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Ordering transitions of weakly anisotropic hard rods in narrow slitlike pores
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The effect of strong confinement on the positional and orientational ordering is examined in a system of hard
rectangular rods with length L and diameter D (L > D) using the Parsons-Lee modification of the second virial
density-functional theory. The rods are nonmesogenic (L/D < 3) and confined between two parallel hard walls,
where the width of the pore (H ) is chosen in such a way that both planar (particle’s long axis parallel to the walls)
and homeotropic (particle’s long axis perpendicular to the walls) orderings are possible and a maximum of two
layers is allowed to form in the pore. In the extreme confinement limit of H � 2D, where only one-layer structures
appear, we observe a structural transition from a planar to a homeotropic fluid layer with increasing density, which
becomes sharper as L → H . In wider pores (2D < H < 3D) planar order with two layers, homeotropic order,
and even combined bilayer structures (one layer is homeotropic, while the other is planar) can be stabilized at high
densities. Moreover, first-order phase transitions can be seen between different structures. One of them emerges
between a monolayer and a bilayer with planar orders at relatively low packing fractions.
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I. INTRODUCTION

It is still a fascinating topic from both fundamental and
practical points of view to examine hard body fluids in slitlike
pores as a model system of nanoparticles in nanopores [1,2].
The reason for this is that the connection between two- and
three-dimensional systems can be examined by tuning the wall
separation (H ) between the parallel walls. For example, al-
though first-order melting transitions of spherical hard particles
weaken and become continuous with decreasing H , an inter-
mediate hexatic phase emerges between fluid and solid struc-
tures as H → 0 [3]. In addition, several crystalline structures
can be generated such as the layered structures with square
and triangle symmetry inside the pore. The stability of these
phases depends on how many layers can be accommodated
between the confining walls [4,5]. The case of anisotropic hard
particles is more complicated in pores as several mesophases
can be present, which are stable even in the bulk limit, such
as the nematic, smectic-A, and columnar mesophases [6,7].
Smooth surfaces usually prefer the planar ordering at the
walls and promote the formation of the orientationally ordered
phase [8], while rough ones may work against ordering [9].
With some surface treatments and rubbing it is possible to
achieve either planar or homeotropic ordering at contact to the
wall, which is very important in the development of display
devices [10–12]. The ordering behavior can be examined in
hybrid cells, too, where one wall favors the planar ordering,
while homeotropic alignment is induced at the other wall. The
ordering of anisotropic mesogenic particles may be uniform,
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linear, and even steplike due to the subtle interplay between
the anchoring energies of the conflicting walls [13–17].

The nematic ordering of hard rods is very different in
wide and narrow slitlike pores even if only excluded volume
(steric) interactions are present. The wall-particle repulsion
supports planar ordering to maximize the available space for
the particles, i.e., the surface of the wall is always wet by
a planar nematic film even if the system is very dilute and
H → ∞. However, the middle of the pore can be isotropic and
a capillary nematization (isotropic-nematic transition) may oc-
cur with increasing density. This capillary transition weakens
with decreasing H and terminates in a critical point [18,19].
The critical pore width (H ) of the capillary nematization
is about —two to three times larger than the length of the
rod, but it depends weakly on the shape anisotropy of the
particles [20]. Note that this is not a common property of
all liquid crystals as the first-order nature of the isotropic-
nematic transition can survive even in the H → 0 limit in
some systems [21]. Another important phenomenon in the
system of confined hard rods is the biaxial nematic wetting
at the walls. Due to the strong adsorption of particles at the
walls, an in-plane aligning transition can be induced with
increasing density, which takes place between uniaxial nematic
and biaxial nematic films [22,23]. This transition survives
even in the extreme confinement limit H → 0; therefore,
it is interpreted as the isotropic-nematic transition of two-
dimensional (2D) hard rods [24,25]. Along these lines, both
experimental and theoretical studies have been devoted to the
capillary nematization and the surface ordering in strongly
confined lyotropic and thermotropic liquid crystals [10,26–
30]. Even a second-order isotropic-nematic phase transition
can be observed in extremely confined semiflexible polymer
solutions [31].
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In our study we examine the effect of strong confinement
on the orientational and positional ordering of nonmesogenic
hard rods. This is motivated by our recent study of 2D hard
rectangles, where the particles are weakly anisotropic and
are confined between two parallel lines [32]. Using the exact
transfer operator method it has been shown that planar-to-
homeotropic orientational and monolayer-bilayer structural
changes may arise in very strong confinements. These ori-
entational and structural changes are continuous, without
any nonanalytic behavior in the thermodynamic quantities.
However, the peak in the heat capacity and the sudden changes
in the equation of state suggest that the confined rectangles
undergo a strong structural transition which might turn out
to be a true phase transition in some three-dimensional (3D)
systems, such as the hard cuboids between two parallel walls.
To our best knowledge very few works have been devoted
to the ordering properties of weakly anisotropic 3D hard
particles, where the width of the confinement is of the order
of the particles’ dimensions. Using Monte Carlo simulation
Khadilkar and Escobedo examined the positional ordering of
polyhedral particles in slitlike pores, where the width of the
pore is varied to see the structure of layered phases up to five
layers [33]. Monte Carlo simulation studies of hard ellipsoids
[34] and hard spherocylinders [35] support the belief that the
strong confinement of weakly anisotropic particles promotes
the formation of nematic order and layered structures even if
the shape anisotropy of the particles is not enough large to form
a nematic phase in bulk. Here we investigate the role of strong
confinement on both orientational and positional ordering of
hard cuboids and search for the possible phase transitions and
structural changes at low and high densities.

II. THEORY

We examine the orientational and positional ordering of
rectangular hard rods, which are placed between two parallel
hard walls with wall-to-wall distance H . The rodlike particles
are modelled as rectangular cuboids with dimensions D and
L, where D is the length of the two shorter sides; i.e., the
cross section of the particle is a square, while L is the length
of the long side. The particle-particle and the particle-wall
interactions are hard repulsive; i.e., the particles are not allowed
to penetrate each other and to overlap with the confining
walls. To determine the low and high density structures of
the confined hard rods we resort to the classical Onsager’s
density-functional theory with the Parsons-Lee modification
[36,37] to make it suitable for weakly anisotropic particles.
Even though this theory is approximate, it reproduces the
simulation results for confined liquid crystals quite accurately
[38]. Note that exact theoretical results can be obtained only
in the quasi-one-dimensional limit [39] and in some lattice
gases [40]. Here we present only the working equations and
the differences from the equations of our previous study [20],
where we studied the phase behavior of long hard rods (L/D >

10) in wide pores. As before, we restrict the orientational space
of the long axis of the particle to three mutually orthogonal
directions (Zwanzig approximation), which are chosen to be
the Cartesian axes (x, y, and z), where the x and y axes span the
confining flat surfaces, while the z axis is perpendicular to the
walls. We do not consider the possible in-plane positional order
( crystallization), which is known to be only quasi-long-ranged
and the transition from isotropic fluid to solid is continuous
Kosterlitz-Thouless type [41]. Therefore, the local density
(ρ) depends only on the z coordinate of the position vector
�r = (x,y,z) in our formalism. The packing fraction (η) with
the above conditions can be determined from the local densities
of orientations x, y, and z, i.e.,

η = v0

V

∑
i=x,y,z

∫
d�rρi(�r) = v0

H

∑
i=x,y,z

∫
dzρi(z), (1)

where v0 = LD2 is the volume of the cuboid particle, V = AH

is the volume of the pore, A is the area of the confining walls,
and ρi(z) is the local density of the orientation i. The lower and
upper limits of z in the integrals of Eq. (1) are (D/2,H − D/2)
for ρx and ρy , and (L/2,H − L/2) for ρz, because the particles
and the confining walls are hard. Note that the origin of the
Cartesian system is placed into one of the walls. The key
quantity to determine the local densities in inhomogeneous
fluids is the grand potential (�). On the level of Onsager’s
second virial theory with the Parsons-Lee modification, it is
given by

β�

A
=

∑
i=x,y,z

∫
dzρi(z)

[
ln ρi(z) − 1 + βV i

ext(z) − βμ
]

+ 1

2
c

∑
i,j=x,y,z

∫
dz1ρi(z1)

∫
dz2ρj (z2)Aij

exc(z1 − z2),

(2)

where β = (kBT )−1 is the inverse temperature, βV i
ext is the

external potential acting on a particle with orientation i and the
walls, μ is the chemical potential, c = (1 − 3η/4)(1 − η)−2

is the Parsons-Lee prefactor, and A
ij
exc is the excluded area

between two cuboids with orientations i and j . The hard
walls act differently for particles aligning parallel (x and y

orientations) and perpendicular (z) to the walls as follows:

βV x
ext(z) = βV

y
ext(z) =

{
0, D/2 � z � H − D/2
∞, otherwise , (3a)

and

βV z
ext(z) =

{
0, L/2 � z � H − L/2
∞, otherwise . (3b)

The excluded areas for all possible combinations of the
orientations can be summarized as

Axx
exc(z) = Ayy

exc(z) = 4LDθ (D − |z|), Axy
exc(z) = Ayx

exc(z) = (L + D)2θ (D − |z|),
Axz

exc(z) = Azx
exc(z) = Ayz

exc(z) = Azy
exc(z) = 2D(L + D)θ [(L + D)/2 − |z|] and Azz

exc(z) = 4D2θ (L − |z|), (4)

where the Heaviside step function [θ (z)] makes all excluded areas discontinuous.
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Note that Eq. (2) reduces to Onsager’s theory in the low density limit (η → 0), which corresponds to c = 1. In order to
determine the equilibrium local densities, the grand potential has to be minimized with respect to all density components, i.e.,
δ(β�/A)/δρk(z) = 0 (k = x,y,z). The functional differentiation results in

ln ρk(z) + βV k
ext(z) − βμ + 1

2

dc

dη

v0

H

∑
i,j=x,y,z

∫
dz1ρi(z1)

∫
dz2ρj (z2)Aij

exc(z1 − z2)

+ c
∑

i=x,y,z

∫
dz1ρi(z1)Aik

exc(z − z1) = 0, (5)

where dc
dη

= 5−3η

4(1−η)3 and we used δη

δρk (z) = v0
H

, which comes from Eq. (1). After some rearrangements of Eq. (5), we can express
the local densities as

ρk(z) = exp

⎡
⎣βμ − 1

2

dc

dη

v0

H

∑
i,j=x,y,z

∫
dz1ρi(z1)

∫
dz2ρj (z2)Aij

exc(z1 − z2)

⎤
⎦

× exp

⎡
⎣−βV k

ext(z) − c
∑

i=x,y,z

∫
dz1ρi(z1)Aik

exc(z − z1)

⎤
⎦. (6)

Equation (6) defines a self-consistent set of equations for ρx , ρy , and ρz, which can be solved iteratively at a given chemical
potential, shape anisotropy and pore width. Note that dc

dη
= 0 in the original Onsager’s formalism. Instead of working with βμ,

we substitute Eq. (6) into Eq. (1), which results in the following expression for the chemical potential:

exp[βμ] =
Hη/v0 exp

[
1
2

dc
dη

v0
H

∑
i,j=x,y,z

∫
dz1ρi(z1)

∫
dz2ρj (z2)Aij

exc(z1 − z2)
]

∑
l=x,y,z

∫
dz1 exp

[−βV l
ext(z1) − c

∑
i=x,y,z

∫
dz2ρi(z2)Ail

exc(z1 − z2)
] . (7)

This expression allows us to replace βμ with η in Eq. (6) and obtain a set of equations for the local densities in terms of
packing fraction as follows:

ρk(z) = Hη

v0

exp
[−βV k

ext(z) − c
∑

i=x,y,z

∫
dz1ρi(z1)Aik

exc(z − z1)
]

∑
l=x,y,z

∫
dz1 exp

[−βV l
ext(z1) − c

∑
i=x,y,z

∫
dz2ρi(z2)Ail

exc(z1 − z2)
] . (8)

We have solved iteratively the above coupled equations for
the local densities at a given η, L/D, and H , where D is taken
to be the unity. In the first step we have discretized Eq. (8)
by using equidistant grid points zl = l�z for the z position of
the particles, where l = 0, . . . ,n and �z = H/n. In the next
step we have generated the starting distributions for the local
densities at the discrete points, which can be a constant function
[ρk(zl) = const. for k = x,y,z], planar [ρk(zl) > 0 for k =
x,y and ρz(zl) = 0], or homeotropic [ρk(zl) = 0 for k =
x,y and ρz(zl) > 0]. After this we have performed numer-
ical integrations with the trapezoidal quadrature. To find the
solution of the coupled self-consistent equations [Eq. (8)],
the Picard’s iteration method is used, which combines the
results of the successive iterations with a mixing rule. In our
case very fast convergence can be achieved if only 5% of the
right-hand side of Eq. (8) is mixed with the previous density
distributions in the next iteration. The successive iteration
procedure is considered to be convergent at the iteration step
m if 1

n+1

∑n
l=0

∑
k=x,y,z |ρm+1

k (zl) − ρm
k (zl)| < 10−11. To get

reliable results it is also important to choose such �z, which
covers perfectly the intervals of the excluded area integrals
where A

ij
exc �= 0. In most of the cases it has been sufficient to

use �z = 0.01. The reliability of the discretization and the
convergence of the successive iteration methods applied for
Euler-Lagrange integral equations such as ours is discussed in
[42].

Having obtained the local densities from Eq. (8), we can
calculate the grand potential and the chemical potential using
Eqs. (2) and (7). First-order phase transitions are located at
the intersection point of two different solutions of Eq. (8) in
the βμ − β�/A plane, which corresponds to the equality of
chemical potentials and that of pressures of the coexisting
phases. In the following section we present our results in
dimensionless units, where D is the unit of distance; i.e.,
ρ∗

i = ρiD
3 and H ∗ = H/D.

III. RESULTS

Even though our formalism can be applied for wide pores
and long rods, here we consider only weakly anisotropic
particles in very narrow pores and search for possible structural
changes and phase transitions. The shape anisotropy of the
cuboidal particle (L/D) has two restrictions: (1) L/D < 3;
i.e., the particles are nonmesogenic in bulk; and (2) H > L;
i.e., the particles are allowed to stay both in planar (long axis
of the particle is parallel to the walls) and homeotropic (long
axis of the particle is perpendicular to the walls) orientations
in the pore. We also restrict our attention to such narrow pores
that a maximum of two fluid layers is allowed to form. This can
occur only if H < 3D. Before presenting the results, it is worth
determining the possible one- and two-layer structures in the
close packing limit to check the reliability of the forthcoming
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FIG. 1. Cartoons show the close packing structures of hard rect-
angular rods with square cross sections in a slitlike pore. Structures
of a single homeotropic layer (upper panel), a planar bilayer (middle
panel) and a combined bilayer (lower panel) can be realized with the
shown H/D and L/D parameters.

results. Three different close packing structures can be identi-
fied in our confined system with the above conditions, which
can be summarized as follows: (a) Only one homeotropic layer
is allowed to form for H � 2D and for 2D < H � 3D if L >

2D, (b) two layers with planar ordering are allowed to form for
2D < H � 3D if L < 2D and L > H − D, and (c) one layer
is planar, while the other is homeotropic for 2D < H � 3D if
L < 2D and L < H − D. These close packing structures are
shown together in Fig. 1. Note that we do not consider those

FIG. 2. Planar-to-homeotropic structural change of hard rods in
a narrow slitlike pore (H/D = 2), where only one layer of particles
is allowed to form. The fraction of hard rods in planar (XP ) and
homeotropic (XH ) ordering is shown as a function of packing fraction
for L/D = 1.9, 1.99, and 1.999.

FIG. 3. Phase diagram of confined hard rods in the packing
fraction−shape anisotropy (η − L/D) plane for (a) wall-to-wall
separations of H/D = 3 (upper panel); (b) H/D = 2.5 (lower panel)
and H/D = 2.2 (inset of the lower panel). The curves show the
boundaries of the different structures. The following structures are
found: uniaxial planar (UP), biaxial planar (BP), homeotropic (H),
uniaxial (UT), and biaxial combined two-layer (BT) structures. The
symbols designate few stable points of the observed phases. The
structures of the hard rods at these symbols are shown in Fig. 4.
The biphasic regions are shaded with gray.

cases when two homeotropic layers can form in the pore, i.e.,
when L < H/2.

We first present our results for H/D = 2, where only one
layer of fluid is allowed to form in both planar and homeotropic
orientations. In this case the local densities do not depend on z

as all excluded areas are independent from the z1 − z2 distance
of particles 1 and 2. The structure of the monolayer for varying
L/D is shown in Fig. 2, where the fraction of particles in planar
and homeotropic configurations is calculated from

XP =
∫

dz[ρx(z) + ρy(z)]∑
i=x,y,z

∫
dzρi(z)

and XH =
∫

dzρz(z)∑
i=x,y,z

∫
dzρi(z)

,

(9)
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FIG. 4. Density profiles of the stable structures as a function of z∗ = z/D in wide (H/D = 3) and narrow (H/D = 2.25) pores at different
packing fractions and shape anisotropies, which can be identified with the help of the shown symbols in Figs. 3 and 5. The local density
components ρ∗

x (z) (black), ρ∗
y (z) (red), and ρ∗

z (z) (blue) are shown together in the diagrams. The following stable structures are seen: (a)
uniaxial planar [ρ∗

x (z) = ρ∗
y (z) > ρ∗

z (z)], (b) biaxial planar [ρ∗
x (z) �= ρ∗

y (z) �= ρ∗
z (z)], (c) homeotropic [ρ∗

x (z) = ρ∗
y (z) � ρ∗

z (z)], (d) uniaxial
weakly planar with non-negligible portion of particles in homeotropic order, (e) uniaxial strongly planar with some homeotropically ordered
particles at the vicinity of the walls, (f) uniaxial bilayer with homeotropic order at the left wall and planar order at the right wall, (g) bilayer
with homeotropic order at the left wall and biaxial planar order at the right wall, (h) uniform monolayer with weak adsorption in planar order
at the walls, and (i) uniaxial planar bilayer with few particles in the homeotropic order.

where the evaluation of the integrals is trivial for
H � 2D as

∫
dz [ρx(z) + ρy(z)] = (H − D) (ρx + ρy) and∫

dz ρz(z) = (H − L) ρz. Figure 2 shows that the structure is
dominantly planar at low densities, while it is homeotropic at
high ones. As L → H the order is more and more planar for
η < 0.5; i.e., XP → 1 and XH → 0. This can be attributed
to the fact that the available space along the z axis in planar
orientation is H − D, while the homeotropic ordering allows
fewer positions for the particles as the available room along
the z axis is just H − L. The reason why the monolayer be-
comes homeotropic for η > 0.5 is that the maximum packing
fraction (ηmax) is just 0.5 in planar order, while it is 2D/H

in homeotropic order. This means that the only way to form
a closely packed structure is if the monolayer undergoes
a structural change from planar to homeotropic order. One
can show that XP = 2(H − D)/(3H − L − 2D) at very low
densities, because the translational and orientational entropy

terms (ρi ln ρi) determine the structure of the system, while the
packing entropy (excluded area) terms are negligible. From
this expression one can see immediately that XP = 2/3 for
L = D (x, y, and z directions are equally probable) and
XP = 1 for L = 2D (all particles are in the x-y plane).
However, at high densities the packing entropy term wins over
the translational and orientational ones because the excluded
volume term can be minimized between the particles by
homeotropic ordering [V zz

exc = ∫
dzAzz

exc = 4 D2(H − L)] in
Eq. (2). Therefore the structural planar-homeotropic change
is the result of a subtle competition between the translational,
orientational, and the excluded volume terms of the grand
potential. Our search for possible in-plane orientational or-
dering has resulted in no biaxial order; i.e., ρx = ρy for any
L < 2D. This is not surprising because even 2D objects with
a shape anisotropy less than 3 do not form a nematic phase in a
plane.
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In wider pores, i.e., 2D < H � 3D, we encounter the
situation that an inhomogeneous fluid is allowed to form with
two layers and the close packing structure depends on L. We
show the resulting phase diagrams in Fig. 3 for H/D = 3, 2.5,
and 2.2 and the possible structures in Fig. 4. These are the fol-
lowing: uniaxial planar (UP), biaxial planar (BP), homeotropic
monolayer (H), and special bilayers with homeotropic order at
one end and uniaxial or biaxial planar order at the other one
(UT and BT). The previously discussed planar-homeotropic
structural change survives at H/D = 3 if L/D > 2, but it
is now a first-order transition between planar bilayer and
homeotropic monolayer phases. The coexisting planar phase
can be either uniaxial (ρx = ρy) or biaxial (ρx �= ρy) as the
second-order uniaxial-biaxial (UP-BP) transition crosses the
biphasic region. Therefore the following phase sequences can
be seen with increasing density for H/D = 3 [Fig. 3(a)]: (1)
UP → BP → H for 2.5 < L/D < 3 and 2 < L/D < 2.1 and
(2) UP → H for 2.1 < L/D < 2.5. The density profiles of
these phases indicate that (i) the UP phase consists of two fluid
layers with strong adsorption at the walls and a few percent of
the particles with homeotropic order in the middle of the pore
[Fig. 4(a)]; (ii) in the BP phase, particles mostly align along
the x axis at both walls [Fig. 4(b)]; and (iii) in the H phase,
particles order along the normal of the confining plates without
adsorption at the wall [Fig. 4(c)]. It is clear that the UP-BP
transition line moves up in density with decreasing shape
anisotropy as the excluded area gain becomes less with in-plane
ordering. The widening stability region of the BP phase for
L/D > 2.5 is due to the translational entropy loss along the
z axis in the homeotropic phase as L/D → 3. However, it
is harder to understand the stabilization of the planar phase
with respect to homeotropic order for L/D < 2.5 because the
translational entropy term is now larger in the homeotropic
order. Therefore, the packing entropy may be the main factor in
this phenomenon as the close packing planar and homeotropic
densities are becoming closer to each other as L/D → 2.
The existence of biaxial structures at lower L/D is due to
the destabilization of the homeotropic ordering being stronger
than that of the UP-BP transition as L/D → 2. The situation
is dramatically changed for L/D < 2 [see Fig. 3(a)], because
combined bilayer phases (UT and BT) can be more packed than
the planar and homeotropic structures. The density profiles for
the case L/D = 1.85 with increasing density show that the
planar particles are depleted from the middle of the pore at
η = 0.3 [Fig. 4(d)], both planar and homeotropic particles are
adsorbed at the walls and the central region of the pore becomes
practically empty at η = 0.55 [Fig. 4(e)], segregation of the
homeotropic and planar particles occurs at the opposite walls at
η = 0.65 [Fig. 4(f)], and even biaxial order can take place in the
planar layer at η = 0.75 [Fig. 4(g)]. Interestingly, the transition
between UP and UT phases is of first order and becomes weaker
with decreasing L/D. The disappearance of this transition is
due to the fact that a homeotropic bilayer structure emerges for
L/D < 1.5, which can be more packed than the combined one.
Biaxial order can only be stable at very high densities through
a second-order UT-BT transition, as the shape anisotropy is
very weak. The phase diagram in narrower pores (H/D = 2.5
and H/D = 2.2) is similar, but the coexistence curve between
planar bilayer and homeotropic monolayer structures is shifted
to higher packing fractions and the coexisting planar bilayer

FIG. 5. Phase coexistence between monolayer and bilayer fluids
in packing fraction−shape anisotropy (η − L/D) plane for pore
widths H/D = 2.1, 2.15, 2.2, and 2.25. The density profiles of the
uniform and planar phases, which are marked by symbols, can be seen
in Figs. 4(h) and 4(i).

is biaxial as there is no intersection between the first- and
second-order transitions [see Fig. 3(b)]. However, the region of
H − D < L < 2D, which is not empty for H < 3D, is special
in the sense that the close packing can be achieved with the
planar bilayer structure. Therefore it is interesting that planar
bilayer ordering develops continuously with increasing density
for H/D = 2.5 in the range of 1.5 < L/D < 2. In narrower
pores (H/D < 2.3) we have found that the process of planar
bilayer ordering is accompanied by a first-order transition
between monolayer and bilayer phases (see Fig. 5). The density
distributions of these structures are shown in Figs. 4(h) and
4(i). We can see that the hard rods do not form a bilayer up to
the transition point with increasing density, because the density
profiles are uniform with some adsorption at the walls in planar
orientation, ρx = ρy > 0 in the middle of the pore, and with
lots of particles in homeotropic orientation [see Fig. 4(h)]. In
addition, there is no reason to form a bilayer as the packing
fraction is below the maximal packing fraction of the planar
monolayer structure [ηmax(monolayer) = D/H ]. Figure 4(i)
shows that the confined fluid consists of two planar layers at
higher densities, as ρx = ρy ≈ 0 in the middle of the pore,
and density profiles are strongly peaked at the walls, with
η > ηmax(monolayer). It can also be seen that planar bilayers
are interrupted by homeotropic particles, as ρz > 0 in the
middle of the pore. Therefore the phase transition in Fig. 5
can be considered as a monolayer-bilayer layering transition,
which has been observed so far in a system of confined hard
rods with larger shape anisotropies and with homeotropically
aligning walls [43]. The existence of biphasic islands can be
attributed to the presence of homeotropic rods. The left end of
the island is due to the weak shape anisotropy as homeotropic
short rods can easily reorient into the planar direction. The
right end of the biphasic region can be also understood because
there are fewer and fewer homeotropic rods with increasing
shape anisotropy as translational entropy decreases. This can
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be seen clearly in the shift of the right end towards lower
values of L/D with decreasing pore width H . The width of
the pore is also an important factor in the stabilization of
first-order layering transitions, because a substantial loss in
the translational entropy is necessary during the formation of
the bilayer. This happens when two layers cannot accommo-
date easily into the pore; i.e., H ≈ 2D. This is the reason why
we do not observe layering transitions for H/D � 2.3. Note
that the biphasic island exists for H/D < 2.1, but that it moves
into the direction of very high packing fractions and becomes
smaller.

IV. CONCLUSIONS

We have shown that a system of weakly anisotropic rodlike
particles can undergo a phase transition in narrow slitlike pores
where the particle-particle and particle-wall interactions are
hard repulsive. Therefore the system is athermal and entropy
driven. The systems investigated are practically quasi-two-
dimensional as the pore width is chosen such that a maximum
of two layers is allowed to form between the confining hard
walls. Depending on the shape anisotropy of the rods, pore
width, and density, several mesophases can be realized, such as
orientationally ordered monolayers and bilayers with in-plane
uniaxial or biaxial order. Although the hard walls always
support the planar ordering to maximize the translational
entropy, the packing entropy may win over the other entropy
terms and give rise to homeotropic ordering at high densi-
ties. If only a monolayer is allowed to form, i.e., H < 2D,
the wall-induced planar monolayer transforms continuously
into a packing-entropy-induced homeotropic monolayer with
increasing density. In wider pores, 2D < H < 3D, as a result
of the competition between translational, orientational, and
packing entropy terms, our scaled Onsager theory predicts first-
order phase transitions between monolayers and bilayers. The
low density planar monolayer may transform continuously or
discontinuously into a middle density planar bilayer. At higher
densities the bilayer may exhibit a second-order ordering
transition from uniaxial to biaxial phases, which takes place
in the plane of the walls. In addition to this, the planar bilayer

may transform into a homeotropic monolayer or UT bilayer
through first-order phase transitions. Among these transitions,
the monolayer-bilayer layering transition of the cases H/D <

2.3 takes place at the lowest packing fractions (η ∼ 0.5),
which is far from the maximal η of the planar bilayer (ηmax =
2D/H ∼ 1). Interestingly the UP-UT transition can take place
at similarly low packing fractions if 2L ∼ H . However, the
UP-H transitions are located at very high densities, which are
sometimes very close to the close packing of the homeotropic
order; i.e., η ∼ ηmax = L/H . Therefore, it may happen that
the confined bilayer fluid freezes first, and then the quasi-
two-dimensional crystal transforms into the homeotropic one,
both coexisting phases being crystalline. To resolve this issue,
an extension of the theory for in-plane positional ordering is
needed. Finally, we mention that our previous 2D exact results
are consistent with our present mean field results in the sense
that confined hard rectangles exhibit very similar structural
changes [32].

It is remarkable that a planar-to-homeotropic transition
is observed in the presence of flat surfaces with increasing
density. Such a phenomenon is also observed in a system
of hard Gaussian overlap particles with a special wall-needle
interaction [14] and in stiff ring polymers on hard walls [44].
Other examples belong to the realm of thermotropic liquid
crystals, where the surfaces of the cell are treated and the
planar-to-homeotropic transition takes place with decreasing
temperature [45]. It remains an open question whether the
density-induced planar-to-homeotropic ordering survives in
wider pores and whether a bistable device or a pressure sensor
could be fabricated with such hard particles [46].
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