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We consider a collection of self-driven apolar particles on a substrate that organize into an active nematic
phase at sufficiently high density or low noise. Using the dynamical renormalization group, we systematically
study the two-dimensional fluctuating ordered phase in a coarse-grained hydrodynamic description involving
both the nematic director and the conserved density field. In the presence of noise, we show that the system
always displays only quasi-long-ranged orientational order beyond a crossover scale. A careful analysis of the
nonlinearities permitted by symmetry reveals that activity is dangerously irrelevant over the linearized description,
allowing giant number fluctuations to persist although now with strong finite-size effects and a nonuniversal scaling
exponent. Nonlinear effects from the active currents lead to power-law correlations in the density field, thereby
preventing macroscopic phase separation in the thermodynamic limit.
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I. INTRODUCTION

Collections of self-propelled units that are driven out of
equilibrium by the consumption of free energy at the mi-
croscopic level spontaneously organize in a variety of active
matter states [1,2]. When elongated in shape, such units form
active liquid crystalline phases that may have polar or nematic
symmetry. An active nematic is by far the simplest realization
of an active system that can display orientational order. Unlike
its polar counterpart, where the appearance of macroscopic
polar order results in collective directed motion or flocking
[3,4], the active nematic involves driven apolar constituents,
which means on average the system goes nowhere [5], making
its properties far more subtle. Examples of active nematics in-
clude monolayers of melanocytes [6,7], fibroblasts [8], neural
progenitors [9], myxobacteria [10,11], swimming filamentous
bacteria [12-14], vibrated rods [15], and microtubule-kinesin
suspensions [16].

The theoretical study of active nematics began with coarse-
grained approaches [5,17], followed by numerical agent-based
[18,19] or lattice gas simulations [20] of minimal microscopic
models. In two dimensions (2D), numerical work by Ngo
et al. [19] revealed an order-disorder transition that involved
three phases: (i) a homogeneous disordered gas at high noise
and low density, (ii) an intermediate locally banded, chaotic,
macroscopically isotropic but segregated phase, and (iii) a
homogeneous but fluctuating (quasi)ordered nematic phase at
low noise and high density. The segregated phase is presumably
a result of the instability of the homogeneous nematic phase
to band formation close to the mean-field transition [21-23].
The lines delimiting the chaotic band phase determine the
binodal lines. The linear instability of the ordered phase then
corresponds to the spinodal which falls well within the band
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forming region. The inhomogeneous bands are themselves
unstable to transverse fluctuations (in a large enough system),
leading to the intermediate chaotic and phase-separated but
isotropic phase between the binodals. This should be contrasted
with the polar case, where a spatially periodic phase of
coherently moving stable bands is seen just past the flocking
transition [24]. An analytical understanding of the transition
from the chaotic biphasic state to the ordered nematic phase
is unavailable, and strong density fluctuations obscure its
character even in numerical studies [19]. In “metric-free”
models, in which the interaction neighborhood is the first
Voronoi shell, numerical studies [19] find only two phases,
both homogeneous: a quasi-long-range ordered nematic and
an isotropic phase, separated by a transition of Berezinskii-
Kosterlitz-Thouless type [25,26]. There has also been a lot
of previous work at the continuum level (in the absence of
noise) on “wet” active nematic systems, i.e., including flow
and hydrodynamic interactions [27-33].

Giant number fluctuations (GNFs) [3-5,15] are a ubiquitous
property of the orientationally ordered phases of active sys-
tems. As emphasized in Ref. [12], it is important to distinguish
GNFs from regular phase separation, generically present close
to the transition, as well as from the inhomogeneous structures
that occur in fluctuation-dominated transitions [34]. A study
of the ideal phenomenology of these anomalous fluctuations
requires a well developed ordered phase in a large enough
system which has amean homogeneous density and is not phase
separated in the thermodynamic limit. Here, we examine the
stability of any ordered active nematic phase to the introduction
of noise. A previous dynamical renormalization group (RG)
analysis of a 2D active nematic on a substrate in the absence of a
conserved density [35] showed that anisotropic nonlinearities,
including a contribution from advection by active currents,
are perturbatively irrelevant in the infrared, leading to an
equilibrium XY model-like description at long distances, and
hence quasi-long-ranged order (QLRO) at low noise. Here,
we take on the more ambitious program of reinstating the
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density field in the RG analysis to establish the behavior of both
orientational and density fluctuations in the nematic phase.
The main results of our work are summarized as follows:
(1) Quasi-long-range order (QLRO) in 2D active nematics.
We show that in a system of linear size L and small-scale cutoff
a the nematic order parameter (W,) asymptotically decays as

L\ 1)
(W) ~ <—> ; (1)

a

where n(A) = A/2m K is a nonuniversal exponent varying
continuously with the noise strength A and the nematic
stifftness K. Thus, the quasi-long-range order found for active
nematics in the absence of number conservation [35] continues
to hold upon introduction of a locally conserved number-
density field. Note that in equilibrium both polar and nematic
liquid crystals behave at long wavelengths like an XY model in
2D. Active polar and nematic systems are, however, distinct.
A 2D active polar fluid exhibits LRO [36], while 2D active ne-
matics, like equilibrium ones, exhibit only QLRO. Moreover,
the exponent 7(A) has the same form as that of an equilibrium
XY model with the noise A taking the role of temperature.

(i) Giant number fluctuations (GNFs). The power-law
decay of the order parameter yields an associated power-
law scaling of density fluctuations. As a result, the standard
deviation AN of particle number in a region containing on
average N particles is found to scale as

AN ~ N!=1&/2 2

Note that a mean-field analysis yields n(A) = 0in 2D [5]. This
nonuniversal scaling is a result of marginally, but dangerously
[37], irrelevant nonlinearities in the active current, and offers
a possible explanation for the density fluctuation spectrum
observed in the numerical studies of Ngo et al. who obtain
n(A) = 0.4 [19]. In our theory, however, the weakened GNFs
(2) are determined by the same exponent as that governing
quasi-long-range order (1). Ngo et al. [19] report a greater
suppression of GNFs than can be accounted for by their
small observed values of the QLRO exponent. We have no
explanation at present for this disagreement between theory
and observation.

(iii) Strong finite-size effects at large activity. At high
effective activity QLRO as given in Eq. (1) is seen only for L >
£, =~ aexp[Xg_/9(nKo/A)13/9] where K, is the bare nematic
stiffness and A is the bare value of a nondimensional active
drive. There are a broad range of system sizes, a < L < &,,
where the effective stiffness grows as [In(L/a)]*'3, and the
nematic order parameter thus decreases more slowly than any
power of L. Simulations or experimental realizations probing
a limited range of scales could thus give the impression of
long-range order.

(iv) GNFs versus phase separation. We show explicitly
that GNFs are distinct from phase separation, even when the
latter is induced or dominated by fluctuations [20,34]. At large
activities and on scales smaller than &,, we find, however,
AN ~ N(In N)=>/13, which could mimic phase separation to
some degree.

The remainder of the paper is organized as follows. In
Sec. II, we describe the continuum model for a general 2D
active nematic on a substrate. The reduction of the dynamics

to just the slow fields, relevant to the ordered phase, is done
in Sec. ITA. In Sec. III, we briefly discuss the linearized
hydrodynamic theory and assess the importance of nonlinear-
ities. In analogy with three-dimensional (3D) fully developed
Navier-Stokes turbulence [38], we find that the ordered phase
of an active nematic is controlled by an infinite spectrum of
marginal operators perturbing the linearized description. At
the nonlinear level, in Sec. IIl A, we analyze the constraints
imposed by rotational symmetry and parity at the level of
the dynamical equations. It is here that the nematic or apolar
nature of the order plays an important role, distinguishing itself
from its polar counterpart. In Sec. IV, we perform a low-noise
expansion about the homogeneous and uniformly ordered state
within the framework of the dynamical renormalization group.
We emphasize the crucial role of symmetries in allowing
us to systematically analyze the infinite tower of nonlinear
terms and show to leading order that nearly all of them are
marginally irrelevant. We also analyze the flow diagram and
show that at long wavelengths, only quasi-long-ranged nematic
order survives in the system, though with possibly very strong
finite-size and crossover effects. Finally in Sec. V, we address
the nature of phase separation in light of the modified giant
number fluctuation scaling.

II. MODEL

We consider a 2D active nematic fluid on a frictional
substrate. Working at the continuum level, we only have two
relevant fields, one is the density (o) and the other is the
nematic alignment tensor Q;; = S(#;7; — §;;/2). We rule out
topological defects by fiat and conduct only a “spin-wave”
analysis. This is not merely to avoid technical difficulties but
also because the numerical studies of Ngo ef al. [19] find an
active nematic phase free of defect proliferation. The scalar
order parameter S vanishes in the disordered phase, while § #
0 in the ordered nematic with the direction of broken symmetry
given by the director . Particle number conservation implies
that the density obeys a continuity equation

dp+V-j=0, 3)

with mass current j = pu where u is the velocity field. As the
substrate is a momentum sink, j is itself a fast mode, slaved
to variations in p and Q. In general, the fluctuating current
Jj=—MVpu+jun +1£,, where for simplicity we have taken
a scalar mobility M, the scalar u is an effective chemical
potential, je,q includes all nonpotential contributions to the
mass current (V X jeun # 0), and f, is a Gaussian white
noise accounting for fluctuations. For a passive system that
relaxes to thermal equilibrium with probability distribution
exp(—F/kgT), t = 8F/8p, joun = VvV -0 (0¢ = 8F/5Q is
the field thermodynamically conjugate to the liquid crystal
order parameter and v is a dissipative cross coupling) and
correlations of f, are related to M and the temperature
by the fluctuation-dissipation theorem.' Active contributions

'Including a dependence of fields in the mobility M makes the
noise multiplicative, which can sometimes require additional currents
~QO (kg T) that must be included to ensure detailed balance [66—68].
We shall neglect such complications at present.
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breaking detailed balance arise in all three terms, with a
nonintegrable addition to w as in scalar active matter [39] and
to jeur (relevant to active aligning matter), and a violation of the
fluctuation-dissipation relation. The leading terms in a gradient
expansion are

1= codp + c18p” + 2V38p +2c5ViV; Qi (4)
M = (M, + M{3p), (&)
Journ = gV -Q+a16pV - Q, (6)

where §p = p — pois the deviation of the density from its mean
and I is the unit tensor. The most relevant active contribution
is the curvature induced current oV - Q [5], that permits
circulating probability currents even in the steady state. All
the terms included in p are present in equilibrium too. The
simplest active contribution to the chemical potential ~|Vp|?
is irrelevant (along with other equilibrium terms like ¢, and
) given above) at long wavelengths. We also only consider
systems that are stable and nonphase separating in the absence
of activity, so c¢p and M| > 0.

The nematic alignment tensor is not a conserved field and
its dynamics is of relaxational form

b
0,0 = (a - §|Q|2> 0ij + KV?Qij + L1 Qu ViV Qi

5
+LoViQkeVeQij — 2)¥<Vivj_jjvz>8p + fQijs

(7

with the rotational viscosity set to unity by rescaling the unit of
time. The terms a,b account for symmetry breaking allowing
for the mean-field isotropic-nematic transition. To linear order
a=ay+ a16p and b = by + b15p with ay > 0 and by > 0
well in the ordered nematic phase. The form of the equation
is the same for an equilibrium passive nematic liquid crystal,
except that at equilibrium L;, L, and K (along with terms
schematically of the form ~VQVQ with all possible index
contractions) would have been related via the free energy to
the two independent Frank elastic constants in 2D.

We digress briefly to dispose of a possible confusion.
For a passive system, the Gaussian white noise fq is at the
same temperature as f, with cross correlations (V - f,fq)
2kgTv(VV)st (made symmetric and traceless). Correspond-
ingly, the order parameter dynamics is given by 9,Q =
—8F/8Q — v(VV)s18F /8p + £, with the Onsager dissipa-
tive coefficient v included. Apart from relating K,L;,L, to
two Frank constants, we also have A = ¢}, — vc¢y/2 [40]. So,
even though the elastic stress 0¢ ~ § F /3Q to lowest order in
gradients, generates a term [41,42] in jeun = v[ao(po — pc) —
b|QJ|?/2]V - Q, the coefficient in front being derived from the
free energy JF necessarily vanishes in the ordered phase.?
In that case, the free energy only penalizes gradients of the
director, leading to an elastic stress that is O(Vz) and hence
subdominant in a gradient expansion. The crucial distinction

2In the isotropic phase, this term is present but does not lead to large
number fluctuations as Q is a fast mode.

in the active nematic is that violating detailed balance liberates
the dynamics from free-energy constraints and the fluctuation-
dissipation theorem. The activity o has no a priori reason to
vanish or decrease in correlation with increasing nematic order,
with the removal of this constraint being directly responsible
for large density fluctuations in the active nematic.

A. Driving of a conserved density field
by the Nambu-Goldstone mode

Having written the most general set of equations that
governs any 2D active nematic on a substrate, we now focus
on the dynamics deep in the ordered phase. As Q is symmetric
and traceless, in two dimensions it only has two independent
components, which we can package into a single complex field
X = Qxx +i0Q,,.° Interms of the angle 6 of the director 7 =
(cos 0, sin @), x = |x|e*?, the factor of 2 due to the nematic
symmetry in the system. As an aside, it is worthwhile to note
thatin 2D, there is no difference between a polar (vectorial) and
apolar (nematic) field (at the level of the equations themselves)
as long as one does not mix spatial and field indices. If such
a separation is imposed, the spatial rotations and rotations of
the order parameter field decouple and become independent
symmetry operations. The difference in the global structure of
the order parameter spaces in the two cases manifests itself
only through the character of the topological defects. If (as in
our case and as inevitable in a general liquid-crystal system)
one does have spatial indices contracted with field indices,
then only the combined simultaneous rotation of both spatial
coordinates and the order parameter field together becomes a
symmetry operation, in which case the terms permitted in the
equations themselves now do depend explicitly on the nature
of the field itself. In an active polar fluid, this is manifest by
the dual role played by the polar order parameter by also being
a velocity that transforms under rotations as the coordinate
axes, crucially allowing for the convective nonlinearity that
leads to long-ranged polar order even in 2D [1]. For ease of
notation, we shall often switch between x as a complex field
or a vectorlike object (its transformation under a rotation is
addressed in Sec. IIT A), the form determined from context.
Note, however, that while in a polar fluid the vector order
parameter x is also a flow velocity, this is not the case in the
nematic. In terms of y, neglecting the elastic anisotropy for the
time being, the order parameter equation [Eq. (7)] becomes

dx =(a—DblxPx +KV:x —AT8p + f, (8)

where f = fo.x + ifQxy is the corresponding noise and I' =
I'1 + il is an anisotropic differential operator (I'y = Bf — Byz
and I'; = 20,9,).

Deep in the ordered state, for p = py we have a = ap > 0
and | x| # 0. Setting | x| = So + &S, where Sy = /ao/by and
8S is a small fluctuation in the scalar order parameter, we
can slave the fast amplitude fluctuations to the remaining slow
modes: the phase (being a Nambu-Goldstone mode) and the
density (being a conserved field). Neglecting 9,8 S at long time

3In group theoretic - terms, we choose an irreducible complex repre-
sentation of U(1) x U(1)/Z, over Q which transforms as a doublet
in the real fundamental tensor representation of SO(2) x SO(2)/Z,.
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gives
388 = So[(ar — b1S5)8p — 2b9Se8S] — K SolVOI*  (9)
a) — b]S(% 2
= 88 ~ - VOPP+ . 10
080 T 2bes, VO T (10)

As a; = da/dp and by = db/dp, both evaluated at p = py,
the coefficient in front of §p above can be of either sign and is
nonvanishing in general. Including the elastic anisotropies only
leads to anisotropic terms in § of the same orderas |V6|>. As we
shall see, all gradient contributions to §S are irrelevant at long
distances by power counting. So, keeping only the first term,
we include the most relevant contribution of the amplitude
fluctuation in the equations for the slow modes. Upon doing
s0, the density equation now takes the form

88p = DV*8p +8DT - (§8p) —al - § — D,V - (88p)
+0oV35p2. (11)

Here, o« = agM; S, is the lowest order active current contri-
bution, D = coM, is a regular diffusion constant, § D and D,
are anisotropic diffusion constants (in equilibrium §D = D,
but active corrections xg,; make them different) and o =
Mici + coM;/2 is a passive interaction contribution to the
diffusion flux. If we were to write je as the divergence of
an active stress, then « > 0 would correspond to a contractile
system and o < 0 to an extensile one. We have neglected the
conserving noise f, as its effects are subdominant at long
wavelengths to those of the orientational noise fg entering
via al - . Here, §{ = (cos26,sin26) (or e*’ in complex
form) and I" = (87 — 9;,29,9,) is the anisotropic differential
operator introduced just after Eq. (8). We alsohave v = V - Q,
which in terms of x is givenby vy =V -y andv, =V x x
(0 is similarly given in terms of ¥). Similarly, the equation for
the director phase is given by (up to a rescaling of variables)

3,0 = KV20 + 8K -TO +gVp - VO + k8pV30
— 2% x T80 + K,d- VO + f,. (12)

The nonlinear coupling g (depending on a,b) arises from
amplitude fluctuations of § S, K = (K| + K3)/2 is the average
Frank elastic constant of the nematic, « is the leading density
dependence of the average elastic constant K, and 6K =
LSy = (K3 — K;)/2 is the Frank constant anisotropy (K;
and K3 being the splay and bend elastic constants, respec-
tively). K, = L, Sy is also an independent elastic anisotropy
related to §K only at equilibrium. The cross coupling A
is a consequence of flow alignment, corresponding to the
rotation of the nematic director in the presence of a mass
flux. As fg is Gaussian white noise, the noise in the director

J

—iw+ Kq*> + 8K (¢?

G Yq,0) =
(q,®) < " dagyq,

where g = |q|. The detailed angular dependence of the eigen-
modes is given in Ref. [5].

We require K,D > 0, |§K| < K, |6D| < D, and aA not
be too large for stability (for 6D = §K = 0, the stability
line is given by oA < KD/2, the general criterion being

)

phase fy = (cos20fqxy — sin260fq.x)/2S is also Gaussian
with a vanishing mean ({fy) =0). The two-point corre-
lation is given by (f7) = (cos>26(fg,,) + sin® 260(f3,.) —
2sin 260 cos 20 foxx fQxy))/2S. As both fo.. and fq., are
independent and identically distributed §-correlated random
variables, the cross terms vanish and we get

(for.O) fo(r' 1)) = AS(r — r)8(t —1'). (13)

Here, we have absorbed factors of 2 and S, into the noise
variance A and neglected multiplicative noise corrections in
88 ~ ép.

As we wish to perform a low-noise expansion about the
ordered state, fluctuations in 8 and §p are consequently small.
Hence, the entire analysis is essentially of a “spin-wave” type.
In equilibrium, both 2D polar and nematic liquid crystals (even
when compressible) have the same long-distance description
as that of the XY model [43], in which the spin-wave theory
is free and one requires topological defects to proliferate
and disorder the system [25,26,44]. In the active nematic,
the Nambu-Goldstone mode interacts with itself due to the
nematic anisotropy (as would be in the case of unequal Frank
constants [43]), but also strongly with the density field, in
which it engenders large fluctuations. As a consequence,
infrared singularities occur in both slow fields, making the
question of the stability of the ordered phase rather subtle. What
makes the ordered phase of the active nematic so drastically
different from its equilibrium counterpart is this invasion of
the broken-symmetry mode into the density dynamics.

III. LINEARIZED HYDRODYNAMICS
AND THE GAUSSIAN FIXED POINT

Starting with an ordered state in the x direction, without
loss of generality, the linearized equations for small 6 and §p
are given by

3,8p = DV?8p + 8DT'\8p — 2aT»0, (14)

3,60 = KV?0 +8KT'10 — AT28p + fo. (15)

There are two primary consequences of activity. The first is
seen even at the linear level in the curvature current xo.
The nonlinear effects of this term are addressed in this paper.
The second is the motion of defects, i.e., the fact that —}—%
disclinations become motile and self-propelled [15,31]. This
is necessarily nonperturbative and far beyond the scope of this
work, and will be addressed elsewhere. Fourier transforming
Dy = [d’r D(r,H)e 97T with ® = (0,8p), the inverse
propagator for the linearized Gaussian theory is given by

—21qxqy
. , 16
—la)—i—qu—i—(SD(qf—qf,) (16)

(

more involved). These stability lines correspond to splay-bend
instabilities that have a finite threshold due to the presence of
a frictional substrate and have been extensively studied (see,
for instance, Refs. [45,46] and reference therein), so we shall
not discuss them any further. Note that, as we are deep in the
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ordered phase, we do not concern ourselves with the density
banding instability which only occurs near the mean-field
transition.

Within the Gaussian theory, we can easily compute the
density and angle correlators. For simplicity, we shall consider
8K,5D and A <« D, K, in which case

20 A
(10g.017) ~ 1 K2t a7
16Aa’q2q?
(180g.01%) ~ > (18)

(0% + D2g*)(w? + K2g%)

Going back to real space, the equal time two-point correlator of
the 2 p-atic order parameter W,, = e?r? (forp =1, W, = %,
the unit normalized complex nematic order parameter we had
before) is given by

r 7'711(A)
(W3, (r,1)W2,(0,1)) = <;) ; (19)

where a is some microscopic cutoff and n,(A) = pP*A 2K
is a nonuniversal exponent (as it depends on the strength of
the noise and the elastic stiffness), that governs the power-law
decay of the order parameter. So, the linearized equations
only predict quasi-long-ranged order (QLRO), just like in
equilibrium ((W,,) = 0 in the thermodynamic limit).

Although the active current, at the linear level so far, does
not alter the conclusion of quasi-long-range order in 2D, it does
leave a rather spectacular footprint on the density fluctuation
spectrum, which was shown [5] to diverge as ¢ — 0. The equal
time structure factor is given by

S(q@) = (8pq(t)ép—q(1))
8Ax? 6])3613

— ~

DK(D+K) ¢¢ ¢

asq— 0. (20)

As the number fluctuations in a volume V ~ L? scale as
V(SN2 ~ /S(q — 0)V, this gives /(§N?) « N [5]. Later
in Sec. IV, we shall show how nonlinearities modify this result
and change the GNF exponent to a nonuniversal number.

Note that even though we do not have long-ranged ori-
entational order, the structure factor in Eq. (20) is markedly
anisotropic. This is an artifact of having performed a lin-
earization around the x-axis 6 = 0 state. Fixing a global
frame of reference, the above result is an average within a
restricted ensemble of a fixed reference state. Linearizing about
a reference state at & = 6, we instead obtain

S(q : 6) 281 o520
10)= ———— [2cos »
0= ¥ DK + D)gb 0dx4y
. 2
— sin26y(q; — q)z)] ) 21

The absence of long-ranged order means that the steady state
distribution of the reference angle is uniform over the [0,7)
interval. Using P(6y) = 1/m, we average S(q ;6y) over 6 to
correctly recover isotropy in the density correlator

Aa?

S(q) = S(q;60) = m;

(22)

In order to assess the importance of the nonlinearities, we
perform the following scalings:

t — bt, r— br, (23)

sp — b%8p, 6 — b%6, 24)

where z is a dynamical exponent and ¢, and ¢y are “roughness”
exponents for the two fields. This gives the following scaling
dimensions:

ya =2 —2% —2, (25)
Yp =Yk =2—2, Ysk =Ysp =2 — 2, (26)

Ya=2—=2+4+8%—8p, M=2—-2+¢—8. (27

Hence, at the linear fixed point, requiring that all the linear
terms and the noise variance A not change under this scaling
fixes

7 —

= 0. (28)
Above two dimensions, the linearized description is correct
with all the nonlinearities being irrelevant, but in exactly two
dimensions both the fields 6 and §p become marginal and
dimensionless. As the scale of density fluctuations is the same
as that in the phase, setting {, = {y = ¢, a nonlinear term of
the kind

z=2 and ¢, =y =

V2H2kgpngm o pTm2= 2k ntm=1); (29)

present in either equation is marginal in the infrared for k = 0
and all n,m > 1 for d = 2 dimensions. Higher gradient terms
with k > 1 are infrared irrelevant by simple power counting at
the Gaussian fixed point. Hence, the two-dimensional active
nematic has an infinite spectrum of marginal operators at
the linear fixed point, much like the situation for regular
three-dimensional Navier-Stokes turbulence [38]. In order to
judge the (un)importance of any of the marginal nonlinearities,
one is immediately forced to take recourse to a dynamical
renormalization group program, but the fact that an infinity
of them have to be handled seems unsurmountable. This
is where the symmetries of this system provide a great
simplification.

Rotations and symmetries

The true symmetry of a nematic liquid crystal with unequal
Frank elastic constants is one in which both spatial coordinates
and the director field are rotated by the same angle. In two
dimensions, a rotation by an angle ¢ is given by the following
matrix:

R(t) = (Cf)s"’

sin ¢

—singo). (30)

cos @

Hence, the symmetry transformation is then given by x —
x'=Rx, Q= Q = RQRT (6 — 0’ =6+ ¢, where 0 is
the angle of the director and ¢ the rotation angle). For an
infinitesimal rotation by ¢, the derivatives transform as 9, —
dy = dy — €dy and 9y — 9, = 9y + £0,. This in turn leads to
the followmg transformatlons for the anisotropic differential
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operator I':

Iy =9;—0; > I} =T — 2, (31)
F2:28x8y—>Fé=F2+28F1. (32)

As § = (cos 26, sin 20) also transforms with 6 — 0’ =0 +
e, we immediately note that ¥ -I" and § x " are invari-
ant under this symmetry operation (along with the obvious
isotropic Laplacian V?). Additionally, we have v =V - Q =
(V- x,V x x), which transforms as a vector. So including
v-Vand |[v]?>(V-v=T"- ), we exhaust all the scalar terms
that are allowed by rotational symmetry.

Apart from being apolar, a nematic liquid crystal is also
achiral. Specifically, choosing alocal orthogonal frame {0.,9, }
with the x axis aligned along the local orientation, in the
absence of local enantiomorphy or molecular chirality, we also
require the invariance under local parity reflections: y — —y
(if the frame were not oriented along the local director orien-
tation, then additionally one must also flip the director angle
6 — —0) [47]. Under this action I'y — I'y and I'; — —1I',,
which immediately shows that x - I" is even under reflections
while x x I is odd. Hence, we must additionally only include
terms in the equation that preserve the parity of the variables
(p being parity even and the phase 6 parity odd).

Expanding in small fluctuations of 6,5p, these symmetries
provide powerful constraints on the possible nonlinear mode-
coupling terms that can be present. In particular, the full
rotational symmetry of the model is nonlinearly realized in the
broken symmetry mode 6, so one must treat all terms related
by a symmetry transformation on an equal footing. As we show
in Sec. IV and the Appendix A, all the terms that are explicitly
anisotropic (linear or nonlinear) are marginally irrelevant at
leading order just as a consequence of rotational symmetry.
This allows us to directly disregard most of the nonlinear
couplings involving Q that one would write. Hence, only a
small fraction of these anisotropic terms have to be considered,
with the most important nonlinearities arising from expanding
mode-coupling terms in Eqs. (11) and (12) that also contribute
at the linear level. For example, the active current term
ol - § ~2alh0 —2alM60% (8 K 1) is present in the linear
equations [Eq. (14)] and also generates a nonlinear interaction
term —2T",62 among others, with the exact same coefficient
«. Such relations being a consequence of symmetry must
be preserved under renormalization. A well known example
of singular fluctuation corrections arising from symmetry-
required nonlinearities is the elasticity and hydrodynamics
of an equilibrium smectic liquid crystal [48-52]. In addition
to a plethora of anisotropic terms, there are also isotropic
nonlinearities one has to keep track of, for example, the
terms o V28p2, k8p V26, and gV - Vp in Egs. (11) and (12),
respectively. These terms come with independent coefficients
unrelated to any other coupling constants and do not affect the
linear hydrodynamic description.

So anticipating ourselves, we neglect all higher order
anisotropic nonlinearities (like K,,, D,), while only retaining
the symmetry-required and isotropic ones, the assumption of
irrelevance being justified a posteriori. Keeping this in mind,
the full set of dynamical equations for small fluctuations in §p

and 6 is given by

3,80 = DV?8p + 8 D[T18p + I2(208p) — ['1(2628p)]
—a[2(20) — T'1(26%) — 3T2(0%)] + o V2507,
(33)

3,0 = KV?0 +8K[T10 + 20750 — 20°T10] 4+ gVép - VO
+k8pV20 — A[T28p — 20T 18p — 20°T28p] + f.
(34)

IV. PERTURBATIVE DYNAMICAL RENORMALIZATION

Following Forster et al. [53], we perform a one-loop com-
putation of the renormalization flow equations perturbatively
in the nonlinearities. As each loop correction comes with
an accompanying factor of the noise variance A, the loop
expansion corresponds precisely to a systematic and controlled
low-noise expansion. Fixing an ultraviolet cutoff in Fourier
space |q| < A(= 1/a), we split the fields into slow and fast
modes (0 = 60_ + 6., §p = §p~ + 6p~) and coarse grain out
short scale fluctuations inamomentumshell A /b < |q-| < A,
which after appropriate rescaling of the coordinates and the
fields gives an equation of the same form as we have written
above [Egs. (33) and (34)], though now with modified coef-
ficients. Finally, letting Inb = £ <« 1, we obtain differential
flow equations that govern the long-wavelength behavior of
the theory as we iterate the coarse-graining procedure out
to the largest scales of interest. The renormalized propagator
G r(q,w) satisfies the following Dyson equation:

Gr'(q,w) = G (q,0) — =(q,), (35)

where X(q,w) is the “self-energy” that includes all the di-
agrammatic contributions. The details of this long set of
computations are given in Appendix B, and we shall only
briefly sketch and analyze the main results here.

For small A, using the result of the linearized analysis,
one can obtain the leading fluctuation corrected linear theory
due to the interaction with the Nambu-Goldstone mode 6.
We shall illustrate this here for the diffusive anisotropy §D.
Considering «, A, 6K, 6D, g, k, and o to all be sufficiently
small, to leading order the joint probability distribution of p
and 6 essentially factors (as the cross couplings « and A are
small). In this limit, corrections to K, D, and A are negligible
and we can estimate the effect phase fluctuations have on
the anisotropic terms. Averaging just over 6, for the diffusive
anisotropy, we have

SDI[T"1(6p cos20) 4+ T'r(8p sin 20)] =~ § D{cos 260)T";ép,
(36)

where we have used the linear theory result (sin20) =0
and (cos20) = (L/a)™"™ [n(A) = A /2w K] is a system size
L dependent constant, leading to a renormalized diffusion
anisotropy 8 D(L) = (L/a)~"®§ D. This immediately tells us
that the fluctuations of the director phase cause anisotropic
terms such as the one above to become length scale dependent,
driving them to zero as a power law in larger and larger
systems. In Appendix A, we systematically show that this
leading behavior is a consequence of rotational symmetry of
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the model and is hence true for all anisotropic terms, be they
linear or nonlinear (i.e., any term involving a contraction of
order parameter and spatial indices). This point is crucial as it
allows us to immediately treat an infinite number of anisotropic
nonlinearities, showing them to be marginally irrelevant at least
atleading order and justifies their neglect in Egs. (33) and (34).
Hence, the only important anisotropic terms will have to be the
ones present in the linearized equations. This is precisely why
we only kept those nonlinearities that are related by symmetry
to linear terms and disregarded all the higher order anisotropies
(like K,,, D,,). Note that this argument does not work for the
isotropic nonlinearities, which still do need to be treated by the
full renormalization group analysis.

At this order, as K, D, and A remain unrenormalized and
are not modified by fluctuations, we see that the orientational
order remains quasi-long ranged, but the density fluctuations
now become anomalous. As the active current involves a
contraction of order parameter and spatial indices, « is also an
anisotropic coupling and it runs with scale in the same fashion
as above, a(q) ~ ¢"® having switched to a wave-vector
representation. Using this renormalized activity, as q — 0,
we find

_Aa(@’qiq;

—— o [T (37)
K D(K + D)g®

(18pg()1%)
with 277 /q = L as the longest wavelength in a system of linear
size L. The anisotropy here is still a consequence of a restricted
ensemble average and not of long-ranged order. A complete
ensemble average recovers isotropy in the density correlator
as discussed before [see Eq. (22)].

Even though the strength of the active drive gets renor-
malized to zero, one does not recover an equilibrium system.
Hence, activity is dangerously irrelevant [37], leaving a strong
imprint on the fluctuations even as it vanishes at large scales.
This is similar in spirit to dangerously irrelevant hexagonal
symmetry breaking perturbations controlling the divergence
of the longitudinal susceptibility in an ordered ferromagnet
[54]. Here instead, the active drive is a (marginally) irrelevant
detailed-balance-breaking perturbation and its consequences
remain non-negligible even for asymptotically small activity.
With this modification to the structure factor, we find that
the giant number fluctuations continue to persist, but with a
modified nonuniversal scaling exponent, suppressed from its
linearized prediction by a noise dependent number n(A):

(§N2) o N'=1&)/2, (38)

An informal shortcut to this result is to note that the active
current ~V;V; Q;; in the density equation is proportional to
the nematic order parameter Q. Grafting this onto the linearized
calculation [5] of Secs. IIA and III shows that GNFs are
mitigated by the same power of system size as the order
parameter, i.e., the QLRO exponent 1(A). This directly gives
an improved estimate for the density fluctuation variance as
o L2721 " which is the same as that given above in Eq. (37).

As the density fluctuation §p is a conserved variable, all the
nonlinear interaction terms have to be the divergence of some
current. From Eq. (33), if we set 0 = 0 we see that nonlinear
terms involving either « or § D are anisotropic total derivatives
and hence give rise to only anisotropic corrections in X,,

g% — qyz,, thereby leaving the isotropic diffusion constant un-
renormalized to all orders in perturbation theory. For o # 0,
the most relevant contribution to the diffusion propagator
is ¥,, ~ AocasDg?, which corrects D by a small amount
[including D,, # 0, there are small O (A Drzl) corrections as well
which are irrelevant as D,, itself is irrelevant]. As we assume
all the couplings and noise (except for K, D) to be small, this
correction is already far smaller than the leading corrections
we shall be interested in (noise times two coupling constants).
So, to this level of approximation within perturbation theory,
the diffusion constant D is nearly unrenormalized, hence,

D D 2 39

70 =Pk )- (39
Fixing the dynamical exponent z = 2, we can keep D fixed at
its bare microscopic value, which we set to unity (D = 1) from
now on, without loss of generality.

Given the large number of parameters, for the purposes of
this discussion we restrict ourselves to the case of vanishing
elastic and diffusive anisotropies (5K = 8D =0) and g =
k = 0. This corresponds to an invariant subspace of the flow
equations given in Appendix B. This is sufficient to elucidate
the main consequences of activity at the nonlinear level, as
this surface is stable and attracting, with small deviations from
it being irrelevant (see Appendix B for more details). This
simplification decouples most of the flow equations, leaving
us with only two coupled ones.

aK _ Kckh, (40)
de
dx - A -
ﬁ?k(ﬁ“’“)’ @D

where X = aAA /[T K 2(1 4+ K)] is a nondimensional active
coupling. In this limit of K =D = g = « = 0, the noise
variance A also remains unrenormalized at leading order,
fixed at its microscopic value. Both cx and by are positive,
monotonic functions of K that remain finite in both the limits
K — O0and K — o0:

143K +4K? 243K
= bx=1 .42
cK 1+ K)7 K +CK(1+K> (42)

AsK — 0,cx ~ landbg ~ 3,whileas K — oo,cg ~ 4and
bg ~ 13. The renormalization group flow diagram within the
{K, )} subspace for a fixed A is showninFig. 1. Ata given noise
variance A, for low enough activity, we can neglect the second
A2 term in Eq. (41). Treating cx to be essentially constant, we
can then integrate the flow equations approximately to get

dK ek N 1 1 _ Tcek G0 — Tl (43)
.~ A o A o
Setting £ = In(A/gq) with A = 1/a being the ultraviolet cutoff,
as q — 0, we have

q x(A) ) q x(A)
Ky — K(q) x (X) and A(q) x <X> ,  (44)

where Kj,Ao are the microscopic parameters we begin with
at short scales, Ko = KoA/(A — mwegKokg) is the final
asymptotic nematic stiffness and x(A) = A/m Ko — cx o is
a nonuniversal exponent. This solution is only valid as long as
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FIG. 1. The low-noise renormalization group flow diagram in the
case of vanishing anisotropy (6D = §K =0) and g =« = 0. The
noise variance is fixed at A = 0.8. The red stars at > = 0 correspond
to a line of fixed points in K. For a large elastic stiffness K, and
X > 0, it takes a large number of renormalization group iterations in
order to reach the fixed point, with a relatively large intermediary
regime in which the elastic constant grows logarithmically with scale
[Eq. (46)]. For most A < 0, the flow is unstable with decreasing K,
possibly going to a strong coupling fixed point not accessible within
perturbation theory.

x(A) > 0. The sign of Ay depends on both the microscopic ac-
tivity  and the flow-alignment-like parameter A. If we suppose
A > 0 for elongated nematogens, then the renormalized elastic
stiffness Ko, > K for a contractile system and K, < K for
an extensile system. Coarse-graining microscopic models of an
active nematic [21,23], or a self-propelled rod system [55,56],
where the notion of contractile or extensile stresses may not
be so obvious, though always give A > 0, leading to a stiffer
system at large scales. As K, is still finite in the thermody-
namic limit, we end up only with quasi-long-ranged nematic
order. Once again as we saw earlier, the active coupling is
irrelevant at large scales, but dangerously so as its effects on the
density fluctuations do not consequently vanish. For 1o < 0,
from Fig. 1, we see that there is a small region close to the
X = 0 line of fixed points where noise nonlinearly stabilizes
the system, but elsewhere, K decreases continuously, possibly
vanishing or even going negative at some strong coupling fixed
point. This would signal a modulational instability, possibly
giving rise to a smectic array of bend-splay distortions, about
which one would have to reorganize the low-noise fluctuation
expansion, far beyond the scope of this paper. Note that unlike
the linear Lifshitz instability prediction for an overdamped 2D
active nematic without a conserved density at the mean-field
level [46], here the theory is linearly stable to begin with and
only destabilized nonlinearly in the presence of noise.

1000 -
500 -
K
100
50
101
L L L L L L L
100 1000 10* 10° 108 107 108
l

FIG. 2. Comparing the growth of K ({) for different values of the
noise A. The initial parameter values are Ky = 1 and Ay = 1. The
red line (¢*/'3) is just given as a guideline. Note that £ = In(L/a) at
the scale of the system size, it only changes by O(1) under finite-size
scaling. The large logarithmic scale shown here in £ is just to compare
the approximate analytical prediction to the numerical solution of the
differential equations.

For larger values of the active drive with 1o > 0, x(A) can
be negative and the bg A nonlinearity in Eq. (41) becomes
important. As A < wcg Koo, taking by to be nearly constant,
we have approximately

. bxA? = A(0) ! (as ¢ ) (45)

— >~ — x — (asf — 00).

dt K bit
For A > 0, K increases slowly with scale. Replacing bx ~
13 and cg ~ 4 for large K, we find the growth of the elastic
stiffness to be

dMK 5ot k) e (ase ). (46)
~ = — — .
T, 3¢ O ast =00

With ¢ =1In(A/q), the Frank elastic constant grows log-
arithmically slowly K(q) o< In(A/q)*'® for ¢ < A. This
logarithmic breakdown of hydrodynamics is typical when
nonlinearities are marginal by power counting, as is also
similarly encountered in 2D thermal fluids [53], solids, and
hexatic liquid crystals [57] in equilibrium. Here, though, in
the thermodynamic limit the slow growth of K(q) is actually
arrested as it saturates at a large but finite value. This is because
inEq. (41),bx A < A /7 K eventually beyond an exponentially
large crossover length scale &, ~a exp[ig/g(nKo/A)m/g],
above which one recovers the kind of behavior shown in
Eq. (44), only now with K, and Ao now evaluated at £, =
In(&,/a). Numerically integrating the flow equations (40) and
(41), we find the same behavior described above for sufficiently
low noise, as shown in Fig. 2.

Hence, when the active drive is stronger than the noise
variance for A > 0, there is a possibly large range of system
sizes with L < &, where one would not see conventional quasi-
long-ranged order with (W,,(r,7)) = (L/a)~"*). Instead, as

d*q A
(27)? 2K (q)q?

A _ 9/13
=~ 133 In(Z= . @
367TK())»0 a

O@r,0)?) =
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the order parameter decreases as a strefched exponential
of the logarithm of the length scale L as long as a <
L < &,. Although (A%) is not finite, implying the ab-
sence of true long-ranged order, the decay (W,,(r,t)) =
exp{—p?A[13 In(L/a)]’/"3 /97 Ko)_»gm}, slower than any
power of L, might be mistaken in small systems to be indicative
of long-ranged order. Our analysis, however, shows that the
2D active nematic is always quasi-long-ranged ordered in the
thermodynamic limit.

One can also provide general arguments to show that the
2D active nematic can only truly support quasi-long-ranged
order in the asymptotic limit. In crucial distinction from the
active polar flocking case, where the convective nonlinearity
is relevant in d = 2 [36,58], all the nonlinear terms in the
active nematic model are only marginal in two dimensions (be
they active or equilibrium in origin). Marginal terms can only
produce logarithmic corrections to scaling simply because they
are dimensionless to begin with, leading to the renormalization
recursion relations not having a linear term in the coupling.
Additionally, in the absence of density fluctuations, we know
from the result of Ref. [35] that we recover an equilibrium
XY-like description at long distances, which is not surprising
as the only nonlinear terms present are anisotropic terms that
we have shown to be generally irrelevant to leading order as a
consequence of rotational symmetry of the model. Including
the active currents coupling to the conserved density field, the
new non-equilibrium terms are once again irrelevant to leading
order, being anisotropic in nature (~VV : Q). Note that all the
(possibly worrisome) isotropic nonlinearities are present even
at equilibrium and cannot conspire by themselves to give rise
to long-ranged order, for if that were the case, upon taking
the equilibrium limit, the same mechanism must continue to
work violating the Mermin-Wagner theorem [59]. This is true
even upon including multiplicative noise. So, the only way
the nonlinearities might give rise to long-ranged order is by
mixing with operators that violate detailed balance (coming
from activity), but every such active term being anisotropic
is irrelevant. Hence, all anisotropies and nonlinearities being
marginal and irrelevant to leading order, the 2D active nematic
is always doomed to have a finite elastic stiffness in the ther-
modynamic limit, without any singular corrections, leading
inevitably to only quasi-long-ranged order. So, activity is only
dangerously irrelevant with regard to density fluctuations but
does not affect the phase fluctuations much, except for inducing
strong finite-size effects as discussed above. As the ordered
nematic phase of a self-propelled rod system also has only two
slow modes (Sp and 0), with the velocity always decaying on a
finite time scale, the long distance hydrodynamic description of
such a phase is identical to the one discussed here. One would
have to verify if the long-ranged order claimed in such systems
[12,60] is actually a finite-size effect in the sense of Eq. (47),
as the phase fluctuations though not finite, grow slower than a
logarithm below the crossover scale &,, with only much larger
systems eventually recovering true QLRO.

V. GNF VERSUS PHASE SEPARATION

It is essential to distinguish giant number fluctuations from
phase separation which also trivially exhibits (§N?) oc N2
behavior due to the formation of clusters in a disordered gas.

The linear hydrodynamic treatment of the active nematic also
predicts number fluctuations proportional to the mean. The
question thus arose as to whether this was phase separation
even deep in the ordered phase [20]. Note that a possible
phase-separated phase in the ordered state is distinct from
the inhomogeneous chaotic phase present close to transition
which has density bands and clusters, but is orientationally
disordered. It was suggested in Ref. [20] that the giant number
fluctuations in the ordered nematic phase realize a peculiar and
delicate form of phase separation, where, instead of forming
a single macroscopic dense liquid cluster in a gas, the system
perpetually transitions among many configurations with a finite
number of macroscopic clusters. This phenomenon, christened
fluctuation-dominated phase ordering, is ubiquitous in models
involving particles sliding on randomly fluctuating surfaces
[34], where a particle current VA (h being the height of
the surface) drives clustering even in the absence of attractive
interactions. The question was investigated only in the context
of advection of tracer particles by active directed motion due
to orientational curvature [20].

Our results provide an analytical calculation at the nonlin-
ear level that can address and disentangle these phenomena.
In Ref. [61], the relation between the structure factor and
the scaling of number fluctuations is addressed numerically
in detail. The constraints imposed by rotational symmetry of
the model force the scaling of the giant number fluctuations to
be modified from the linearized prediction,

(§N?) x NI—W(A)/Z’ (48)

for sufficiently small activity compared to the noise. If the
active drive is stronger than the noise (A >> A /K), then using
the flow equations (40) and (41), we find

N(nN)™/P, Ly <&,
V{6N?) 49
{ ) iNln(A)/Z’ Ly > &, (49)

where Ly is the linear size of a region containing N particles
on average. So, the number fluctuations are still “giant” but for
sufficiently large averaging volumes they are always paramet-
rically smaller than the linear prediction. The corresponding
angle averaged structure factor looks like

1
(8p(r,1)8p(0,1)) ~ @y [ (50)

for widely separated points, implying that the fluctuations
do average out in the thermodynamic limit leaving us with
a homogeneous system of finite mean density. Hence, the
system is not phase separated in the thermodynamic limit,
even though on scales smaller than the crossover length
(Ly < &,)onedoes see dynamic hierarchical clusters violating
Porod’s law and a cusp in the equal time density correlator
[20], two hallmarks of fluctuation-dominated phase ordering.
Eventually, a large enough system will instead self-organize
into a sort of critical phase with power-law correlations in both
the density and the order parameter. In contrast to generic scale
invariance obtained for conserved dynamics in an anisotropic
nonequilibrium steady state [62], no anisotropy survives at long
distances here and the mechanism for self-organized criticality
in the active nematic is different.
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The presence of highly correlated fluctuations leads to
nonstandard scaling of the density distribution. The higher
moments of the number fluctuations can be shown to scale as
(8N*y oc NKI=n(2)/2) (j e, there is no multiscaling). However,
in the language of lattice-gas models, if we discretize and write
s; = 0,1 as an occupation number within a small subvolume
indexed by i, then we have

L2

si—po | (D
=1

L™ [ 1
=xr |
l
with py being the mean density, as the relevant scaling
variable with a nontrivial limiting distribution (the proba-
bility distribution of p = ), 5;/L? itself is sharply peaked
around po and not broad in the thermodynamic limit). As
L — oo, Prob(z) approaches a non-Gaussian distribution
whose cumulant generating function is
Llim In(e") = K2y + KB us AV + K ug A + o(A),  (52)
—> 00
where (o, 143 ... are finite constants independent of L and A.
So, for low enough noise, the appropriately scaled density
distribution is always unimodal in the thermodynamic limit,
ruling out phase separation, even the unconventional one of Das
and Barma [63]. The fact that the active current je,q = ooV - Q
is nonvanishing in the ordered phase and is not a pure gradient,*
unlike the case of passive sliders on a fluctuating surface, is
crucially responsible for this behavior.

VI. DISCUSSION

Continuum models have long provided universal and
generic descriptions of active systems and are in principle pow-
erful enough to capture many of the dramatic consequences of
activity, ranging from long-ranged 2D polar order in moving
flocks [36] to motility induced phase separation in scalar
nonaligning active matter [39]. The use of renormalization
group and field theoretic techniques allows us to systematically
address the effect of fluctuations and noise in active systems,
bringing the paradigm of universality to bear upon these
nonequilibrium systems. Unlike dynamical critical phenomena
in equilibrium, where mode coupling nonlinearities do not
affect equal-time correlators in the steady state [64], the
breaking of detailed balance in an active system encoded in the
nonvariational nature of the dynamics leads to a whole slew
of rich phenomena, some of which we have tried to address in
this paper.

In 2D at equilibrium, both polar and nematic liquid crystals
or magnets have the same long-wavelength static description,
that of the XY model. When active, the nematic system is
distinctly different from its polar counterpart. Analyzing the
symmetry in detail, we write the leading order nonlinearities
that are important and find them to all be marginal at the linear
fixed point. The fields themselves being marginal, we find an
infinite spectrum of marginal nonlinear terms, with most of

“It is important to note that having V x jeu # 0 is not a necessary
condition for negating phase separation in general, it just happens to
be so in this case.

them involving anisotropic couplings. The true symmetry of
a nematic liquid crystal being a combined rotation of both
the director and the spatial coordinates forces all anisotropic
couplings, linear and nonlinear, to be marginally irrelevant.
Although all the anisotropic terms (including the active terms)
flow to zero, we do not obtain an equilibrium nematic. Instead,
we find that the active current is dangerously irrelevant, by
virtue of which the giant number fluctuations so engendered
just get suppressed in a nonuniversal fashion, still violating the
central limit theorem. This direct consequence of rotational
symmetry of the model constrains the long-distance behavior
of the structure factor, forcing it to decay as a power law in
distance, thereby ruling out the possibility of phase separation
in the thermodynamic limit.

The absence of long-distance anisotropy also leads to the
2D active nematic only displaying quasi-long-ranged order
in the thermodynamic limit, making the bulk ordered state a
critical phase with power-law correlations in both the density
and the nematic order parameter. Despite this disappointing
result, we show that one can expect strong finite-size effects
when the active drive is stronger than the noise. In this case,
the nematic order parameter decays more slowly than a power
law up to a crossover length scale, above which we recover
QLRO once again. We also argue that the ordered nematic
phase in both 2D active nematic and self-propelled rod systems
must have the same universal description, and hence one
cannot have long-ranged nematic order in any locally driven
2D nematic (in the absence of long-ranged interactions or
hydrodynamics). Reconciling this result with previous numer-
ical and experimental findings of long-ranged nematic order
in self-propelled rod systems [12,60] remains a theoretical
challenge. By conventional expectations of universality and
hydrodynamics, a simple resolution to this question, other
than a long crossover, seems to be ruled out, at least at the
perturbative level.
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APPENDIX A: LEADING CORRECTION
TO ANISOTROPIC COUPLINGS

Considering just the interaction of the Nambu-Goldstone
mode, we extend the simple analysis done in the main text
and show how all the anisotropic terms have the same leading
fluctuation correction. Taking as before o,A < K, we can
neglect cross correlations in 6 and §p, resulting in a factored
Gaussian distribution at the linear fixed point. We expand the
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trigonometric functions for small 6 < 1:

cos20 =1 —260% + 0(6%), (A1)

sin20 =20 — 26° + 0(0°). (A2)

Systemizing the procedure, we first look at the diffusion
anisotropy § DT - (§8p) which was described in the main text
as well:

3DT - (£8p) = 8D[T18p + ['2(28p0) — I'1(28p6%) + - - - 1.
(A3)

As both the fields 6 and §p essentially behave as independent
Gaussian random variables at this order of approximation, we
split the Nambu-Goldstone mode into slow and fast compo-
nents 6 = 6_ + 6. and average over the short scale fluctuations

2 A
02) = Inb.
4n K
Here, the average is performed in a thin momentum shell
A/b <|q=| < A and §D,6K only provide higher order cor-
rections to the average. Using Wick’s theorem and some simple
combinatorics, we then get

(A4)

(C1(806%)~ = (62)T18p, (AS5)

(T2(800%))- = 3(62)T2(8p0-).

One can similarly work out a similar calculation for the full
trigonometric function, though we get the correct result from
just looking at the first two terms as well:

8D(T - (%8p))~ = 8D(1 — 2(02)T" - (R=8p),

(A6)

(AT)

where ¥. = (cos26_, sin20_). So, we immediately find, as
mentioned in the main text, that the impact of the short scale
director phase fluctuations is to renormalize the anisotropic
coupling as
/ 2 da
o =a(l =2(02)) = T = —n(A),

where n(A) = A/2x K. Similarly, doing the same for both
8Kx -T'6and A} x I'dp, we get the same result:

(A8)

SK' =8K(1 —2(6)), (A9)

A=A = 2(62)). (A10)

For the active current term oI" - §, expanding for small 8 « 1,
we have

al - 3 = a[[520 — ['120% — 31,0° + 270 + -]
(A11)
Proceeding as before, we can replace (6°). — 36_(62) and
(0%, — 4C, 6%2(9?) (where we have disregarded additive

constants as all the angle terms come under derivatives).
Working out the numbers, once again we get

o =a(l —2(6%)). (A12)

These were all the anisotropic terms that contribute at the level
of linear hydrodynamics. We can follow the same procedure to
show that the argument works even for higher order anisotropic

nonlinearities, for example, K,? - V6. This term generates
the Kardar-Parisi-Zhang (KPZ) type anisotropic nonlinearity
~0,00,0 at lowest order:

K, [(V - 1)0:0 + (V x %)d,0]
= 2K,[20,00,0 — 8,0%9,0 + 3,60%9,0 +---1. (A13)

As before, upon averaging we have (6%). — 36_ (Oi), and
Kp(d-VO). = K,(1 —2(02))(20,0-0,6- + ---), (Al4)

implying as before that the coupling constant gets renormalized
as K, = K,(1 —2(62)). The argument also applies to the
advective coupling D,d - V§p term in the density equation,
the calculation being entirely analogous. Note that unlike the
regular KPZ nonlinearity |V6|?> which is marginally relevant
in two spatial dimensions [65], the anisotropic version present
here is always marginally irrelevant due to rotational sym-
metry. The usual KPZ nonlinearity is also forbidden in the
density equation as it is not a total divergence and in the
phase equation as it violates parity. A similar term |V8p|? is
also forbidden in both equations for the same reasons. There
are many other anisotropic nonlinearities that also occur in
an equilibrium lyotropic nematic, and hence such terms will
automatically be generated after an iteration of the coarse-
graining procedure. Once generated, though, these terms will
be subject to the same analysis done above in subsequent
iterations of the renormalization group flow. So, if we begin
with all these higher order anisotropic nonlinearities being
small, they remain so at least to leading order, flowing to zero
for any nonzero noise.

APPENDIX B: RENORMALIZATION
GROUP FLOW EQUATIONS

Using a diagrammatic approach, the propagators and the
noise vertex are drawn in Fig. 3 and the list of leading order
interaction vertices as given in Egs. (33) and (34) are drawn in
Fig. 4 (the cubic vertex ~o V28p? is not shown as it turns out to
not contribute at lowest order). Upon including the interactions,
the renormalized propagator Gy satisfies the Dyson equation

Gr'(q.0) = G (q,0) — =(q,), (B1)

where 2(q,w) is the interaction “self-energy” given by the sum
of all one-particle-irreducible diagrams (1PI).

To first order in the noise variance [O(A)], only cubic and
quartic vertices contribute to the self-energy. Having split the
fields into slow and fast components (§p = §p- + dp~ and

q, w q, w

—  » Gplquw) —» . Golqw)
q, w q, w

/\/\/ Gp/,(q, UJ) /\H Gﬂ() (qa UJ)

———a—
q, w -q, -w A

FIG. 3. The field propagators and noise vertex.
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—20(¢2 — q;) q w = —26K (papy + (¢o — pa) (ay — py))

-2 ((ql - pw)Z - (Qy - py)Q)

p752:
p,Qf

q, W = 745quqy q, w
—gp-(q—p) —&[p|
p1, 1 )
= _§QQXQy q, W = §5K |:pr —p%y +pgr _pgy
p2, {1 +(a=p1-p2); — (@—P1-P2);

q, W _4/\pxpy

SAAA

= 20D(q2 — q}) qw —%
p, Q2

FIG. 4. The interaction vertices.

6 = 6. + 0.) and averaging over §p-. and 6. using the noise, we can write the corrected linear couplings as follows:

2
K= ol S S >
K =K —l]im lim 8—22 (q,w) (B3)
1 1 2 q—0w—0 Bq}% 0084 @);
AN=xr+ 1 lim lim 8—229 (q,0) (B4)
2 q—»0w—0 quaqy PR

1 2
o =a+ - lim lim

a—00-0 ¢, 3¢, o0(Q,), (BS)
D' +8D = D+ 5D — - lim lim 3—22 (q,0) (B6)
2 q—0w—0 aq}% PR ’
/ / 1. . 82
D' —8D' =D — 5D — - lim lim — %,,(q.0). (B7)

q—0w—0 aqy
K; = K + 6K and K| = K — §K are the bend and splay elastic constants, respectively. The correction to the noise vertex is
given by the sum over bubble diagrams Iyy(q,w):
A = A + lim lim Iy (q,w). (B8)
q—0w—0
With this we can proceed to compute the full renormalization group flow equations. After a total of about 20 loop integrals for

the self-energy and 4 for the noise vertex corrections, both X (q,w) and ITyy(q,w) to lowest order in wave vector q and at zero
frequency (w = 0) are found to be

Zorl 0) = > tnb| -2 4 sp| 1+ 22 4 (28 2 @ —a?) (BY)
== = n —_ o of _ ’

oo\q, @ 2n K K K(1+K) K qy — 4,
Yoo(q,0 =0) = ——Inby— (K~ + )+ 4arK(1 +3K + ) 2

2K 2K(1+ K)

143K +4K2 2K%ac ], ,
o - AR B10
+|: 8a K1+ K)3 (1_|_K)3:|(qx qy)} ( )

A A 8K 2K8D 2K8D(1 + 3K + 4K?
Sop(@w = 0) = — Inp] 22 22K A A+ 3K +4KD) sk
p 27 K

2K (14+K)?  2K? 1+K)y

aK g(K — D1 +3K)? + k(14+5K+11K? — K3)
— | (1+4K—K*)(x — «qy, (B11
+4K2(1+K)3 [( + Nk —g)+ 7K 4xqy, (B1D)
aA 2(1 + K)*6K? + 4K (1 + K)ar + K(1 +4K)8KS8D + K*8D?
Y o(q0 =0)= ———1Inb|1 4q.q,, B12
po(q,0 = 0) mE [ + 2K2(1 1K) qxqy (B12)
A? SK?2 1+2K a’(g? + A?) T
Mpo(q =0,0=0)= — Inb|2— + §Ka(k — 1+3K +K?%|. B13
00(q = 0,0 = 0) 7 10 [ ot (K g)K3(1+K)2 K3(1+K)3( +3K + )_ (B13)
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q2, W
q1+q2, W1 + w3

q1, Wi

FIG. 5. The cubic vertex Vj,y involving the isotropic nonlineari-
ties g and «. The incoming straight line is a director fluctuation which
decays into a density mode (the wavy line) with wave vector q; and
another director fluctuation mode with wave vector q,.

As mentioned in the main text, the leading correction to the dif-
fusion constant D comes from the o V28p? term, contributing
only at order O(Ao«é D), which is subdominant to lower order
corrections in other terms and is itself irrelevant as it involves
both @ and § D. So, we keep D = 1 fixed by setting z = 2. ¢
also renormalizes only rather weakly with the leading vertex
correction being O(Ao2a?) and hence we do not worry about
it any further by setting o = 0. The only other computation
left is that of the vertex correction to g and «. To lowest order,
this involves five diagrams. The vertex itself is constrained by
rotational symmetry and is generally given as

Vopo(q1,92) = —2A(q7, — ‘112}1) —gq; - @ — «|qo |
— (43 — 43,) — 2(@icdax — q1542y)
— Y392x92y (B14)

for vanishing outgoing frequencies (w; » = 0) and with q; and
> as the outgoing wave vectors in the density and phase modes
(see Fig. 5). The y; 23 couplings are permitted by symmetry
and will in general be generated upon renormalization. These
terms are all anisotropic in nature and arise from the density
dependence of the Frank constant anisotropy (y;8p1"16) or
from the KPZ type advective nonlinearity K,v - V6 which
when expanded leads to both y,(9,800,6 — 9,600,0) and
y30,00,60 terms. Using the argument in Appendix A used for
all the anisotropic terms, we conclude y; » 3 to all be irrelevant
and do not consider them any further. The leading correction
of the cubic vertex gives the recursion relations for g, «, and
A. Importantly, as required by rotational invariance, no correc-
tions oc|q|* or q1xq1y arise in Vg9, with the corresponding
loop integral contributions canceling only after summing over
all the leading diagrams. Having already computed the loop
correction to A from the renormalization of the G, propagator,
the two flow equations must coincide as the the coefficient in
the cubic vertex is related to the linear coupling by rotational
symmetry. This requirement will allow us to fix the value of
the yet unknown scale factor ¢y for the slow angle field 6. The
corrections to g, k, and A from the vertex are

1 1 +3K +4K?
¢ = g — 45DAA— Inpot o TART
o K(O+K)

1 143K +4K?
K =K —28DIA — lnb+3—+,
27 K(1+K)

. (BI5)

(B16)

1 +3K +4K? K
Ao=A— Inb| 5 — gsp it 3K T 88
2K 2(1+ K)3 4K
§DkK?> 8Kk
Targr TaK B17)

Having integrated out a thin shell of short scale fluctuations
(6p-,6~), we now rescale back both space and time (r —
rb, t — tb*) along with the slow fields (§p. — Sp-b% and
0. — 6_b%) in order to restore the cutoff back to A. Having
already set z = 2, writing £ = In b < 1, we obtain differential
recursion relations for the various coupling constants:

dsD _1+K_ % ASD[ (8K ? B18)
a2 - 2 2K k)|
aK =Kickh+d A_ (3K (B19)
P R ey N &
dsK A CK K2
— =——$8K+K|-g—+k——|, (B20
dt mrh T [ £ +K(1+K)2:| (B20)

dA_A 5 _ _SK(1+2K) A [(SK\?
@ {‘ frE=y —2K<1+K>+ﬁ<7) }

(B21)

dx A gA Kck
Z=g -2 - 28D —§K
de (g” & 271K> + 8nK2< 1+K )

€A [sp_ K 15K (B22)
87 K? (1+K) ’
da 3 - sD?
=l — -3 —
de S =% 2K 2(1+ K)?
(1+ 4K) SK\?
SDSK ———— — , B23
+ 2K(1+K)2+<K> (B23)
dg CK
— = —2AD)———, B24
ac = 8% 7K(1+ K) B2
dk CK
— = — ASDA\———. B25
ac = 7K(I + K) (B2
In order to simplify the notation, we have used
K — 1)(1 + 6K + K?
g = K= DUF6K + K 26

(1+K)»

along with cgx = (1 +3K +4K?)/(1 4+ K)> as given in
the main text, and § = oagA/[rK*>(1+K)] and i =
akA/[mK?(1 4+ K)] are defined similar to 2. As mentioned
before, comparing the recursion relations for A independently
obtained from both Eqs. (B11) and (B17) we obtain ¢y = 0 to
lowest order.

One can easily check that K = 6 D = g = k = 0O provides
an invariant subspace in {K,A} with the noise variance A
unrenormalized. Looking at small deviations from this sub-
space, we linearize the recursion relations around a particular
(K (£),A(£)} trajectory. To linear order in 6K, 6D, g, and «,
the flow of K, A, and A remains unchanged, so Egs. (40)
and (41) continue to hold even for small transverse devi-
ations from the invariant submanifold. The linearized flow
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equations are

‘I‘S_D:E_m[n(A)er( Kex +l>] (B27)
¢ 2 1+K 2

% =Lt % SR + ki), (B2S)

Z_i _ 2:;;@ — 2In(A) + b, (B29)

Z_’Z _ _1%5_13 _RI(A)+bkil.  (B30)

Once again, bx =1+ cx(2+3K)/(1+ K) and n(A) =
A/2m K as given in the main text. We also normalize the
diffusion and elastic anisotropies as 8D = 8D /(1 4+ K) and
8K = 8K /K. Writing the above equations as d®/d{ = L&
where ® = {E,W,g,k}, we treat K, A, and X as essen-
tially constant at a given point on the renormalization flow
trajectory. Diagonalizing the linear matrix L, the corresponding
eigenvalues y; (i = 1 to 4) control the scaling dimensions and
(ir)relevance of the various couplings. The first two eigenvalues
are

yi = —[n(A) + bgAl, (B31)

y2 = —[n(A) + cx Al (B32)

both of which are always negative for & > 0. We will primarily
focus only on the first quadrant of the {K,1} plane, though
the basin of stability of the line of fixed points on the K axis,
extends to a small region of . < 0, which becomes vanishingly
small for large K and small A. Outside this region (i.e., for A <
0), the flow is perturbatively unstable even within the {K,1}
plane, and we do not address it any further. As both y;, < O,
both these directions are stable and flow to zero at a fixed point
with finite K and A. The other two eigenvalues of L are a

complex conjugate pair

— _n(A)— A bl g 72exA (B33)
V34 =1 02 ) 1 =K
Ao =bx £[Kcx/(1+K)+1/2] are complicated

functions of K, that remain bounded for all 0 < K < o0.
Importantly, Ag > 0 for all K > 0 and hence for small A,
Re(y3.4) < 0 and Im(y34) = £/n(A)ck i + O(L). Even for
larger X, one can show that Re(y3) < O for all X > 0 as long
as K > —%. Hence, in these directions as well, the flow is
stable, though oscillatory. With this we conclude that the
{K,)} subspace is linearly stable and attracting in the top
right quadrant, with deviations from it being irrelevant. Of
course, all of this is only a perturbatively valid statement and
for larger A > 0, one could have a phase transition to a strong
“activity” fixed point. Such a scenario, though, is currently
inaccessible within a perturbative treatment.

Although our analysis was performed strictly in two dimen-
sions, ford = 2 + ¢, we can also formally extend the recursion
relations for small ¢ by just accounting for the dimensional
change in couplings while keeping the loop corrections the
same as for d = 2. Doing so for the simple case when 6K =
6D =g =« =0, we find

dT )
—p =T +exh), (B34)

dr _ _

== _XMe+T +bgh), (B35)

dt

where T = A/ K is just a scaled noise variance. For ¢ > 0,
we immediately find that both the effective noise and the activ-
ity are driven to zero very quickly, making all the nonlinearities
irrelevant. For & < 0, there is a fixed point in (T,1) of O(¢),
but the only physical dimension below two is d = 1, in which
a nematic does not break a continuous symmetry. So, above
d = 2, activity is always irrelevant (dangerously though as
it still causes large number fluctuations) and we recover the
linearized description of an active nematic.
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