(0.7,(Ec/Ēc)), and the dotted line is the Gamma distribution
P�(0.4,(Ec/Ēc)).
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FIG. 14. The height-averaged distribution function for the force
magnitude (a) and the contact energy (b) for the Hertzian contact
model for particle stiffness kn = 2×103 (◦), kn = 107 (�), kn = 108

(�), and kn = 1010 (�). In panel (a), the dotted line is the exponential
distribution. In panel (b), the dashed line is the Gamma distribution
P�(0.6,(Ec/Ēc)), and the dotted line is the Gamma distribution
P�(0.55,(Ec/Ēc)).

for kn � 106, the distribution function is significantly different
from an exponential distribution, and it has a clear maximum
at a finite value of the force magnitude. The contact energy
distribution, interestingly, exhibits a power-law divergence for
low values of the contact energy. Two distinct power laws,
one for kn � 106 and a second faster-diverging power law for
kn � 107, are clearly discernible in Fig. 13(b). The dashed and
dotted lines in Fig. 13(b) show fits to Gamma distributions,

P�(a,x) = x(a−1) exp (−x)

�(a)
. (10)

The Gamma distribution P�(0.7,(Ec/Ēc)) provides a good fit
for the energy distribution function for kn � 106, while the
Gamma distribution with a lower exponent P�(0.4,(Ec/Ēc))
fits the data for kn � 107. It should be noted that there is
a departure from the Gamma distribution for higher values
of (Ec/Ēc) greater than about 2: the high-energy tail in the
actual distribution function is larger than that in the Gamma
distribution. However, for lower values of the contact energy,
the distribution function is well represented by the Gamma
distribution.

A transition in the form of the contact energy distribution
with particle stiffness is also observed for the Hertzian contact
model, shown in Fig. 14(b). There appears to be a divergence
for low force in the force distribution shown in Fig. 14(a),
but the magnitude of the power-law exponent is too low to
be inferred from the data. Though the force distribution does
appear to have the same form independent of particle stiffness,
there is a hint of a transition when the particle stiffness is
increased from 107 to 108. There is very little change in the
form of the force distribution for 2×103 � kn � 107, and for
108 � kn � 1010. The contact energy distribution in Fig. 14(b)
clearly exhibits a power-law divergence for low contact energy.
There is a small but discernible change in the power-law
exponent when the particle stiffness is increased from 107 to
108; there is very little change in the exponent for kn � 107

or for kn � 108. The data for kn � 107 are well fitted by the
Gamma distribution P�(0.6,(Ec/Ēc)), while those for kn �
108 are fitted by a Gamma distribution P�(0.55,(Ec/Ēc)).

There is only a small change in the power-law exponent,
with the former diverging proportional to (Ec/Ēc)−0.4 while
the latter diverges as (Ec/Ēc)−0.45. However, even this small
difference is visible in the fits for the distribution in Fig. 14(b).

The transition in the form of the distribution function
corresponds to the transition in the contact regime from the
binary to the multibody contact regime. Figure 5(a) shows that
the coordination number crosses 1 when the particle stiffness
is decreased from 107 to 106 for the linear contact model;
the transition in the form of the distribution functions for
the linear contact model is observed precisely in this range
in Fig. 13. Similarly, Fig. 5(b) shows that the coordination
number exceeds 1 when the particle stiffness is decreased from
108 to 107 for the Hertzian contact model, and the transition in
the form of the distribution function is observed in this range
in Fig. 14. Thus, the change in the form of the distribution
function appears to be correlated to the change in the flow
dynamics from a binary contact regime to a multibody contact
regime as the particle stiffness is decreased.

VI. TRANSITION

The transition from a disordered to an ordered flow is an
intriguing phenomenon observed in the granular flow down
an inclined plane due to the decrease in the base roughness.
The transition appears to be a universal phenomenon which
is observed for different types of bases, including frozen-
particle bases consisting of frozen particles with random and
hexagonally ordered arrangements, or sinusoidal bases with
modulation in the streamwise and spanwise directions [40].
The base roughness is defined as the ratio of the base and
flowing particle diameters for frozen-particle bases, and as the
ratio of the amplitude of the base modulation and the flowing
particle diameter for sinusoidal bases. There is a change in
flow regime from a random to an ordered flow when the base
roughness decreases by less than 1%; in the case of frozen-
particle bases, this transition takes place when the roughness
decreases from 0.57 to 0.56 for a random frozen-particle base,
and from 1.35 to 1.34 for an ordered frozen-particle base. In
the case of sinusoidal bases, the transition roughness depends
on the wavelength of the sinusoidal modulation. The results
for transition due to base roughness have been explained
extensively earlier [37,39,40], and we provide a brief summary
of those results here to introduce the indicators used to infer
transition.

For both random and ordered flows, the flow properties in
the bulk are independent of the type of base roughness and the
base amplitude. However, there is a discontinuous change in
the flow properties when there is a transition from a random
to an ordered flow. These properties are shown for an ordered
frozen-particle base in Fig. 15. The ordered flow consists of
layers of particles parallel to the base sliding over each other, as
shown by the number density profiles in Fig. 15(a). The number
density is determined by counting the number of particles
with centers within a differential volume, and dividing by the
volume. The number density is independent of height when the
particles are uniformly distributed, but show sharp maxima and
minima when there is layering. The number density profiles in
Fig. 15(a) show that there is the abrupt onset of layering when
the base roughness is decreased from 1.35 to 1.34. There is
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FIG. 15. The variation with height of the number density (a), the
q6 order parameter (b), and the mean velocity (c) for the linear model
with dimensionless particle stiffness kn = 107, and for a hexagonally
ordered frozen-particle base with base particle diameter 0.5 [◦ in (b)
and (c)], 1.34 [thin line in (a), � in (b) and (c)], 1.35 [thick line in (a),
� in (b) and (c)], and 2.00 [� in (b) and (c)].

virtually no change in the number density profiles in the layered
state when the base roughness is decreased below 1.34, and
there is virtually no change in number density profiles in the
random state when the base roughness is increased above 1.35.
Within the layers, there is in-plane ordering, which is quantified
by the in-plane hexagonal order parameterq6 [37,39,40], which
is close to 0 in the random state and is 1 when there is hexagonal
ordering. The transition from random to a hexagonally ordered
layers is observed when the base particle diameter is decreased
from 1.35 to 1.34 for a hexagonally ordered base, as shown in
Fig. 15(b). There is also a dramatic difference in the mean
velocity profiles for the random and ordered states, as shown
in Fig. 15(c). The mean velocity profiles are well described
by Bagnold profiles for both ordered and disordered flows, but
for equal angle of inclination and particle properties, the mean
velocity in the ordered flow is about 10 times larger than that
in the random flow.

Here, we examine the effect of a change in the particle
stiffness on the order-disorder transition. Simulations are
carried out for a flat base, which is the limit of zero base
roughness for all the different base topologies. The flow
structure is examined as the stiffness of the interparticle
contacts is decreased systematically for the flow over a flat
base. The results are shown in Fig. 16. It is observed that for
both the linear and Hertzian contact models, the flow is ordered
for high particle stiffness. As the stiffness is decreased, the
transition disappears when the dimensionless particle stiffness
is decreased from 6×104 to 2×104 for the linear model, and
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FIG. 16. The variation with height of the number density [(a) and
(b)], the q6 order parameter [(c) and (d)], and the mean velocity [(e)
and (f)] for the linear model [(a), (c), and (e)] and the Hertzian model
[(b), (d), and (f)]. In panels (a), (c), and (e) particle stiffness kn = 107

[◦ in (c) and (e)], kn = 6×104 [thin line in (a), � in (c) and (e)],
kn = 2×104 [thick line in (a), � in (c) and (e)], and 5×102 [� in (c)
and (e)]. In panels (b), (d), and (f) particle stiffness kn = 108 [◦ in (d)
and (f)], kn = 6×105 [thin line in (b), � in (d) and (f)], kn = 2×105

[thick line in (b), � in (d) and (f)], and 2×103 [� in (d) and (f)].

from 6×105 to 2×105 for the Hertzian contact model. This
is shown by the disappearance of the maxima in the number
density profiles in Figs. 16(a) and 16(b), and the decrease
in the q6 order parameter in Figs. 16(c) and 16(d) from the
value close to 1 for hexagonal close packing, to a small value
when the particle stiffness decreases below the critical value.
This indicates a transition from an ordered to a random state
as the particle stiffness is decreased. This is also confirmed
by the mean velocity profiles in Figs. 16(e) and 16(f), which
decreases by a factor of 10 at the transition from the ordered
to the disordered states.

Simulations have been carried out for all types of bases,
including frozen-particle and sinusoidal bases, and it has
been observed that the transition occurs for the same particle
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stiffness shown in Fig. 16. When the particle stiffness is greater
than 6×104 for the linear model, a transition from a random
to an ordered state is observed when the base roughness is
decreased. When the particle stiffness is less then 2×104 for
the linear model, there is no transition and the flow is in the
random state independent of base roughness. For the Hertzian
model, there is transition when the particle stiffness is greater
than 6×105 when the base roughness is decreased, and the flow
over a flat base is found to be ordered. There is no transition
when the particle stiffness is decreased below 2×105, and the
flow is always disordered.

Thus, the transition phenomenon appears to be a char-
acteristic of hard-particle systems, and transition disappears
when the particle stiffness decreases below a threshold. This
threshold corresponds to the rheological threshold for progres-
sion from Bagnold to non-Bagnold rheology, reported in the
stress-strain rate (Fig. 3) and temperature-strain rate (Fig. 4)
graphs, and the progression of the scaling exponents in Fig. 5.
This threshold is different from the threshold for the transition
from the binary to multibody contact regime reported in the
force and energy distributions in Figs. 13 and 14.

VII. CONCLUSIONS

A. Volume fraction and coordination number

It is already well known, since the simulations of Silbert
et al. [4], that there is a lack of a one-to-one relationship
between the granular temperature and the volume fraction in
dense granular flows. Though the granular temperature in-
creases approximately linearly from top to bottom, the volume
fraction is a constant. This is because the increase in overburden
with depth is balanced by an increase in the agitation of the
particles, instead of an increase in the volume fraction. In the
present system with multibody contacts, it is found that there is
an increase in the coordination number and an approximately
linear increase in the average force per particle with depth in
order to balance the overburden, though the volume fraction is
a constant. It should be noted that the constant volume fraction
condition emerges from the invariance of the ratio of the shear
and normal stresses with height. If the Bagnold coefficients
are monotonic functions of volume fraction, it follows that the
volume fraction is invariant with height. However, there is no
such restriction on either the temperature, collision frequency,
or coordination number. This results in the unusual feature of
dense granular flows down an inclined plane that there is a
variation in the granular temperature and coordination number
with height even though the volume fraction is a constant for
sufficiently high particle stiffness.

The more surprising result here is the increase in the
coordination number as the particle stiffness is decreased.
Even though the coordination number increases from about
0.5 to about 2 when the particle stiffness is decreased from
108 to 104 for the linear contact model, and there is some
change in the mean velocity and granular temperature profiles,
there is no perceptible change in the volume fraction. This
implies that the volume-fraction dependence of the ratio of the
Bagnold coefficients shows no variation with particle stiffness,
though the individual coefficients do vary, and the coordination

number exhibits a relatively large variation. Further work is
required to better understand this behavior.

B. Rheology

There are two distinct rheological regimes depending on the
particle stiffness. When the stiffness is greater than a “rheology
threshold,” which is between 2×104 and 6×104 for the linear
contact model and between 2×105 and 6×105 for the Hertzian
contact model, the Bagnold rheology is found to be valid, and
all components of the stress are found to be proportional to the
square of the strain rate, (dux/dz)2. The granular temperature
is also proportional to (dux/dz)2. When the particle stiffness
is reduced below this threshold, the rheology is similar to that
of a power-law fluid with decreasing power-law exponent;
the exponent in the stress-strain rate relationship decreases
to about 1 and that in the granular temperature-strain rate
relationship decreases to about 1.5 for the lowest values of
particle stiffness that could be accessed here. Though this
appears to be similar to that for a Newtonian fluid, where the
stress is proportional to (dux/dz), it should be noted that all
components of the stress are found to be proportional to the
strain rate; in contrast, in Newtonian fluids, only the symmetric
traceless part of the stress is proportional to the strain rate,
while the pressure is fixed by the incompressibility condition.

The progression from Bagnold to non-Bagnold rheology
occurs when the coordination number is between 1.5 and 2
for both the linear and the Hertzian contact models. Clearly,
the Bagnold rheology is valid even when the particles are in
the multibody contact regime, and the coordination number
is not a good indicator of the rheology. Similarly, we also
find that the measures such as the magnitude of the resultant
force and total force on a particle do not show any indication
of the progression from Bagnold to non-Bagnold rheology.
The indicator that correlates best to the change in rheology
is the magnitude of the contact energy per particle and the
kinetic energy per particle. The contact energy per particle
decreases by 4–5 orders of magnitude as the particle stiffness
is increased by 8 orders of magnitude, whereas the granular
temperature shows a very modest decrease of less than 1 order
of magnitude. In the Bagnold regime, the contact energy per
particle is found to be smaller than the kinetic energy per
particle, even though the coordination number is greater than 1.
As the particle stiffness is decreased, the rheology progresses
to the non-Bagnold regime when the contact energy per particle
is comparable to the kinetic energy per particle. Thus, the ratio
of the contact and kinetic energies is a better indicator of the
rheology than the coordination number.

Another reliable indicator is the scaling of the contact and
kinetic energies per particle with height and with particle stiff-
ness. In the binary contact regime, we have derived scalings of
the ratio of the contact and kinetic energies per particle. These
scalings correlate best with the progression in the rheology as
the particle stiffness is decreased. When the particle stiffness
is above the rheological threshold, the scalings for the ratio of
contact and kinetic energies are identical to those predicted by
the binary collision approximation, even though the system is
in the multibody contact regime. When the particle stiffness
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is below the rheological threshold, the scaling laws are not in
agreement with the predictions for the binary collision regime.
Thus, there is a strong correlation between the scaling of the
energy ratio and the rheology.

The μ(I ) rheology has been widely used to model the flow
of dense granular materials [48–50], where the parameter μ

(ratio of the shear stress and pressure) is expressed as a function
of the inertia number I which is proportional to the strain rate
scaled by the square root of the pressure. The μ(I ) rheology
follows naturally if the stresses satisfy Bagnold law. In Bagnold
rheology, both the pressure and shear stress are proportional to
(dux/dz)2 for the inclined plane flow. Therefore, the ratio μ =
(σxz/p) can be written as function of I = (d(dux/dz)/

√
p/ρ),

and the function μ(I ) depends only on the volume fraction in
the hard-particle limit. Here, d is the particle diameter and ρ is
the density. The present analysis establishes a lower threshold
for the particle stiffness, below which the Bagnold law is not
valid. When the particle stiffness is below this threshold, there
is a power-law dependence of the pressure and stress on the
strain rate with equal exponents. This would imply that theμ(I )
rheology would also need to be modified for particle stiffness
below the threshold, and the parameter I would need to be
redefined by scaling the pressure with the appropriate power
of the strain rate.

C. Force and energy distribution

The present study has revealed that the contact force and
energy distributions are invariant with depth for fixed particle
stiffness and angle of inclination, even though the magnitudes
of the contact energy varies by more than 1 order of magnitude
when the height is varied by 60 particle diameters. This
invariance with height is observed for the distributions of all
the dynamical contact properties such as the tangential and
normal forces, the force magnitude, and the contact energy. The
invariance of the distribution function suggests that the entire
flow is in one single contact regime independent of height. If
all the force distributions have an identical form independent
of height, the particle weight is balanced by the variation in
the average of the distribution.

The form of the contact force distribution is strongly
dependent on the particle contact model. The peak of the force
distribution is at zero force for the Hertzian contact model, but
it is at a nonzero force for the linear contact model. The force
distributions do have an exponential decay in the high-force
limit, but the details of the distribution in the low-force limit
do depend on the contact model. The difference in the form
of the force distribution could be due to the following. For
the Hertzian contact model, the restoring force scales as δ

3/2
n ,

where δn is the normal displacement. Therefore, the restoring
force for small δn is much smaller than that for the linear model,
where the restoring force is proportional to δn. The contacts are
much softer for small displacements, and due to this there is
a maximum in the force distributions around zero force. In
comparison, the contacts for the linear force model are stiffer
for small displacements, and this results in a larger probability
at finite force values.

The contact energy distributions for both the models are
found to be well fitted by Gamma distributions with different

shape parameters and different power-law divergences at zero
energy. This universality in the contact energy distributions has
not been reported before.

With decreasing particle stiffness, the change from the
binary to the multibody contact regime is clearly reflected in
the force and energy distributions. There is a distinct shift in
the distribution function when the scaled particle stiffness is
decreased from 107 to 106 for the linear contact model and
108 to 107 for the Hertzian contact model; in both cases, the
coordination number is greater than 1 for the lower particle
stiffness and less than 1 for the higher particle stiffness.
The shift in the distribution is clearly visible for the linear
contact model, and is discernible even for the Hertzian contact
model. Further analysis is required in order to predict the
forms of the force and contact energy distribution functions,
especially the Gamma distributions for the contact energy
distribution.

Thus, there are two distinct thresholds that are revealed by
the present study. The contact regime threshold between the
binary and multibody contact regime is characterized by the
increase in the coordination number above 1. At this threshold,
there is a distinct shift in the forms of the force and energy
distributions. However, there is no shift in the rheology or the
ratios of the kinetic and contact energies per particle.

There is a different rheological threshold between Bagnold
and non-Bagnold rheology. At this threshold, the ratio of
the contact and kinetic energy per particle passes through 1;
the contact energy is larger (smaller) than the kinetic energy
below (above) this threshold. A strong correlation is found
between the rheology and the scalings for the ratio of the
contact and kinetic energy per particle. This ratio follows the
scalings applicable for the binary contact regime above the
rheological threshold, but it deviates from these scalings below
this threshold. The system is already in the multibody contact
regime at the rheological threshold, though the scaling of the
energy ratio is identical to that in the binary contact regime.

D. Transition

One of the most important results of the present analysis
is that there is a “transition threshold” coinciding with the
“rheological threshold” in the particle stiffness. Above this
threshold, there is a discontinuous transition from a disordered
flow to an ordered flow as the base roughness is decreased.
Below this threshold, there is no transition, and the flow over
even a flat base with no roughness is in the disordered state.
Thus, transition is observed only for systems which follow
Bagnold rheology, and is not observed for systems where the
rheology is different. This confirms that the transition phe-
nomenon is exhibited only by hard-particle systems, similar to
the crystallization transition in a gas of elastic hard particles at
equilibrium.
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