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Patterning of a cohesionless granular layer under pure shear
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The response of a thin layer of granular material to an external pure shear imposed at its base is investigated.
The experiments show that, even for noncohesive materials, the resulting deformation of the material is
inhomogeneous. Indeed, a novel smooth pattern, consisting of a periodic modulation of the shear deformation of
the free surface, is revealed by an image-correlation technique. These observations are in contrast with the previous
observation of the fracture pattern in cohesive granular materials subjected to stretching. For cohesive materials,
the instability is due to the weakening of the material which results from the rupture of capillary bridges that
bond the grains to one another. For noncohesive materials, the rupture of the capillary bridges cannot be invoked
anymore. We show that the instability results from the decrease of friction on shearing. PACS: 89.75.Kd: Pattern
formation in complex systems; 83.60.Uv: Rheology: fracture; 45.70.Qj: Pattern formation in granular matter
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I. INTRODUCTION

Cohesive granular materials are characterized by a network
of liquid bridges responsible of attractive capillary forces
between particles [1–3]. Various regimes of cohesion are
identified depending on the liquid content, leading to different
scalings for the cohesion force [2,4,5]. Regardless of fluid
content, a common feature of cohesive material is a weakening
due to a decrease of both the associated adhesion force when
a single bridge elongates [6] and the overall number of bonds
which collapse when excessively stretched [7]. This effect,
which we referred to as strain softening [8], is observed above
a critical stress associated with the cohesion due to the capillary
bridges at grain contacts [9] and is responsible for the relatively
low range of plasticity in cohesive granular materials.

In a recent work [8] we explored the tensile response of
a horizontal layer of cohesive material subjected to homoge-
neous deformation in its bottom plane. We showed that “strain
softening” is responsible for the nearly periodic modulation
of the strain field along the pulling axis that develops as
soon as the external deformation is imposed. The associated
wavelength depends linearly on the layer thickness, is almost
independent of particle size, and depends linearly on the
relative humidity. The flexural deformation of a cohesive
granular layer reveals similar features [10]. To establish a
more fundamental connection between the pattern features and
the intrinsic properties of the granular material, we developed
experimental methods for the assessment of the cohesion and
shear modulus as function of the particles size and relative
humidity [11].

Here we explore the response of a granular layer to pure
shear at its base. For important cohesion, we observe that cracks
appear and form a periodic network. However, when cohesion
is reduced, the layer deforms without fracturing and a pattern,
consisting in a rather smooth, periodic, modulation of the layer
thickness, is observed, instead. For vanishing cohesion, the

pattern does not disappear but the amplitude of modulation is
so small that it is only revealed by the use of image correlation
techniques. A simple model including, besides cohesion, the
decrease of friction due to the induced dilation of the material
accounts for the typical size of the structure.

II. EXPERIMENTAL SETUP AND PROTOCOLS

The experiment consists in imposing an in-plane defor-
mation at the base of a thin layer of granular material.
The mechanical system is composed of four linear actuators
(Thorlabs Z825BV), placed in the x and y axes (Fig. 1) (see
Ref. [11] for details). Actuators are attached to four plexiglass
blocks, respectively, each of them holding one arm of a
latex membrane cut in cross-shape (thickness 0.5 mm, width
40 cm). The membrane leans on a horizontal table that prevents
bending due to weight and ensures planar deformation. Pure
shear deformation at the center is obtained by stretching two
opposite arms and by shortening the arms in the perpendicular
direction at the same velocity. We checked the amplitude
and homogeneity of the deformation through digital image
correlation.

The sample is prepared by pouring granular material into
a circular mold of given height h (from 1 to 10 mm to within
0.1 mm) and internal diameter 7 cm, leaning on the membrane,
at the center. The excess of grains is gently removed through the
horizontal displacement a rod. After removal of the mold, we
obtain a disk of granular material of well-defined thickness h.
We used either glass or brass spherical beads, the large density
of brass making it possible to explore the vanishing small
cohesion regime, and the weight of the grains overcoming more
easily the capillary forces. Two ranges of particle diameter d

are considered for both materials: 0–45 or 150–200 μm for
glass, and 75–106 or 212–300 μm for brass.

The whole experimental device is placed in a chamber
whose atmosphere is maintained at constant relative humidity,
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FIG. 1. The experimental setup. The four arms of a latex mem-
brane are driven by computer-controlled actuators. At center, arrows
show the displacements of the membrane. Pure shear strain is achieved
to better than 1% over a surface area of 50 cm2. Inset: Typical
modulation of shear strain at the free surface (brass beads,d = 75–106
μm, h = 3 mm, θ = 0.14 and RH = 39%).

RH [equilibrated with saturated salt solutions and monitored
using a humidity meter (Lutron HT-3015)]. Prior to any
experimental run, particles are sonicated in acetone, rinsed
in pure water, and dried to prevent undesired cohesion due to
contamination. Cohesion is measured, in addition, as described
in Ref. [11].

The free surface of the sample is imaged from above by
using a digital camera (Nikon DMX1200). An annular light
source (ring of LEDs, Fig. 1) placed 1 cm above the sample, at
center, provides the grazing lighting adequate to observation
of tiny displacements at the layer surface.

The typical experimental run consists in applying the pure-
shear deformation at the membrane in a quasistatic manner
and in determining precisely the displacement fields at the free
surface of the granular layer. In practice, the imposed shear
strain θ is increased by constant steps �θ of the order of
10−3. After each step, the free surface at rest is imaged with a
resolution of 3840 × 3072 px2. In order to extract the resulting
displacement field, the following correlation procedure is then
applied to the successive images: We define a sliding window
(typical surface area 1.5 mm2, containing enough particles to
be considered as a coarse grain), and scan the whole image
(typical displacement 0.2 mm). The procedure achieves a
spatial resolution of the order of 1 mm and a resolution of
the order of a few μm in the local grain displacement. Shear
and vertical vorticity fields are obtained through differentiation
of the displacement field [11].

III. EXPERIMENTAL RESULTS

When the thickness, h, and the cohesion, σs , are sufficiently
large, we observe fracturing of the granular layer (Fig. 2).
The fractures organize in rather periodic pattern. The typical
distance between neighbor fractures, λ, increases with both the
layer thickness and cohesion.

FIG. 2. (a) Pattern structure for various h and humidity. RH

(σs): 39% (17 Pa), 74% (37 Pa), 89% (144 Pa), scale bar = 1 cm.
(b) Pattern wavelength,λ, for increasingh at various cohesion (relative
humidity, RH ). The lines are from Eq. (4) with parameters reported
in Table I (glass beads, d = 0–45 μm, �θ = 1.5 × 10−3).

It is of particular interest that a pattern is still present even
when fracturing is not observed in Fig. 2 (h = 3 mm and RH =
39 %, for instance). This first observation is confirmed by the
results obtained with larger grains (Fig. 3): Even if not visible
on simple images of the free surface, the squared patterns is
revealed by the shear or vorticity fields, whatever the thickness
and relative humidity in the experimental range (Fig. 4). In
addition, note that, as expected, the typical distance between
neighboring fractures is no longer a function of RH in the limit
of vanishing cohesion [Fig. 3(b)].

The previous results reveal that, on shear, the granular
layer is subjected to an instability leading to a modulation of
the in-plane strain field. A sensitive method to determine the
onset of instability consists in considering the amplitude of
the modulation of the grain displacement at the free surface
as function of the shear-strain imposed in the bottom plane. In
order to measure a representative averaged amplitude of the
modulation, we select a line profile along a perpendicular to
the fractures. The displacement along the fracture, �d, is then
measured, revealing a well-defined modulation at the pattern
wavelength, λ. In Fig. 5, we report the averaged amplitude of
such modulation, < �d >, as a function of θ . We observe that
< �d > is nearly zero for small θ but significantly increases
for θ above a critical value. In addition, we note that the
maximum of the averaged amplitude < �d > increases with
the layer thickness, h. Even if the behavior of the onset as
function of h is difficult to assess from our experimental
data sets, the onset of instability is clearly smaller for larger
cohesion, at a given h.

In order to explore the regime of vanishing cohesion in
the same range of grain size, we now use brass particles
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FIG. 3. (a) Pattern structure for various h and humidity RH

(σs): 39% (0.5 Pa), 74% (0.8 Pa), 89% (1.9 Pa), scale bar = 1 cm.
(b) Wavelength λ for increasing h at various cohesion. The lines are
from Eq. (4) with parameters reported in Table I (glass beads, diameter
150–200 μm, �θ = 1.5 × 10−3).

and reduce the relative humidity as much as possible. In a
dry system, the cohesion originates from the Van der Waals
attraction force between the particles. We estimate from the
Hamaker’s constant, AH ≈ 4 × 10−19 J, and from the typical
size of the asperities at the particles surface, D ≈ 200 nm
(obtained with an atomic force microscope [11]), the tensile
stress associated with an individual asperity, separated from a
flat surface by a distance z of atomic scale (z = za ≈ 1 nm) is
about AHD/(3d2z2

a) ≈ 0.02 Pa. Considering that cohesion is
due to the contribution of all asperities, of surface density ρs , in
the region of contact, assuming the separation z = za + 2r2/d

at a distance r from the center of the contact region, we get
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FIG. 4. Surface shear, εxy , and vorticity, ωz, fields for two distinct
values of thickness for θ = 0.083 (glass beads, diameter 150–200
μm, �θ = 1.5 × 10−3, RH = 39 %).

FIG. 5. Amplitude < �d > of the modulation vs. shear-strain θ .
(a) RH = 39% and (b) RH = 74% (Glass beads, diameter 0–45 μm,
�θ = 1.5 × 10−3).

σs ≈ πAHDρs/(3dza). From Ref. [11], we estimate that the
distance between asperities is of about 5D, such that ρs ≈
1/(5D)2 and, thus, σs ≈ 1 Pa. This value is much smaller
that the typical pressure P = ρgh ≈ 400 Pa (with ρb =
8 × 103 kg/m3 and h ≈ 0.5 cm) at the base of the granular
layer. When shear is imposed to a such noncohesive granular
material, the cellular pattern is revealed by image correlation
analysis only. The vorticity fields are the most suitable to reveal
the structure (Fig. 6). We again observe that the wavelength,
λ, increases with the layer thickness, h. We also note that λ

increases with the grain size.

IV. ANALYSIS

Our analysis of the system behavior is based on the sim-
plest heuristic model accounting for friction and, eventually,
cohesion.

When a dry granular material is deformed, the main ener-
getic cost is from the solid friction between the grains [8,10,11].
The simplest way to account for friction is to write that when
two surfaces are displaced with respect to one another, the
energetic cost is proportional to the friction coefficient μ and
local pressure P . However, the friction is known to decrease
on shear due to the dilation of the material, an assumption
that is well supported by early works [12]. Starting from the
initial value μs previous to shear, the friction coefficient is
decreased by �μ for a typical displacement δ (of the order of
the grain radius) of the two surfaces in regard. Then, the fric-
tion coefficient remains constant and equal to μd ≡μs −�μ.
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FIG. 6. Vorticity fields ωz for brass particles. (a) d = 75–106 μm
(h = 5 mm, θ = 0.14, and RH = 39%). (b) Wavelength λ vs. thick-
ness h, (�) d = 75–106 μm and (◦) d = 212–300 μm. The lines
are from Eq. (4) with parameters reported in Table II (brass beads,
�θ = 3.6 × 10−3, θ = 0.14, and RH = 39%).

Here, for simplicity, we will assume that the frictional coef-
ficient is constant and equal to μ = μd once the material is
sufficiently deformed, but that an additional energetic cost,
� = �μPδ, is to be paid to initially deform the material.

In a dry granular material, the local pressure P is due to
the weight of the grains only. We have, at a distance z from
the free surface, P = ρgz. In order to account for the results
obtained for small, but not negligible, cohesion, we generalize
slightly the model by introducing the energetic cost associated
with the liquid bridges. To do so, we take into account that
the liquid bridges are responsible for a tensile pressure σs ,
independent of the depth z, which must be added to the pressure
P . However, when the material is deformed, σs works only
on a distance db that is of the order of the bridge size. For
the humidity content considered here, the typical size of the
capillary bridge is of the order of the size of the asperities at the
grain surface. Thus, db � δ. When the relative displacement of
two grains exceeds δ, the bridges are broken. Considering that
the force associated with the tensile pressure only works over
the distance db, we obtain that the contribution of the cohesion
to � is of the order of (μ + �μ)σsdb. In the following, we
thus consider that � = �μPδ + μσsdb, where we considered
�μ � μ.

Let us assume that, on uniform shear in the bottom plane,
the granular layer forms a series stripes of width λ that are
not deformed but separated from the membrane and from one
another by shear bands. The energetic cost associated with the

deformation is thus the sum of the cost of the shear band in
the bottom plane, plus the cost of the vertical shear bands.
At the bottom, we have Eh = �h λ + μρgh

∫ +λ/2
−λ/2 θx dx. The

first contribution �h λ is the cost of the fracture at the bottom
which is the sum of the excess energy until the liquid bridges
are broken, μσsdb, and of the excess energy to initiate the
shear deformation, �μρgh δ. The second contribution is that
of friction, the local pressure being P = ρgh. Considering
the dimensionless cost per unit length Eh ≡ Eh/(μρgh λ), we
write:

Eh = ε db + �μ

μ
δ + θ

4
λ. (1)

where we introduced ε ≡ σs/(ρgh). In the same way, at
the vertical walls between the bands, we have Ev = �v h +
μρg [

∫ h

0 (h − z) dz] θλ, where the cost of the vertical wall is
�v = μσsdbh + �μρg(h/2) δh (the pressure P is averaged
over the thickness). The dimensionless cost per unit length is

Ev = 1

2

(
2ε

db

λ
+ �μ

μ

δ

λ
+ θ

)
h. (2)

The sum Eh + Ev is the total cost (i.e., the energy lost by
friction) per unit length in the volume on deformation of the
granular layer.

In order to determine if the layer is unstable (with respect
to the modulation with the wavelength λ) and to obtain the
most unstable wavelength, we first estimate the energy Es that
would be elastically loaded in the system, supposed to deform
homogeneously, for the same imposed shear at the bottom.
The energy of this homogeneous state is obtained, provided
the knowledge of the shear modulus G of the granular layer,
by writing Es = λ

∫ h

0
1
2 Gθ2dz.

In the absence of cohesion, G = α P where α =
Ed/(6J lR) [11]. The prefactor α thus depends on physical
properties of the grains, such as the Young modulus E, the
yield stress J , and the typical size of the surface asperities lR .
We have

Es = 1

4

α

μ
(1 + 2ε) h θ2, (3)

where the coefficient μ appears only because our choice of the
energy scale (i.e., μρghλ).

In order to determine the onset of the instability and the most
unstable wavelength, we compare the total loss by friction,
Eh + Ev , and Es . We assume that the energy that would be
loaded elastically in absence of modulation, Es , is entirely
dissipated by friction, which is somehow equivalent to the
application of a principle of maximum energy release rate
commonly used in fracture theory [13]. We thus write Eh +
Ev = Es , which is reasonable for a stiff system (G � μP ). We
thus have a first relation between θ and λ. Then we obtain the
onset from the value of λ that minimizes θ . We get that, at the
onset, θλ2 = 2 h [2εdb + δ�μ/μ] together with:

(
λ

h

)4

+
(

λ

h

)3

+
(

λ

h

)2

= α

μ

�μ

μ

δ

h

(
1 + 2

σs

ρgh

)
, (4)

where we took into account that ε db/δ � 1.
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TABLE I. Parameter αδ�μ/μ2 vs. σs for glass particles.

Glass 0–45 μm 150–200 μm

σs (Pa) 17 37 144 0.5 0.8 1.9
σs/ρgh0 0.17 0.37 1.44 0.005 0.008 0.019
αδ�μ

μ2 (mm) 2.85 5.0 — 8.3 14.1 13.6

In order to contrast predictions from our theoretical ar-
guments with the experimental results, we adjust the wave-
length measured with glass beads for several cohesions using
αδ�μ/μ2 as single fitting parameter (Figs. 2 and 3) and report
the results in Table I. The importance of cohesion expressed
trough the ratio σs/ρgh0 is shown in Table I, where the typical
thickness of the layer is h0 = 5 mm. The above analysis,
along with the obtained values of σs/ρgh0 ≈ 1, indicates
that the characteristics of the structures observed with small
particles are strongly influenced by the cohesion (Fig. 2).
On the contrary, for larger particles, σs/(ρgh0) � 1, and null
influence of the cohesion is expected in this limit. According
to Eq. (4), all data presented in Fig. 3 collapse together within
the errors bars. Finally, we report in Table II a summary of all
the experimental parameters. The typical size lR of the surface
asperities for glass and brass particles are obtained by atomic
force measurements as discussed in Ref. [11]. The values of
the E/J for glass and brass are from the literature. We assume
a value of frictional coefficient μ = 0.5 and �μ = 0.1 in all
cases and estimate the characteristic length δ. We observe that
δ is of the order of a few micrometers, thus a fraction of the
grain size. Even if no clear dependence of δ on the experimental
parameters can be deduced from our measurements, the order
of magnitude is in agreement with the physical meaning of
this parameter, i.e., the relative displacement of two granular
surfaces with respect to one another for the system to dilate,
and thus to reach the constant value μ of the friction coefficient.
Moreover, we note that such distance δ is compatible with a

TABLE II. Summary of the experimental parameters.

Glass Brass

d (μm) 0–45 150–200 75–106 212–300
lR (μm) 0.1 0.07 1 1
E/J 25–40 25–40 250–300 250–300
α 1700 7500 3000 8500
δ (μm) ∼5 ∼4.4 ∼8 ∼11

typical shear deformation θ at the onset of the order of δ/d and
thus of a few percentages, as observed experimentally.

V. CONCLUSIONS

In conclusion, we have shown that shear deformation of
a granular material strongly depends on the cohesion. For
σs/P � 1, the material breaks in a series of parallel cracks.
In contrast, for σs/P � 1, the granular layer deforms without
fracturing, but a square pattern consisting of a smooth, periodic,
modulation of the layer thickness is observed. At low cohesion
the weakening of the liquid bridges, which is at play at
large cohesion, cannot be invoked anymore. We show that
the decrease of the friction, associated with the shear-induced
dilation of the material, can explain the instability observed in
dry materials. Our model recovers the correct dependence of
the characteristic length of the pattern on the layer thickness.

ACKNOWLEDGMENTS

The authors acknowledge support from LIA-MSD, CNRS-
France, and Conicyt-Chile through the program Fondecyt
Anillo ACT-1410. F.M. acknowledges support through Conve-
nio de Desempeño No. 1555 UdeSantiago and from the École
Normale Supérieure de Lyon (ENS-Lyon) and H.A. the support
of Fondecyt postdoctoral program under Grant No. 3160341.

[1] Z. Fournier et al., J. Phys.: Condens. Matter 17, S477 (2005).
[2] M. Scheel, R. Seemann, M. Brinkmann, M. Di Michiel, A.

Sheppard, B. Breidenbach, and S. Herminghaus, Nature 7, 189
(2008).

[3] L. Bocquet, E. Charlaix, S. Ciliberto, and J. Crassous, Nature
396, 735 (1998).

[4] S. Nowak, A. Samadani, and A. Kudrolli, Nat. Phys. 1, 50 (2005).
[5] T. C. Halsey and A. J. Levine, Phys. Rev. Lett. 80, 3141 (1998).
[6] J. Crassous, E. Charlaix, and J. L. Loubet, Phys. Rev. Lett. 78,

2425 (1997).
[7] C. D. Willett, M. J. Adams, S. A. Johnson, and J. P. K. Seville,

Langmuir 16, 9396 (2000).

[8] H. Alarcón, O. Ramos, L. Vanel, F. Vittoz, F. Melo, and J.-C.
Géminard, Phys. Rev. Lett. 105, 208001 (2010).

[9] T. Gröger, U. Tüzün, and D. M. Heyes, Powder Tech. 133, 203
(2003).

[10] J.-C. Géminard, L. Champougny, P. Lidon, and F. Melo, Phys.
Rev. E. 85, 012301 (2012).

[11] H. Alarcón, J.-C. Géminard, and F. Melo, Phys. Rev. E. 86,
061303 (2012).

[12] F. Tapia, D. Espíndola, E. Hamm, and F. Melo, Phys. Rev. E 87,
014201 (2013).

[13] F. Francfort and J.-J. Marigo, J. Mech. Phys. Solids 46, 1319
(1998).

012901-5

https://doi.org/10.1088/0953-8984/17/9/013
https://doi.org/10.1088/0953-8984/17/9/013
https://doi.org/10.1088/0953-8984/17/9/013
https://doi.org/10.1088/0953-8984/17/9/013
https://doi.org/10.1038/nmat2117
https://doi.org/10.1038/nmat2117
https://doi.org/10.1038/nmat2117
https://doi.org/10.1038/nmat2117
https://doi.org/10.1038/25492
https://doi.org/10.1038/25492
https://doi.org/10.1038/25492
https://doi.org/10.1038/25492
https://doi.org/10.1038/nphys106
https://doi.org/10.1038/nphys106
https://doi.org/10.1038/nphys106
https://doi.org/10.1038/nphys106
https://doi.org/10.1103/PhysRevLett.80.3141
https://doi.org/10.1103/PhysRevLett.80.3141
https://doi.org/10.1103/PhysRevLett.80.3141
https://doi.org/10.1103/PhysRevLett.80.3141
https://doi.org/10.1103/PhysRevLett.78.2425
https://doi.org/10.1103/PhysRevLett.78.2425
https://doi.org/10.1103/PhysRevLett.78.2425
https://doi.org/10.1103/PhysRevLett.78.2425
https://doi.org/10.1021/la000657y
https://doi.org/10.1021/la000657y
https://doi.org/10.1021/la000657y
https://doi.org/10.1021/la000657y
https://doi.org/10.1103/PhysRevLett.105.208001
https://doi.org/10.1103/PhysRevLett.105.208001
https://doi.org/10.1103/PhysRevLett.105.208001
https://doi.org/10.1103/PhysRevLett.105.208001
https://doi.org/10.1016/S0032-5910(03)00093-7
https://doi.org/10.1016/S0032-5910(03)00093-7
https://doi.org/10.1016/S0032-5910(03)00093-7
https://doi.org/10.1016/S0032-5910(03)00093-7
https://doi.org/10.1103/PhysRevE.85.012301
https://doi.org/10.1103/PhysRevE.85.012301
https://doi.org/10.1103/PhysRevE.85.012301
https://doi.org/10.1103/PhysRevE.85.012301
https://doi.org/10.1103/PhysRevE.86.061303
https://doi.org/10.1103/PhysRevE.86.061303
https://doi.org/10.1103/PhysRevE.86.061303
https://doi.org/10.1103/PhysRevE.86.061303
https://doi.org/10.1103/PhysRevE.87.014201
https://doi.org/10.1103/PhysRevE.87.014201
https://doi.org/10.1103/PhysRevE.87.014201
https://doi.org/10.1103/PhysRevE.87.014201
https://doi.org/10.1016/S0022-5096(98)00034-9
https://doi.org/10.1016/S0022-5096(98)00034-9
https://doi.org/10.1016/S0022-5096(98)00034-9
https://doi.org/10.1016/S0022-5096(98)00034-9



