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Localized instabilities and spinodal decomposition in driven systems in the presence of elasticity
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We study numerically and analytically the instabilities associated with phase separation in a solid layer on
which an external material flux is imposed. The first instability is localized within a boundary layer at the exposed
free surface by a process akin to spinodal decomposition. In the limiting static case, when there is no material flux,
the coherent spinodal decomposition is recovered. In the present problem, stability analysis of the time-dependent
and nonuniform base states as well as numerical simulations of the full governing equations are used to establish
the dependence of the wavelength and onset of the instability on parameter settings and its transient nature as
the patterns eventually coarsen into a flat moving front. The second instability is related to the Mullins-Sekerka
instability in the presence of elasticity and arises at the moving front between the two phases when the flux is
reversed. Stability analyses of the full model and the corresponding sharp-interface model are carried out and
compared. Our results demonstrate how interface and bulk instabilities can be analyzed within the same framework
which allows us to identify and distinguish each of them clearly. The relevance for a detailed understanding of both
instabilities and their interconnections in a realistic setting is demonstrated for a system of equations modeling

the lithiation and delithiation processes within the context of lithium ion batteries.

DOI: 10.1103/PhysRevE.97.012801

I. INTRODUCTION

Localized instabilities in phase transformations in nonequi-
librium systems have been investigated for a long time. Pos-
sibly the most well-known example is the Mullins-Sekerka
interfacial instability of solidifying systems [1,2], which has
also been studied in the presence of elasticity for coherent
interfaces [3,4]. Similar interactions of a diffusional instability
with elasticity have also been intensely studied and are well
known as the Asaro-Tiller-Grinfeld instability [5—7] resulting
from the competition of surface diffusion and stress relaxation.

Spinodal decomposition in the bulk is another common
phenomenon that can be understood as an instability in
phase-separating systems. The celebrated theory of Cahn and
Hilliard [8,9] gave a foundation for the understanding of this
phenomenon as a bulk instability. Through spinodal decompo-
sition a system phase separates; e.g., in a binary system, regions
with a higher concentration of solute are instantaneously
created. While it is well known that the Cahn-Hilliard approach
has limitations [10], the approach remains very useful for early
stages of spinodal decomposition, allowing the incorporation
of additional effects that may facilitate or suppress the instabil-
ity. Most common in material science are effects of elasticity,
anisotropy [9,11], or surface-induced spinodal decomposition
[12,13]. In addition, the coupling of spinodal decomposition
with elasticity in thin films has also received much attention in
connection with defects [14—16] and also with surface insta-
bilities, in particular the Asaro-Tiller-Grinfeld instability [17].
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Recently, the study of the interaction of spinodal decom-
position and elasticity has intensified due to newly discovered
localization effects. Phase-field simulations of thin films have
shown that the instability tends to be localized first near the free
surface of the film [18-20]. A similar result had been reported
by Ipatova et al. [14], who showed that due to elastic effects
spinodal decomposition can be localized exponentially close to
the surface in elastically anisotropic epitaxial films. Moreover,
this exponentially localized surface mode can become unstable
even when the bulk is stable [21]. The concentrations at which
this mode is unstable lay between the classical (chemical)
spinodal and the spinodal modified by elastic effects (coherent
spinodal). This type of localized instabilities seems to underly
a number of fundamental processes such as the stability of
grain boundaries in phase-separating systems that are currently
receiving much attention [22,23], where an understanding of
localized instabilities in the presence of coherency strain is of
capital importance.

In addition, technological applications of spinodal decom-
position in thin films are emerging, ranging from a means to
engineer the mechanical properties of a thin film [24] to a
technique for obtaining optically active silicon nanoparticles
[25]. The initial motivation of the present study concerns an
instability during the lithiation and delithiation process of
phase-changing electrodes used, for example, in lithium-ion
batteries [26]. It has long been known that electrode materials
such as LiFePO, undergo phase separation when lithiated or
delithiated, and this has been studied using extensions of the
Cahn-Hilliard model [27,28]. Some promising high-capacity
electrode materials such as amorphous silicon (a-Si) are known
to also undergo two-phase lithiation [29]. However, doubts
remain regarding the mechanical properties, which have been
tested, for instance, in the experiments of Sethuraman et al.
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[30]. Recently, it has been conjectured that phase separation
should be taken into account to explain the observed mechani-
cal properties [26], and a simplified model for the experimental
setup in Ref. [30] was developed. The model describes a thin
layer of a-Si that has been grown on a crystalline substrate and
is lithiated from the free surface. The increasing concentration
of lithium in the layer causes the volume of the layer to
increase, and when the concentration is high enough the system
undergoes phase separation and a highly lithiated phase is
created near the free surface, showing a periodic structure for
some values of the system parameters. As the pattern moves
into the amorphous layer under continued flux, it coarsens
into a flat front that moves into the layer. If the flux is
reversed, this front undergoes an interfacial instability. Since
these instabilities emerge within nonuniformly driven systems,
it is necessary to investigate the connection of localization of
instabilities near the free surface with interfacial instabilities
using a unified framework.

In order to study this instability, we use a viscous Cahn-
Hilliard model [31] to model phase separation and couple the
dynamics of the concentration with elasticity using what is
usually referred to as the Larché-Cahn prescription [32-34].
We also use the sharp-interface limit of this model [35], which
is valid once phase separation has taken place. Comparing
the results of the phase-field model with the sharp-interface
model allows us to, on the one hand, validate the stability
calculation and, on the other hand, show how the localization
of the instability occurs in the phase-field model.

We solve numerically the model in two dimensions and
study the development of an instability related with spinodal
decomposition, but in the presence of a driving flux that further
confines it to the free surface. We study the instability by
computing the eigenvalues and eigenmodes of the linearized
system for a laterally unbounded layer, in the “frozen-time” or
adiabatic approximation [36,37]. Additionally we study the
stability of a receding front using the same technique and
relate it with the stability of the front as described by the
sharp-interface model.

In Sec. II, we give a summary description of the model used,
and in Sec. III, we study the linearized model. In Sec. IV, we
give a brief description of the numerics, and in Secs. V and VI
we present the numerical results of the direct simulation and
the different stability calculations and discuss them.

II. THE MODEL

In this section, we introduce the model used. This is a
model for the lithiation of a layer of amorphous silicon that
has been described elsewhere [26], and hence it is not our goal
to describe in detail the derivation of the model.

In our description, we have ¢, a dimensionless concentration
of solute (the local molar fraction of lithium) inside of a
layer of amorphous silicon (see Fig. 1). We assume that the
deformations are small, and hence we can use linear elasticity.
The strain tensor ¢;; is defined as

€ = %(a,u, + aiu_,-), 2.1
in terms of the deformation u, with the indices i,j running
over {x,y,z}. We will use nevertheless the plane strain approx-
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FIG. 1. Scheme of the amorphous silicon layer.

imation, and hence u#, = 0 and all derivatives with respect to
z cancel. The elastic energy is defined as

W = %Cijkz(éij - G?j)(ekl - 6;?;),

where the summation is implied, and C;;4; is the fourth-order
elasticity tensor. Since the material of interest is amorphous,
we will assume it to be fully isotropic. The stress-free strain or
eigenstrain is defined as e?j = ah(c)d;;, where the constant o
is the maximum stress-free strain and /(c) is an interpolating
monotone function such that #(0) = 0 and i#(1) = 1. In accor-
dance with Vegard’s law [38], we will take below h(c) = c,
but we keep the function 4 (c) to make the formulation slightly
more general. The stress is defined as follows:

(2.2)

aw
0ij = o = Cijia(€xt — 61?1)
ij
E(c) v
“1+v [Ei/‘ — e+ Ty (- E’(‘)")Sij]’ @

where E(c) is Young’s modulus (which depends on the con-
centration) and v is Poisson’s ratio. For the problem at hand,
we assume that Young’s modulus depends on the concentration
following E(c) = Esi + g(c)(EvLisi — Esi), with the extreme
values being Es; for pure amorphous silicon (¢ = 0) and Ey; g;
for fully lithiated a-Si (¢ = 1). The interpolating function
g(c) must then fulfill g(0) =0 and g(1) = 1, and is chosen
below to be a linear function, a choice compatible with the
results of Ref. [39]. The value of v is not expected to show a
strong dependence with respect to the concentration, also in
accordance with Shenoy et al. [39].
The total free energy of the layer reads

F= f <%y8|Vc|2 n gf(c) n W(e,-j,c)>dxdy, 2.4)
Q

where the homogeneous free energy density f(c) = c*(1 —
c)?/4 and W(e; ,¢) 1s the elastic energy density as defined in
Eq. (2.2). The constant y carries the dimensions of energy
over length and the parameter ¢ is proportional to the interface
thickness. The chemical potential reads

8F
W= e —yeVic+ gf/(c) + 3. Wi(eij,0),

and we use the following equation for the dynamics of the
concentration:

(2.5)

dc =MV + xed,c), (2.6)

where M is aconstant mobility and y is the viscosity parameter.
Equation (2.6) would have the familiar form of the Cahn-
Hilliard equation but for the last term, the viscous term [31].
While this term is not commonly used in Cahn-Hilliard-like
models, it is important as it captures part of the nonequilibrium
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kinetics of the interface. Gurtin [40] showed that such a term
appears naturally when introducing 9, c in the list of constitutive
variables, and it has been shown to guarantee a positive entropy
production at the interface in the sharp-interface limit [41]. The
chosen scaling from that term with ¢ follows similarly from the
sharp-interface limit of this model (see Ref. [35]). Equations
(2.6) and (2.5), together with the mechanical equilibrium
condition

Bja,»j = O, (27)

are the equations that define the dynamics of our system.

In order to nondimensionalize the system, we introduce a
length scale Hj that corresponds to the height of the layer in
the absence of lithium. The resulting system has the following
form (see Ref. [26] for the details of the scalings):

dc = Vi +eB dc), (2.8a)
1
= —eVic+ = f'(c) + & d.W(ej.c), (2.8b)
&
a,'O',‘j = 0, (28C)

2v
0ij = 2G(e,J eij) + . 2vG(ekk
where the constitutive laws for the nondimensional shear
modulus G = E(c)/Es; and stress-free strain eloj are specified
as

€Q)dij, (2.8d)

Li,Si

G—1+g()< - —1>’ €ij = h(©).

Si

and the derivative of the nondimensional elastic energy takes
the form

1— )G 1
3 W(ej,c) = %(&ui +0yu3) + —G’(Bxuy + 1, )
WG 21 + v)
+ by, — S (h()G)V -u
3(1
LAV ar. (2.8¢)
1—2v

For the boundaries in contact with the substrate, we will take
a no-flux and no-deformation boundary condition:

u=0, n-Ve=0, n-Vu=0, (2.80)

where n is the normal vector to the surface. In the case of
the boundaries in contact with the electrolyte, we take a no-
traction boundary condition and, following Ref. [42], assume
a consistent no-flux condition for ¢ (also known as variational
boundary condition), together with a constant flux boundary

condition
o-n=0, n-Vec=0, n-Vu=K(u) = (2.82)

The function K(u), which in our case is simply equal
to the constant F, is in general a nonlinear function of the

J

chemical potential and relates the absorption into the layer
with the outer electrical potential. While the phenomenological
Butler-Volmer relation is commonly used (see, e.g., Ref. [43]),
there exist more rigorous approaches [28]. In our case, the
constant F corresponds to a galvanostatic lithiation regime.

The problem depends on the following nondimensional
groups:

xM F H HyEgio?

p= Hy’ F My’ d 204y’ 29)
where F, is the dimensional flux. The previous parameters,
together with the elastic ratio Ey; si/Esi and Poisson’s ratio
v and €, are the complete set of nondimensional parameters.
Note that & is the ratio of elastic to interfacial energies.

For the numerical simulations, we have used Ey;si/Esi =
0.44 and v = 0.25, in accordance with the calculations from
Shenoy et al. [39].

III. STABILITY ANALYSIS

In this section, we consider the case of a laterally unbounded
layer that is delimited by y = 0 and y = 1. We derive the sys-
tem of equations that a linear perturbation about a basis solution
given by a one-dimensional displacement and concentration
profile fulfils. Specifically, we assume a basis solution of the
form

ur(x,y,1) =0, uy(x,y,1) = ugy(y,1),
c(x,y,t) = co(y,t). 3.1
If we perturb this solution slightly, we obtain
ur(x,y.1) = S ur,(y.0)e’™, (3.2a)
uy(xX,y,1) = oy (y,1) + 8 ug,(y,1)e™™, (3.2b)
c(x,y,1) = co(y,1) + 8 c1(y,1)e™™, (3.2¢)

where § is a formal expansion parameter.
We introduce this ansatz into Eqs. (2.8) and obtain for the
0(8) terms of the stress:

O1cc = 22Ok (1 — vy 4 vy, — (1 VA e
- zc‘;’(co)l - :h(co)cl, (3.3a)
2G(Co)

Olyy = = [(1 —V)oyury +ikvu — (14 V' (co)er],

(3.3b)

O1xy = G(co)(ikuy + dyuyy), (3.3¢)

where the prime symbol denotes derivative with respect to the
argument.
The stress balance equations (2.8c) read

ikoiex + G'(co)dycolikuyy + dyuiy) + G(co)(ikayuly + aiulx) =0, (3.4a)
2G’
ikorey + 2ol — gy + kv, — (14 W o)
2G
+— (<o) [(1 — )Bzuly + ikvdyur, — (1 4+ v)dycoh”(co)er — (14 V)R (c)dyer] = 0. (3.4b)

11—
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And the concentration balance equation (2.8a) has the following form:

dct = D(uy + &B 9;c1)

1 1 1
i = —eDey + — flco)er + 26— Rl [(Gh%h +
& —V

where D := 83 — k2 and the arguments of G and & have been
omitted for simplicity.
The boundary conditions at y = 0 are

dyer =0, dyu; =0, u =0, (3.6)

andaty =1

dyc1 =0, dyuy =0, o;-n=0. (3.7)

The last condition on stress can be replaced by the following
conditions in terms of the displacements:

1
Byuly = —ik%uu + :_zh,(CO)Cl’ (383)

(3.8b)

Equations (3.4) and (3.5) with boundary condtions (3.6),
(3.7), and (3.8) can be turned into a real system of equations
with the change iu, — ii,. We adopt this convention in the
following.

In order to study the stability we adopt the “frozen time”
approximation [37], also called sometimes the adiabatic ap-
proximation [36]. In this approximation, the time dependence
of the coefficients of the equation is not considered, and only
the time dependence of the perturbation is taken into account
to solve the equation. In our case, this means that the time
dependence that enters in Eqgs. (3.4) and (3.5) through ¢ is
ignored.

The solution of Egs. (3.4) and (3.5) can then be written as a
generalized eigenvalue problem, where the eigenvalues corre-
spond to the growth rate of the perturbation. This generalized
eigenvalue problem can then be solved numerically.

ayulx = —ikuly.

IV. NUMERICS

The equations (2.8) have been solved in one and two
dimensions using an nonlinear adaptive multigrid algorithm
for the spatial part with a Crank-Nicolson-type discretization
in time [44]. This nonlinear adaptive multigrid algorithm is
implemented in the solver BSAM.

In order to solve the linearized system for the perturbations
given by Eqgs. (3.4) and (3.5), the equations are discretized
using a pseudospectral method, Chebyshev collocation, with
the boundary conditions introduced through the boundary-
bordering technique [45]. The resulting system can be cast
into a generalized eigenvalue problem, with the eigenvalues
being the growth rate of the perturbations. The system is then
solved by Arnoldi’s method using ARPACK routines as im-
plemented in MATLAB. The resulting numerical eigenvectors
are referred from here on as eigenmodes. The output of the
Block Structured Adaptive Multigrid (BSAM) solver is fed
into the pseudospectral method by means of a resampling and
interpolation, and the resolution is increased to ensure con-
vergence and avoid the problems inherent to the resampling.

+v

1—2v 1

(3.5a)
Gh?c; — GH 1=

2” (ikury + dyu1y) — ikG/hulx} (3.5b)
v

(

We use four levels of refinement on the adaptive multigrid,
which corresponds to Ax = 1.95 x 1073 at its smallest, and
use a number of Chebyshev collocation points that is enough
to resolve this.

Regarding the specific choice of the auxiliary interpolating
functions, we choose g(c) = ¢, implying a linear decrease of
Young’s modulus with ¢ and h(c) = c, as explained above. The
nondimensional parameters 8 and & are varied across several
orders of magnitude to observe their effect, since they are not
know experimentally for the model system proposed. The value
of the flux parameter & is in principle adjustable experimentally,
and we have picked it to be k = 4.0. Finally, the interface width
is selected to be ¢ = 0.005 except where indicated. See also
Ref. [26] for a comprehensive exploration of the effect of the
different parameters in this system.

V. RESULTS

A. Two-dimensional simulations

We have studied the behavior of a layer with a rectangular
cross section. This study can be performed in two dimensions
through the plane-strain approximation. The layer has a ratio
of height to width of 1/4, is clamped on the substrate below it,
and has a no-flux boundary conditions on all sides except the
upper one, on which the flux is applied (see Fig. 1).

The initial condition corresponds to a completely depleted
undeformed layer, on which a constant flux is applied. For the
system at hand, this corresponds to a galvanostatic lithiation of
the electrode. The initially rectangular domain deforms then
from the top downward, following the accumulation of lithium.
This accumulation eventually leads to phase separation on the
upper part of the layer; see Fig. 2.

Phase separation occurs in different ways depending on
the values of the parameters. For a small value of the kinetic
parameter 8 = 0.05, the instability begins with a small pearl of
the lithiated phase formed near the corners of the layer, which
spreads then toward the center of the upper side following an
approximately periodic pattern with decreasing wavelength.
The instability begins in a corner due to our particular geomet-
ric choice, since it is there where the stress is the smallest and
hence phase separation is promoted by the smaller energy cost.

For the higher value of 8 = 0.5, we see in Fig. 2 that this
spatially periodic behavior is notably absent, and the onset of
the instability is slightly delayed. This delay due to kinetic
effects is to be expected on general grounds (see Ref. [46] and
also Ref. [26] for the application to this system), and the reason
for the instability to lose its periodicity is discussed below in
connection with the stability analysis.

Increasing the value of & similarly delays the onset of
the instability. Again, this is to be expected since increas-
ing £ lowers the position of the coherent spinodal. Higher
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0.5

2 -1 0 1 2
B =0.05

2 -1 0 1 2
B=05

FIG. 2. Onset of the instability for & = 0.1. For g = 0.05, the development of the approximately periodic structure near the corners is
clearly visible, as it is its evolution from the corner spot (times, from top to bottom: r = 0.0378, ¢ = 0.0380). For § = 0.5, this pattern is not
present, and instead phase separation occurs with an approximately flat interface, starting likewise from the corners (times, from top to bottom:

t =0.0388, t = 0.0390).

values of £ bring nevertheless a curious interplay of effects
(see Fig. 3).

For small values of the kinetic parameters 8 = 0.005 and
& = 0.1, the instability develops but coarsens almost instantly.
For larger values of &, this is not the case. Even in the § = 0.5
case that did not show any signs of instability, we observe for
& = 1.0 a periodic instability with a smaller spatial frequency.
A large value of £ delays phase transition and hence, when it
occurs, a large volume of lithiated silicon is generated near the
corners. At the interface, larger values of the stress are present,
and hence the associated elastic energy discourages the phase
transition near the interface, and hence the wavelength of the

=
T

0.5 F

=
T

0.5

o
T

0.5 F

i 1 L 1 1

2 -1 0 1 2
B =0.005, € =0.1

instability must be larger. Atthe same time, the size of the initial
grain is much larger for the £ = 1.0 case than for the £ = 0.1
case; thus we anticipate the importance of the nonlinear effects
to explain this effect.

B. Linear stability analysis of the localized modes

In this section, we study the stability of the laterally un-
bounded system. The solution of the one-dimensional problem
is introduced into the system formed by Egs. (3.4) and (3.5),
and we solve the associated eigenvalue problem as a function
of time.

1 1 1 1 L

2 -1 0 1 2
B=05£¢=1.0

FIG. 3. Effect of a higher value of £ at the onset of the instability. The instability develops with a mostly well-defined wavelength for £ = 0.1
and B = 0.005, but it is very short lived as the initial lithiated “pearls” coarsen almost immediately (times, from top to bottom 7 = 0.0378,
t = 0.0380, r = 0.0383). For £ = 1.0 and 8 = 0.5, the instability develops in a much slower fashion with a larger wavelength. It gives rise to
a pattern with lithiated pearls of a greater size that persist in time (times, top to bottom: ¢ = 0.0393, t = 0.0413, r = 0.0423).
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(a) (b)

0.05

FIG. 4. Instability for 8 = 0.005 and £ = 0.1 [(a), (b)] and & =
1.0 [(c), (d)]. (a) Growth rate as a function of wave number for
the times #; = 0.0367, 1, = 0.0367125, and 13 = 0.036725. (b) Most
unstable eigenmodes at the onset, ¢+ = 0.0367125 and k = 3.9. The
solid and the dashed lines correspond respectively to the most unstable
and the second most unstable eigenmodes. (c) Growth rate as a
function of wave number for the times #; = 0.0391, t, = 0.0391125,
and 13 = 0.039125. (d) Most unstable eigenmodes at the onset, t =
0.0391125 and k = 9.55. The solid and the dashed lines correspond
again to the most unstable and the second most unstable eigenmodes.

The dispersion relation is obtained by computing the largest
eigenvalue as a function of the wave number k. The results
show that the dispersion relation is zero at k = 0 in the vicinity
of the onset and, as opposed to spinodal decomposition, the
instability starts at a finite value of k. While this behavior is not
evident for £ = 0.1 [see Fig. 4(a)], it can clearly be observed
for £ = 1.0 [Fig. 4(c)], thus showing that this is an effect that
clearly stems from the coupling with elasticity. The value of
k at which the growth rate is at a maximum (kp.x) increases
steadily as the system becomes more unstable (see Fig. 4),
in a behavior similar to that found for the dispersion relation
associated with spinodal decomposition (see, e.g., Ref. [10]).

In addition to the dispersion relation, we have also computed
the most unstable eigenmodes for £ = 0.1 and & = 1.0 at the
onset (see Fig. 4). Results show a very strong confinement near
the surface, with a width of the layer mostly independent of &.
We see nevertheless that the second most-unstable eigenmode,
which is not localized, is different for £ = 0.1 [Fig. 4(b)] and
& = 1.0 [Fig. 4(d)], where it strongly undershoots.

The previous localized instability can be compared with that
from Tang et al. [21]. For a constant concentration basis state,
we obtain a good agreement with their results for a sufficiently
large size of the system, despite the differences in the treatment
of elasticity. Nevertheless, note that the similarity between
the leading eigenmode in Figs. 4(b) and 4(d) shows that the
confinement of the eigenmodes is an effect mostly related with
the imposed flux, whereas the confinement in Ref. [21] is a con-
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i —20
oL i
—10
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L ‘ L L
0.042 0.044 0.046
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FIG. 5. Development of the instability for § = 0.005 and & =
0.1. Evolution of Ay, and k. with time.

sequence of elasticity. For a small enough value of the flux F,
we would recover an almost-flat concentration profile and then
the scenario discussed in Ref. [21] would be the relevant one.

In Fig. 5, the evolution of the instability is visualized by
computing the maximum value of the growth rate (Apax) as
a function of time. The instability develops very quickly,
reaching large values of ky.x and Ap,x, only to decay even
at a faster pace. After decaying, the instability settles for a
short time into a long-wave mode with a very small growth
rate, which is unlikely to be observed, as the small growth
rate implies a large time scale compared with the short time
that the mode is unstable, and the flat interface is ultimately
stable.

The comparison of the results in Figs. 4 and 5 for 8 = 0.005,
& = 0.1 with those shown on Fig. 3 show that the peak of
the instability corresponds indeed to the instability found in
the two-dimensional simulations. The instability peaks at t &~
0.038 with a value of kjyax & 55, which results in a wavelength
of about 0.11 units of length, which close to the one observed
near the central areas in Fig. 3.

We have additionally computed the values of A, and kmax
for different values of & and . The results are summarized in
Fig. 6.

The first thing to be noticed is that A, is significantly
different from zero only in a narrow band: the smaller the value
of B, the narrower the band [see Figs. 6(a)-6(c)]. This can also
be seen in Fig. 5, where Ap,y is different from zero only in
a narrow peak. Additionally, this band has a clear slope. This
slope is, of course, related with coherency; higher values of &
imply a higher importance of the elastic energy, which is more
important near the interface. These coherency strains delay
phase separation, since the concentration needs to increase in
order for the chemical energy to overcome the strain energy.
Larger values of the flux parameter F would bring phase
separation to earlier times and also change this slope, since
the necessary buildup of concentration would take less time.
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FIG. 6. Dependence of Ay, [(2)—(c)] and k. [(d)—(f)] on & and B, for B = 0.005 [(a), (d)], B8 = 0.05 [(b), ()], and B = 0.5 [(c), ()].

Note also that the peak value of A,y increases with &, albeit
slightly. Similarly, the width of the time interval where Anax
is significantly larger than zero increases with &, which can be
more clearly appreciated in the plots of k., [Figs. 6(d)-6(f)].

The effect of B is also clearly shown on Fig. 6. Increasing
B decreases the peak value of Ay, for all values of &, and at
the same time widens the peak of the instability. Nevertheless,
one effect does not compensate for the other, since the integral
of Amax in the instability region is much smaller for the 8 =
0.5 case than for the other two. The integral corresponds to
an upper bound for the logarithm of the amplification of any
perturbation, and hence we can conclude that the 8 = 0.5 case
is more stable in any case in the linear regime.

The increase of B also delays the instability, as had been
anticipated before. The positions of the peak inthe £ = 0.1 case
are fpeax = 0.0380, fpeax = 0.0381, and peax = 0.0390, for the
cases with 8 = 0.005, 8 = 0.05, and 8 = 0.5, respectively.

The most unstable mode ky,ax follows a similar dependence
with time as Amax, as expected from Fig. 5. It shows a weak
dependence on £ along the peak, similarly to Apyax, and it
raises much faster from the onset than Ap,x, which explains
the thicker band represented in Fig. 6.

C. Instability of the receding front

In this section, we consider a fully phase separated layer,
on which a negative flux (F < 0) drives the interface between
the lithiated and nonlithiated phases toward the absorption
boundary. This receding interface in the case without elasticity

is known to be unstable, in accordance with the well-known
correspondence with the Hele-Shaw problem in the sharp-
interface limit [47].

In our case, the stability in the system corresponding to
the sharp-interface limit has also been studied for the 8 = 0
case [3.4]. In a previous article [35], the authors have derived
the sharp interface limit for the complete model; the main
results are described in the appendix. Here we obtain the
following dispersion relation for perturbations of the sharp
interface:

F +2Ik* + Zk
1+ 218k

see the appendix for the definitions of Z and [ and the details
of the derivation, especially for the 8 > 0 case. Inspection
of Eq. (5.1) reveals that the F < O case will in general be
unstable.

We can compare Eq. (5.1) with the dispersion relation
obtained following exactly the same procedure outlined in the
previous sections. This comparison, which should be accurate
for a large enough system, fulfills a double purpose. On the
one hand, it allows us to validate our results, since the two
dispersion relations are derived in two exceedingly different
ways. On the other hand, it allows us to test the convergence
of the system with the value of ¢.

In order to generate a receding interface we let evolve the
system starting with a completely depleted layer, and reverse
the sign of F at r = (0.2, when the front is approximately
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FIG. 7. Comparison of the phase field (PF) instability (largest
eigenvalue) for the receding interface at r = 0.225, with the sharp
interface growth rate, Eq. (A32). Parameters are F' = —4, 8 = 0.05,
and £ = 0.1.

in the middle of the layer. Then the dispersion relation and
the eigenvalues are computed at r = 0.225, at which point
the transient corresponding to the sign reversal has decayed
sufficiently. The layer is thicker than in the previous case, with a
thickness of 2, to facilitate the comparison with the unbounded
case. The reversal of F' can be accomplished for the system
at hand by stopping the driving current and connecting the
electrode to a load.

The comparison (Fig. 7) shows that the two methods give
indeed very similar results, with a clear improvement as &
is decreased. This good agreement is surprising, given that
Eq. (5.1) is derived for an unbounded system in the steady state,
whereas the phase-field simulations are for a bounded system
(albeit with a size that is the double of the previous section)
that is in a transient state. This makes this good agreement
even more remarkable. Nevertheless, the results show that the
results are not so good for smaller k, which we assume is an
effect of the boundary conditions, and similarly ¢ dependence
is larger for large k, which again is to be expected since these
modes correspond to smaller wavelengths.

The eigenmodes corresponding to the most unstable eigen-
values at ¢ = (0.225 have also been computed for ky.x = 1.94
(Fig. 8). Results show that the eigenmode from the most
unstable eigenvalue is zero almost everywhere, except in the
vicinity of the interface. On the one hand, this is to be expected,
since the instability, which is akin to the Mullins-Sekerka
instabiilty, is localized at the interface. On the other hand, this
result is surprising, since we are treating the instabilities as a
bulk phenomenon and we have obtained this localization in
a natural way. In Fig. 8, the eigenmode corresponding to the
second largest eigenvalue, which is negative, is also on display.
This eigenmode is not completely localized but rather extends
into the depleted part of the layer. This scenario is again very

FIG. 8. Instability for B =0.05 and & = 0.1. Most unstable
eigenmodes at + = 0.225 and k = 1.94. The solid and the dashed
lines correspond respectively to the most unstable and the second
most unstable eigenmodes.

similar to the one shown in Fig. 4, where only the eigenmode
of the positive eigenvalue is localized.

Finally, note that this long wave instability would develop
very slowly when compared with the instability related with
phase separation described in the previous section. The inverse
of Amax = 3.12 can be used as a proxy for the time for the
development of the instability, which gives a time ¢ = 0.32,
which is larger than all the times that have been considered in
this work.

VI. CONCLUSION

In the present article, we have used an unified approach
to the study of the different instabilities that are present in
the system. Through our study, we have described a transient
localized instability related with spinodal decomposition and
found an unexpected connection with a Mullins-Sekerka-like
instability that occurs in the phase-separated case when the
interface recedes. The present unified approach allows thus for
the systematic and simultaneous study of instabilities that are
typically not connected, allowing the mutual validation of the
different techniques used to study them.

This article also incorporates the study of the role of kinetics
on the transient instability, as well as on the receding front
instability. While there are previous works that have derived
equations similar to Eq. (5.1), such as Refs. [3] and [4], this is
to our knowledge the only derivation that incorporates the role
of kinetics; thus we give a detailed account of the derivation in
the appendix.

We have found the conditions under which the patterns
formed in Figs. 2 and 3 develop, and have characterized the

012801-8



LOCALIZED INSTABILITIES AND SPINODAL ...

PHYSICAL REVIEW E 97, 012801 (2018)

instability as a transient one. Nevertheless, our approach based
in the linear regime has limitations, as exemplified by the case
B =0.5,& = 1.0, that according to our analysis should be less
unstable, but give in fact a pattern that lasts longer in time, as
shown in Fig. 3.

Since this localized instability is transient, the linearized
problem has coefficients that are time dependent and nonuni-
form in space and hence the variables cannot be separated.
A common approach [36,48-55] used also in this paper is
to “freeze” time (only) in the coefficients and then proceed
with a traditional separation of variables ansatz. This yields
exponential evolution in time at a rate that is determined by
the solution of a spatial eigenvalue problem. The question
is to determine when this method is accurate. Moreover, the
obtained rate depends on the time at which the coefficients are
frozen and hence may lead to different results at different times.
In particular, a system may change from stable to unstable or
vice versa as the coefficients are taken for progressively later
times, and as is the case here, may be unstable only for a limited
period of time.

To incorporate the effect of the slowly changing coefficients,
a multiple-scale ansatz can be used; see, for example,
Refs. [37,56] and references in particular in Ref. [37]. This
analysis reveals two key conclusions: First, that the log of
the amplification of each mode is given by the integral of the
eigenvalue in time and second, that this approximation is the
leading order contribution if the eigenvalue multiplied with the
time scale over which the coefficients change is large. In Fig. 5,
the peak of the eigenvalue times the time over which it changes
is indeed large, so the the condition is satisfied. Then, the
amplification can be estimated by integrating the eigenvalue
obtained from the frozen mode analysis and then exponen-
tiating the result. Since the top eigenvalue changes sign,
we obtain a largest amplification after which the instability
subsided. In Ref. [56], it was shown how the dominant mode
can be obtained by finding, at each time, the wave number
with the largest amplification. This is not the value kp,x that is
obtained in this paper, but the latter may be enough to indicate
basic trends. A more detailed investigation that determines
the different time scales analytically and their impact on the
amplification of perturbations will be left to future work.

Finally, the scenario studied here in detail is relevant for
applications where the flux F is high enough, in the limit of
small F' we obtain the scenario described in Ref. [21]. One can
thus reach that scenario from the one described here through
the continuous dependence on F. We note that the fact that the
system is driven changes its behavior dramatically, from the
nature of the localization of the concentration to the finite k
of the first instability, as opposed to a purely long-wavelength,
spinodal-decomposition-like instability. The characterization
of this transition from a concentration-dominated to an elastic-
dominated instability is currently receiving our attention and
can also be studied with the same model, but it is out of the
scope of the present work.
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APPENDIX: INSTABILITY OF
THE SHARP-INTERFACE MODEL

In this appendix, we detail the instability of the sharp
interface limit of Egs. (2.8) as computed by Meca et al. [35].
The equations for the chemical potential and the stress read as
follows:

Vi =0,
V.-o=0,

(Ala)
(A1b)

together with the constitutive relation for stress:

Oij = ZGi(Gij — 60’:‘:) +

o G* (e — €7)8ij, (Alc)

1—2v
where G* = G(c¢*) and eioj’i = h(c*) are constants. The +
superscript represents the values at the interface for both
regions, the lithiated (227) and the amorphous silicon phase
(27). These values have to be understood as limits. The
specific values of G* and h(c™) are

N 1 re Q-
G™ = Evigsi reQt ’
Esi

0.+ h(C_)(S,‘j =0 reQ” Al

ij = + +° (Ald)
h(C )8,‘j :(Sij re

Relation (Alc) can be inverted to yield
1 1 v
€ij =€y + 80k (Ale)

26277 T 2GE T 1w
for the strain tensor. This relation is explicitly used below.

Similarly, from the plane strain approximation the value of
0, can be computed as follows:

0 = =2(1 + V)GFL* + v(0yy + 0yy). (A1f)

The boundary conditions at the free boundary for the
elasticity equation correspond to continuity for the elastic field

and for the tractions across the interface:
ut =u",
+

(Alg)

n-c"=n-o0". (Alh)

For the chemical potential equation, we have at the interface
away from the absorption boundary:

B =) = (B + KT+ Lo — 8
— o (e, — Sih(c N — £ 07} (e =€),
(A1)
(C+ —c ), = _(arﬂ+ —au), (Alj)

where [ = fol /2 f(¢)de¢. The conditions at the substrate are
(Alk)
(Al1D)

ayluly:O =0,

u|y=0 - 07
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and at the absorption boundary we have

Oyply=1 = F, (Alm)

(Aln)

Oiyly=1 =0, i =ux,y.

At the triple junctions, the angle is « = /2.

This system admits a one-dimensional traveling-wave so-
Iution, with the interface located at y; = —Ft. All of the
components of the strain tensor are zero except for €g,,, which

reads
0 Yy <y
€Oy = | 11 , (A2)
yy {% Yy =i
which implies that up, = uo, = 0 and therefore
0 Yy < (A3)
Upy = .
Tl e+ Fy oy sy

Similarly, the value of all components of stress is zero except
for oy, and oy, ; they are both equal to

0 y <y (A
Ooxx = si 14
—2 EE;S' % y >y
Finally, we have for the chemical potential
IFB+ R§ y <
Ho = , (AS)
F&y+Ft)+IFB+RE y>y
with
R= LS IHY (A6)
ESi 1—v

which is obviously continuous. Notice that in all the previous
cases a temporal translation is enough to give the appropriate
initial conditions, and that this traveling wave fulfills all of
the boundary conditions at the interface and on the outer
boundaries.

1. Stability of the one-dimensional solution

The previously described solution can be perturbed in order
to assess its stability. We will use an Airy stress function in
order to treat in a unified way the displacement vector and the
strain and stress tensors:

2 2 2
Oxx = 020, Oy = 020, Oxy = —04,0.

It can be proved that ¢ satisfies the biharmonic equation

(A7)
ViVig =0, (A8)

as long as the elastic constants do not vary and there is a
constant or linearly varying eigenstrain. Fields ¢ and p are
perturbed as follows:

¢ = ¢o + 31,
m=po+dp1,

(A9a)
(A9b)

where 6 is a formal expansion parameter. We take ¢; and
w1 as periodic in the x direction, and assume an exponential

dependence on time:

¢l — e}uteikx(l)(y)’
w = eMe™ M(y).

(A10a)
(A10b)

Substituting (A9) and (A10) into Egs. (Ala) and (A8), linear
ODE:s are obtained that give the following general solution:

d(y) = (AT + ATy)e ™ + (AT + AT y)e™, (Alla)
M(y) = Bffe™ + Bye", (Al1b)

where Aii and Bii are constants, and the & superscript denotes
both sides of the interface. The position of the interface is
similarly perturbed:

T(x) = yi(t) + 811 e™, (A12)
where Y is a constant. From the previous equation, we obtain
the form of the normal vector:

1 9. Y
n_‘/(axr)2+1< 1 )

0 ik et etk )
=1, +§ 0 + 0(87).

The perturbations (A10) and (A12) contain a total of 13
constants. They can be found from the boundary conditions
(Alg), (Alh), (Ali), (Alj), (Alk), (All), (Alm), and (Aln),
which also sum 13 conditions.

The introduction of the perturbations in the equations will
lead to a homogeneous system of 13 equations. They would
give rise to a homogeneous system, and requiring that there
exists a solution other than the trivial results in a dispersion
relation that gives the growth rate A as a function of the wave
number k.

(A13)

a. Solution of the unbounded case

In this case, we can use a traveling wave ansatz for the per-
turbation, by changing y — ¥ + y;, such that y = y; implies
3y = 0 (we drop the tilde signs from now on). The equations
are invariant under this transformation, and the equations
are considerably simplified. The solutions are the same, but
imposing that the perturbations are finite at infinity gives
directly

Al =A; =Af = Al =By =B =0, (Al14)

which simplifies the equations considerably. From the conser-
vation condition (A1j), we obtain
—F + 80T eMe™ = —F — 8k(—B; — By)eMe™, (A15)
and hence
A1 = k(B + By). (A16)

In order to write the form of the local equilibrium condition
(A11), we need the explicit form of the stress and strain tensors.
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Forr € Q. we have that

Eiigil
oy, = —p LS LY SIKPAT + (Ky — 2k)AT]
Es,’ 1 -V
x e etkxe=hy (Al7a)
oyy = —Sk* (AT + Afy)eH e e, (A17b)
0y = —8ik(AT — kA] — kAT y)eM e e ™. (AlTc)

The value of o,, can be computed from the previous
equations by using Eq. (A 1f), which results in

0 = 2 TV ELSE o isateete R (ALS)
1—v ESi
Therefore,
1 v E i.Si . .
O =~ S o1 yysaTeMe e, (A19)

1—v ESi

By using the previous result and Eq. (Ale), the nonzero
components of the strain tensor can be computed:

STK2AT 2y, (1 — AT .
€ = [k 1 + [k y ( V)k] 3 ]ekz+zkx—ky’ (Azoa)
2G+

14 S[KPAT 4 (kK2y — 2vk)AT] Attiky—ky

€y = 1—v 2G+ ¢ ’
(A20b)

. + + +

€xy = —&k(A3 — kAT — K4y y)e“ﬂ-kx_ky. (A20c)

2G*

The displacement functions can be obtained by integration
(by using the definition of the shear stress as a compatibility
condition),

Uy = /Exxdx + Ay + xo, (A21a)

Uy, = /eyydy — Ax + yo, (A21b)
i.e., the displacements associated with strain plus an in-
finitesimal rotation of angle A and a translation (xo,Yp), tWo
strainless transformations. Since both of these additions imply
a displacement at infinity, we can safely ignore them. The final
result is then

—iS[kA;r + [ky —2(1 — ‘))]A;r] oM tikx—ky

U, = 2T (A22a)
1 S[kAT k 1 —2v)AT .
uy = + Vy n [KAT + (ky + V)A3 ]e)\H—lkx—ky.
1—v 2G+
(A22b)

Of course, the displacements are real and we will only retain
the real part in the end.
For r € Q_ we have that

O = 8[KP A + (KPy +2k)A  JeM ™ ek, (A23a)
oyy = =8k (A5 + A} y)eH et ek, (A23b)
0y = —8ik(Ay +kA; +kA]y)ee* el (A23c)

The value of o,, and oy can likewise be found:

0., = 2vk8 A, M e e, (A24)
o = 2(1 + VIkSA; e e e, (A25)
Also the nonzero strain elements are
S{k2A; 4+ [k2y +2(1 —v)k]AS ‘
e = WAL + Iy 20 = VKAL) psinesss (a26a)
2G~
S[k2AS + (k> 2kv)A; .
€ = — [ 2 + (k7y + 2kv) 4 ]e)”t+lkx+ky, (A26b)
) G-
Sik(A; + kAT + kA, )
€y = — l ( 4 +2GE + 4y)ekt+th+ky. (A26C)

Proceeding in the same way as before, we obtain the
displacements

Uy, = —i8{kA; + [];yG“: 2(1 - V)]Az}exmkﬁk,v’ (A27a)
O8[kA; + (ky — 1 4+2v)A, .
Uy = — [ 2 + ( ;G_ + V) 4]e)nt+lkx+ky. (A27b)

We can introduce the previous expressions for the displace-
ment and the stress in Egs. (Alg) and (Alh), and substitute
y=394 et elkx, Retaining terms at O(§) we obtain

kAT —2(1 —v)A] — 0, =0, (A28a)
2RY 4+ kAT + (1 —2v)A] + 0, =0, (A28b)
2RY) + AT — kAT — A] —kA; =0, (A28¢)
AT — Ay =0, (A28d)
with
ELI Si _
0 = [kA +2(1 —=vAL], (A29)
EL1x81 —
Q) = —[kA; — (1 —2v)A;]. (A30)
ESI
We obtain two additional conditions from Eq. (Ali):
FY) 4 B = —(K* + AB)I Y, +s {sz+ kO1},
(A31la)
By = —(kK* + A, +s {/<2A+ kO}.
(A31b)

Equations (A16), (A28), and (A31) constitute then the
expected homogeneous system of seven equations with seven
unknowns, AT, A5, A;”, Ay, B]+, B; , and Y. Imposing that
the determinant is zero to obtain other solutions than the trivial
leads to the following expression for the growth rate A:

F +2Ik* + Zk
A= —ki, (A32)
14218k
where Z is a constant:
ELigsi (1 EleSl)(l + l))2

Z =88
(3 —4v + 22yl —

, (A33)
v)
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which contains all the elastic constants. Clearly, we recover
the expected Mullins-Sekerka dispersion relation (augmented

with the kinetic term) in the limit & — 0, and the constant
Z > 0, and hence it will have an stabilizing effect.
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