
PHYSICAL REVIEW E 97, 012701 (2018)

Magneto-optic dynamics in a ferromagnetic nematic liquid crystal
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We investigate dynamic magneto-optic effects in a ferromagnetic nematic liquid crystal experimentally and
theoretically. Experimentally we measure the magnetization and the phase difference of the transmitted light when
an external magnetic field is applied. As a model we study the coupled dynamics of the magnetization, M, and the
director field, n, associated with the liquid crystalline orientational order. We demonstrate that the experimentally
studied macroscopic dynamic behavior reveals the importance of a dynamic cross-coupling between M and
n. The experimental data are used to extract the value of the dissipative cross-coupling coefficient. We also
make concrete predictions about how reversible cross-coupling terms between the magnetization and the director
could be detected experimentally by measurements of the transmitted light intensity as well as by analyzing the
azimuthal angle of the magnetization and the director out of the plane spanned by the anchoring axis and the
external magnetic field. We derive the eigenmodes of the coupled system and study their relaxation rates. We
show that in the usual experimental setup used for measuring the relaxation rates of the splay-bend or twist-bend
eigenmodes of a nematic liquid crystal one expects for a ferromagnetic nematic liquid crystal a mixture of at least
two eigenmodes.
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I. INTRODUCTION

In Ref. [1] Brochard and de Gennes suggested and discussed
a ferromagnetic nematic phase combining the long-range ne-
matic orientational order with long-range ferromagnetic order
in a fluid system. The synthesis and experimental character-
ization of ferronematics and ferrocholesterics, a combination
of low-molecular-weight nematic liquid crystals (NLCs) with
magnetic liquids leading to a superparamagnetic phase, started
immediately [2] and continued thereafter [3–9]. These studies
made use of ferrofluids or magnetorheological fluids (colloidal
suspensions of magnetic particles) [10]; their experimental
properties [10,11] have been studied extensively in modeling
[12–17] using predominantly macroscopic descriptions [12–
14,16].

On the modeling side, the macroscopic dynamics of fer-
ronematics was given first for a relaxed magnetization [18]
followed by taking into account the magnetization as a dynamic
degree of freedom [19] as well as incorporating chirality
effects leading to ferrocholesterics [20]. In parallel a Landau
description including nematic as well as ferromagnetic order
has been presented [21].

Truly ferromagnetic NLCs have been generated [22] in
2013 followed by reports of further ferromagnetic NLCs in
Refs. [23,24], and their macroscopic static properties were
characterized in detail [25]. Quite recently ferromagnetic
cholesteric liquid crystals have been synthesized and inves-
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tigated [26–28]. For a review on ferromagnetic NLCs, see
Ref. [29].

In the present paper we describe in detail experimentally
and theoretically the static and dynamic properties of ferro-
magnetic NLCs [30]. We analyze the coupled dynamics of
the magnetization and the director, initiated and controlled
by an external magnetic field. We show experimentally and
theoretically that dissipative dynamic coupling terms influence
qualitatively the dynamics. Experimentally, this is done by
measuring the temporal evolution of the normalized phase dif-
ference associated with the dynamics of the director. Quantita-
tive agreement between the experimental results and the model
is reached and a dissipative cross-coupling coefficient between
the magnetization and the director is accurately evaluated. It is
demonstrated that this cross-coupling is crucial to account for
the experimental results thus underscoring the importance of
such off-diagonal effects in this first multiferroic fluid system.
We also make concrete theoretical predictions of how the re-
versible dynamic cross-coupling terms between magnetization
and director influence the macroscopic dynamics and how
these effects can be detected experimentally. The experimental
and theoretical dynamic results discussed in some detail in
this paper for low magnetic fields in ferromagnetic NLCs
demonstrate the potential for applications of these materials
in displays and magneto-optic devices as well as in the field of
smart fluids.

The paper is organized as follows. In Sec. II we describe
the experimental setup followed in Sec. III by the macroscopic
model. The connection between the measurements and the
model is established in Sec. IV. In Sec. V we analyze the
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statics and in Secs. VI and VII we analyze in detail the coupled
macroscopic dynamics of the magnetization and the director
field when switching the external magnetic field on and off,
respectively. Section VIII is dedicated to a theoretical analysis
of fluctuations and light scattering and in the conclusions we
give a summary of the main results and a perspective.

II. EXPERIMENTS

The experimental samples have been prepared along the
lines described in detail in Refs. [22,25]. In brief, the
BaScxFe12−xO19 nanoplatelets were suspended in the liquid
crystal mixture E7 (Merck, nematic-isotropic transition tem-
perature TNI = 58 ◦C). The suspension was filled in liquid
crystal cells with rubbed surfaces (thicknessd = 20 μm, Instec
Inc.), which induced homogeneous in-plane orientation of the
NLC. The volume concentration of the magnetic platelets in the
nematic low-molecular-weight liquid crystal E7 (Merck) has
been estimated to be ∼1.3 × 10−3 from the measurements of
the magnetization magnitude [25] which was M0 ∼ 200 A/m.
E7 suspensions show long-term stability, with a homogeneous
response to magnetic fields and no aggregates for a period of
several months. A surfactant (dodecylbenzene sulfonic acid)
was used for the treatment of the nanoplatelets, which favors a
perpendicular orientation of the NLC molecules with respect to
the nanoplatelets. Quantitative values for the Frank coefficients
for E7 are available in the literature [31].

Dynamics of the director was measured by inducing director
reorientation in planarly treated 20-μm cells (pretilt in the
range 1◦−3◦) when applying a magnetic field perpendicularly
to the cell plates, Fig. 1 (top). Experiments were performed
on monodomain samples (see Ref. [29] for a description
of monodomain sample preparation) so that the director is
initially at 45◦ with respect to the crossed polarizers, Fig. 1
(bottom). Using polarizing microscopy, the monochromatic
light intensity transmitted through the sample was recorded
with a complementary metal-oxide-semiconductor (CMOS)
camera (IDS Imaging UI-3370CP, 997 fps) as a function of
time on switching the magnetic field on and off. An interference
filter (623.8 nm) was used to filter the light from the halogen
lamp used in the microscope. The transmitted light intensity
is related to the phase difference between the ordinary and the
extraordinary light as will be explained below. The advantage
of using polarization microscopy is that the measurements are
performed in the homogeneous region of the sample without
spacers or other impurities. Recording the image of the sample
during the measurements also allows us to simultaneously
monitor the homogeneity of the response.

With the use of a vibrating sample magnetometer [25]
(LakeShore 7400 Series VSM) also the equilibrium z com-
ponent of the magnetic moment of the sample is measured.
We note that this technique is not suitable for measuring the
magnetization dynamically, as several seconds per measure-
ment are required for ambient magnetic noise averaging.

III. MACROSCOPIC MODEL

Throughout the present paper we take into account the
magnetization M and the director field n as macroscopic
variables; in the following we focus on the essential ingredients
of their dynamics necessary to capture the experimental results
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FIG. 1. Top: Sketch of the experimental setup and definition of
coordinate axes [30]. The thick yellow arrows indicate the direction of
the light passing through the polarizer and the analyzer. In the absence
of an applied magnetic field (H, z direction), the equilibrium director
(n) and magnetization (M) fields are only slightly pretilted from the x

direction. Inset: Distortion of the NLC director (ellipsoids, schematic)
prevents flocculation of the suspended nanoplatelets carrying a mag-
netic moment pm parallel to n in equilibrium. Bottom: Ferromagnetic
E7 nematic 20-μm sample placed between crossed polarizers, with
the director at an angle of 45◦. Polarizing optical microscopy image
width corresponds to 700 μm. The spheres are cell spacers.

we will discuss. That is we assume isothermal conditions
and discard flow effects. For a complete set of macroscopic
dynamic equations for ferronematics we refer to Ref. [19].

The static behavior is described by the free energy density
f (M,n,∇n),

f = −μ0M · H − 1
2A1(M · n)2 + 1

2A2(|M| − M0)2 + f F ,

(1)

where μ0 is the magnetic constant, H = H êz is the applied
magnetic field, and A1,2 > 0 will be assumed constant. The
first term represents the coupling of the magnetization and the
external magnetic field. Since H � M0, the local magnetic
field is equal to H, which is fixed externally and is thus
independent of the M(r) configuration. The second term
describes the static coupling between the director field and the
magnetization (originating from the magnetic particles). The
third term describes the energy connected with the deviation
of the modulus of the magnetization from M0. The last term
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is the Frank elastic energy associated with director distortions
[32]

f F = 1
2K1(∇ · n)2 + 1

2K2[n · (∇ × n)]2

+ 1
2K3[n × (∇ × n)]2, (2)

with positive elastic constants for splay (K1), twist (K2), and
bend (K3). The saddle-splay elastic energy [32] is zero in
the considered geometry. While it is a good approximation
to assume that |M| = M0, we will take into account small
variations of |M| (corresponding to large values of A2).

The anchoring of the director at the plates is taken into
account using a finite surface anchoring energy [33],

f S = − 1
2W (nS · n)2, (3)

where W is the anchoring strength and nS = êz sin ϕs +
êx cos ϕs is the preferred direction specified by the director
pretilt angle ϕs .

For the total free energy we have F = ∫
f dV + ∫

f S dS and
the equilibrium condition requires δF = 0.

The macroscopic dynamic equations for the magnetization
and the director read [19,34]

Ṁi + XR
i + XD

i = 0, (4)

ṅi + YR
i + YD

i = 0, (5)

where the quasicurrents have been split into reversible (XR
i ,

YR
i ) and irreversible, dissipative (XD

i , YD
i ) parts. The reversible

(dissipative) parts have the same (opposite) behavior under
time reversal as the time derivatives of the corresponding
variables, i.e., Eqs. (4) and (5) are invariant under time reversal
only if the dissipative quasicurrents vanish.

The quasicurrents are expressed as linear combinations of
conjugate quantities (thermodynamic forces); they take the
form

hM
i ≡ δf

δMi

= ∂f

∂Mi

, (6)

hn
i ≡ δ⊥

ik

δf

δnk

= δ⊥
ik

(
∂f

∂nk

− ∂j�kj

)
, (7)

with �kj = ∂f/∂(∂jnk) and where the transverse Kronecker
delta δ⊥

ik = δik − nink projects onto the plane perpendicular to
the director due to the constraint n2 = 1.

In Ref. [30] we focused on the dissipative quasicurrents
as they had a direct relevance for the explanation of the
experimental results discussed there. In the present paper we
also include the reversible quasicurrents, which give rise to
transient excursions of M and n out of the switching plane.

The dissipative quasicurrents take the form [19]

XD
i = bD

ij h
M
j + χD

ji h
n
j , (8)

YD
i = 1

γ1
hn

i + χD
ij hM

j , (9)

with

χD
ij = χD

1 δ⊥
ikMknj + χD

2 δ⊥
ij Mknk, (10)

bD
ij = bD

‖ ninj + bD
⊥δ⊥

ij (11)

Throughout the present paper we will discard the biaxiality of
the material which arises for n ∦ M.

The reversible quasicurrents are obtained by requiring that
the entropy production Yih

n
i + Xih

M
i is zero [19]:

XR
i = bR

ijh
M
j + χRεijknjh

n
k , (12)

YR
i = (

γ −1
1

)R

ij
hn

j + χRεijknjh
M
k , (13)

where [18]

bR
ij = bR

1 εijkMk + bR
2 εijknknpMp

+ bR
3 (εipqMpnqnj − εjpqMpnqni), (14)(

γ −1
1

)R

ij
= (

γ −1
1

)R

1 εijknknpMp

+ + (
γ −1

1

)R

2 (εijpεipknknj − εjpknkni)Mp. (15)

For solving the system Eqs. (4) and (5) a simple numerical
method was used. We first discretized space into slices of width
	z = d/(N − 1), where N is the number of discretization
points. Empirically it was found that using N = 50 is already
sufficient. After discretizing space one obtains N ordinary
differential equations. Due to its simplicity, we use the Euler
method. One step of the Euler method for the ith component
of the director field at z is

ni(t + δt,z) = ni(t,z) − δtYi(t,z) + O(δt2), (16)

where δt is the time step. An analogous equation holds for
the magnetization field and the equations are solved simulta-
neously. Since the numerical scheme for the director field is
not norm preserving, we normalize the director field after each
time step: ni → ni/

√
njnj .

In the discrete version, the two surface points are best treated
by satisfying the same dynamic equations Eqs. (4) and (5) as
the internal points, with the addition of the surface anchoring
energy Eq. (3) expressed as a volume density. The divergence
part of the force Eq. (7) is then replaced by its surface flux (the
volume density thereof again):

hn surf.
i = δ⊥

ik

[
∂f

∂nk

+ 1

	z

(
νj�kj + ∂f S

∂nk

)]
, (17)

where ν is the surface normal pointing down (up) at the bottom
(top) plate.

IV. CONNECTION BETWEEN MEASUREMENTS
AND THE MODEL

In equilibrium the magnetic-field-distorted director and
magnetization fields are lying in the xz plane, n =
(sin θ,0, cos θ ) and M = M(sin ψ,0, cos ψ). In the absence of
the magnetic field, the director is tilted from the x axis by the
pretilt ϕs , Eq. (3). The coordinate system used here is shown
in Fig. 1. As explained earlier, the average z component of
the magnetization, Mz, is measured by the vibrating sample
magnetometer. In modeling, it is obtained by averaging the z

component of the magnetization field,

Mz = 1

d

∫ d

0
M cos ψ(z) dz. (18)
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To derive the expression for the phase difference we start
with an electric field E, which is linearly polarized after the
light passes through the polarizer,

E = E0j ei(ki ·r−ωt), (19)

where E0 is the electric field amplitude, j the initial polariza-
tion, ki the wave vector, and ω the frequency of the incident
light. In our case the wave vector points in the z direction,ki =
k0êz, with k0 = 2π

λ
being the wave number. The polarization

of the light therefore lies in the xy plane and is described by
the two-component complex vector j = jx(z)êx + jy(z)êy . As
the light passes through the sample also the components of
this (Jones) polarization vector change and we analyze these
changes using the Jones matrix formalism (assuming perfectly
polarized light) [35].

The incident light first goes through the polarizer oriented
at 45◦ with respect to the x axis, Fig. 1, and is linearly polarized
with the initial Jones vector being j = 1√

2
(1,1)T . The optical

axis is parallel to the director and generally varies through the
cell. For any ray direction we can decompose the polarization
into a polarization perpendicular to the optical axis (ordinary
ray) and a polarization which is partly in the direction of the
optical axis (extraordinary ray). The ordinary ray experiences
an ordinary refractive index no and the extraordinary ray
experiences a refractive index ne,

n−2
e (z) = n−2

e0 sin2 θ (z) + n−2
o cos2 θ (z), (20)

where ne0 is the extraordinary refractive index.
To calculate the intensity of the transmitted light, one first

divides the liquid crystal cell into N thin slices of width h =
d/N and describes the effect of each slice on the polarization
by the phase matrix

W(z) =
(

eik0[ne(z)−no]h/2 0
0 e−ik0[ne(z)−no]h/2

)
. (21)

In the limit N → ∞ we can express the transmission matrix
of the liquid crystal cell as

T =
(

eiφ/2 0
0 e−iφ/2

)
, (22)

where we have introduced the phase difference

φ = k0

∫ d

0
[ne(z) − no]dz. (23)

In general, as we will see, the director can have also a
nonzero component in the y direction. In this case the simple
expression for the transmission matrix Eq. (22) does not hold
anymore and must be generalized.

We start the derivation of the general transmission matrix
by assuming a general orientation of the director,

n = (sin θ cos ϕ, sin θ sin ϕ, cos θ ). (24)

The azimuthal angle of the director ϕ can vary through the cell
and the transformation matrix at point z is

T(z) = R[−ϕ(z)]W(z)R[ϕ(z)], (25)

where R is the rotation matrix

R(ϕ) =
[

cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

]
. (26)

Our goal is to find the transfer matrix for the whole cell,

T =
←−∏

z∈[0,d]

T(z), (27)

where the arrow denotes the ordered product starting from T(0)
at the right side. We first notice that

T(z) ≈ I + i
k0[ne(z) − no]h

2

(
cos[2ϕ(z)] sin[2ϕ(z)]
sin[2ϕ(z)] − cos[2ϕ(z)]

)
,

(28)

where I is the identity matrix. Consequently, we can write T(z)
as an exponential,

T(z) = lim
h→0

exp[iA(z)h], (29)

where A is defined by

A(z) = k0[ne(z) − no]

2

(
cos[2ϕ(z)] sin[2ϕ(z)]
sin[2ϕ(z)] − cos[2ϕ(z)]

)
. (30)

We can now rewrite Eq. (27) as

T = lim
h→0

exp

⎡
⎣i

∑
z∈[0,d]

A(z)h

⎤
⎦ = exp

[
i

∫ d

0
A(z)dz

]
, (31)

where we used

eAheBh = e(A+B)h + 1
2 [A,B]h2 + O(h3). (32)

The exponential of the 2 × 2 matrix from Eq. (31) reads

T =
[

cos(c) + i a
c

sin(c) i b
c

sin(c)
i b

c
sin(c) cos(c) − i a

c
sin(c)

]
, (33)

where c = √
a2 + b2 with

a = k0

2

∫ d

0
[ne(z) − no] cos[2ϕ(z)]dz,

b = k0

2

∫ d

0
[ne(z) − no] sin[2ϕ(z)]dz. (34)

We then let the light pass through an analyzer Pα at an
angle α,

Pα =
(

cos2 α sin α cos α

sin α cos α sin2 α

)
, (35)

which gives for the final Jones vector (α = −45◦)

j′ = ia sin(c)√
2c

(
1

−1

)
. (36)

This yields the measured normalized intensity

I

I0
= j′∗T j′ = a2

c2
sin2(c). (37)

Next we evaluate the relation between the phase difference
and the measured intensity. Let j be the Jones vector after the
liquid crystal cell,

j =
(

z1e
iφ

z2

)
, (38)
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where z1 and z2 are real and z2
1 + z2

2 = 1. Generally |z1| �= |z2|.
After an analyzer with α = −45◦ we have a Jones vector

j′ = 1

2
(z1e

iφ − z2)

(
1

−1

)
(39)

and the intensity is related to the phase difference as

I

I0
= 1

2
[1 − 2z1z2 cos(φ)]. (40)

Only if the director is restricted to the xz plane, z1 = z2 and
we have

I

I0
= 1

2
[1 − cos(φ)] = sin2

(
φ

2

)
, (41)

such that the relation between the intensity and the phase
difference is

φ = mπ ± 2 arcsin

[√
I

I0

]
, (42)

where m ∈ Z and the sign ± is determined by demanding
that φ is sufficiently smooth. Generally, however, the quantity
obtained from the measured intensity by Eq. (42) is not the
phase difference. It is the phase difference only when the
director field is in the xz plane. For the analysis of the dynamics
not confined to the xz plane, Sec. VI C, we will therefore use
the normalized intensity Eq. (37).

In the case when the dynamics is in the xz plane, to
compare the numerical results with the experiments and also
to compare the dynamics of the director with the dynamics of
the magnetization, it is convenient to introduce the normalized
phase difference

r(H ) = 1 − φ(H )

φ0
, (43)

where φ0 is the phase difference at zero magnetic field. The
normalized phase difference is zero at t = 0 and is always
smaller or equal to 1. It can also assume negative values as we
will see.

V. STATICS

In this section we present experimental and numerical re-
sults of statics and derive analytic formulas for the equilibrium
configurations in the low and large external magnetic field
limits.

In Fig. 2 we compare the numerical results of the equi-
librium normalized phase difference to the experimental data.
Below we will show in Eqs. (52) and (53) that the equilibrium
normalized phase difference is quadratically dependent on the
applied magnetic field at small magnetic fields. The normalized
phase difference saturates quickly above μ0H = 10 mT at a
value which is less than 1, which means there is a limit to
how much the director field deforms. We also observe that the
dependence of the equilibrium normalized phase difference is
not symmetric with respect to the μ0H = 0 axis, which is seen
in experiments as well. The reason for this is the nonzero pretilt
at both glass plates.

From the fits to the model we extract values for the
anchoring strength W , the pretilt angle ϕs , the Frank elastic
constant K ≡ K1 = K3 in the one constant approximation, and

FIG. 2. Comparison of experimental and theoretical static results.
Top: Normalized phase difference r(H ). Bottom: Magnetization
component Mz as functions of the magnetic field μ0H .

the static coupling coefficient A1:

W ∼ 4 × 10−5 J/m2, (44)

ϕs ∼ −0.05, (45)

K ∼ 17 pN, (46)

A1 ∼ 140μ0. (47)

The extracted parameters Eqs. (44)–(47) correspond to the
(local) minimum of the sum of squares of residuals between
the numerical and experimental values of the normalized phase
difference. This minimum was sought in sensible parameter
ranges (for example, the Frank elastic constant was sought in
the range between 5 and 25 pN). There are several indications
that this minimum is at least very close to the global one. First,
the extracted value of the Frank elastic constant is close to the
value of K3 in the pure E7 NLC. Second, the extracted pretilt is
within the range specified by the cell provider. Moreover, the
value of the static coupling is similar to that estimated for the
ferromagnetic NLC based on pentylcyanobiphenyl (5CB) [25].

The limiting behaviors of the normalized phase difference
and the normalized z component of the magnetization as
the magnetic field goes to zero or infinity can be calculated
analytically. In all cases the boundary condition is

K
∂θ

∂z
νz + ∂f S

∂θ
= 0, (48)
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where νz is the z component of the surface normal pointing
upwards at z = d and downwards at z = 0.

A. Low magnetic fields

The free energy density in lowest order in deviations of
magnetization and director field from the equilibrium is

f = 1

2
K

(
∂θ

∂z

)2

+ 1

2
A1M

2
0 (θ − ψ)2 + μ0HM0ψ. (49)

The equilibrium solutions for the angles are

θ (z) = 1

2

μ0HM0

K
z(z − d) − μ0HM0d

2W
+ π

2
− ϕs, (50)

ψ(z) = θ (z) − μ0HM0

A1M
2
0

. (51)

After inserting the solutions Eqs. (50) in equations for
the normalized phase difference and magnetization, one
gets

r(H ) = r0
μ0HM0d

2

6K

×
[
μ0HM0d

2

20K

(
1+10

ξ

d
+30

ξ 2

d2

)
+

(
1+6

ξ

d

)
ϕs

]
,

(52)

where ξ = K/W is the so-called anchoring extrapolation
length and r0 = ne0(ne0 + no)/(2n2

o). In the limit of infinite
anchoring the normalized phase difference reads

r(H ) = r0
μ0HM0d

2

6K

(
μ0HM0d

2

20K
+ ϕs

)
. (53)

One can also observe that the location of the minimum of
the normalized phase difference is shifted to a value μ0Hmin

determined by the pretilt:

− 10Kϕs

(
1 + 6 ξ

d

)
M0d2

(
1 + 10 ξ

d
+ 30 ξ 2

d2

) W→∞−−−→ −10Kϕs

M0d2
. (54)

Equations (52) and (54) are useful for determining the anchor-
ing strength W and the pretilt ϕs .

From the behavior of the normalized phase difference at low
fields [Eqs. (52) and (53)] one cannot determine the value of
the static coupling A1. It can, on the other hand, be determined
from the low-field behavior of the magnetization. In Fig. 2 we
see that the behavior is linear for low magnetic fields as can be
shown analytically:

Mz

M0
= ϕs +

(
1

A1M
2
0

+ 1

12

d2

K
+ d

2W

)
μ0HM0. (55)

B. Large magnetic fields

In the large-magnetic-field limit we assume that both the po-
lar angle of the director and the magnetization are either close
to 0 if the applied magnetic field is positive (+) or close to π if
the applied magnetic field is negative (−). The corresponding
solutions will be denoted as θ+(z),θ−(z),ψ+(z), ψ−(z), M+

z ,
M−

z , r+, and r−.
The free energy in the case of a positive magnetic field is

f ≈ 1

2
K

(
∂θ

∂z

)2

+ 1

2
A1M

2
0 (θ − ψ)2 + 1

2
μ0HM0ψ

2.

(56)

The equilibrium solutions for the angles θ+(z) and ψ+(z) are

θ+(z) =
π
2 − ϕs

1 + qξ tanh
(

qd

2

) cosh
[
q
(
z − d

2

)]
cosh

(
qd

2

) , (57)

ψ+(z) = θ+(z)

1 + μ0|H |M0

A1M
2
0

, (58)

where

q2 = q2
0

μ0|H |M0

μ0|H |M0 + A1M
2
0

(59)

with q0 =
√

A1M
2
0 /K (which is proportional to the inverse

“magnetization coherence length” of the director).
The normalized z component of the magnetization for large

fields is

M+
z

M0
= 1 −

[
π
2 − ϕs

]2
(qd + sinh(qd))A2

1M
4
0

4qd
[
1 + qξ tanh

(
qd

2

)]2
cosh2

(
qd

2

)(
A1M

2
0 + μ0|H |M0

)2 (60)

and the normalized phase difference is

r+(H ) = 1 − nor∞k0d

2φ0

[
π
2 − ϕs

]2[
1 + qξ tanh

(
qd

2

)]2

qd + sinh(qd)

2qd cosh
(

qd

2

)2

− nor∞k0d

4φ0
(3r∞/4 − 1/3)

[
π
2 − ϕs

]4[
1 + qξ tanh

(
qd

2

)]4

6qd + 8 sinh(qd) + sinh(2qd)

8qd cosh
(

qd

2

)4 , (61)

where r∞ = (n2
e0 − n2

o)/n2
e0.

It follows from symmetry that θ−(ϕs) = π − θ+(−ϕs),
ψ−(ϕs) = π − ψ+(−ϕs), M−

z (ϕs) = −M+
z (−ϕs), and

r−(ϕs) = r+(−ϕs).
Since the magnetization is not anchored at the boundary,

in Eq. (60) it was sufficient to consider terms not higher than

(ψ+)2. On the other hand, due to the anchoring of the director
field, in Eq. (61) we expanded the phase difference to the order
(θ+)4. It should be noted that the approximation for the phase
difference is better if the anchoring W is low, i.e., qξ � 1 or
W �

√
A1M

2
0 K .
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FIG. 3. For low magnetic fields, the numerically calculated polar
angle of the director is in agreement with Eq. (50).

In the large-magnetic-field limit, where qd � 1, and if
qξ � 1 in addition, one can study asymptotic behavior of
Eqs. (60) and (61):

r+(H ) � r+(∞) − f +(q0)

μ0|H | , (62)

M+
z

M0
� 1 − h+(q0)

(μ0H )2
, (63)

where f + and h+ are functions of static parameters for positive
magnetic fields and r+(∞) = limμ0H→∞ r+(H ). The behavior
of the magnetization Mz, Fig. 2, may at a first glance look like
the Langevin function, often observed in magnetic systems.
Equation (63) tells us that this is not the case, since the
Langevin function saturates with the first power in magnetic
field, whereas here the saturation Eq. (63) is of second order
in H .

C. Comparison of analytic approximations with numerics

A comparison of analytic and numeric results for the
director polar angle θ (z) is made in Figs. 3 and 4 for small and
large magnetic fields, respectively. We find a good agreement
for small magnetic fields up to 0.7 mT and for large magnetic
fields above 4 mT. It should be emphasized that the values

FIG. 4. For large magnetic fields, the numerically calculated polar
angle of the director is in agreement with Eq. (57).

FIG. 5. Comparison of numeric and analytic results at low and
high values of the applied magnetic field. Top: Magnetic field
dependence of the normalized phase difference for small magnetic
fields is in agreement with Eq. (52) below 0.5 mT, whereas the
approximation for large magnetic fields, Eq. (61), is within 1% of
the numerical value already when above 0.8 mT. Bottom: Magnetic
field dependence of the z component of the magnetization for small
magnetic fields is in agreement with Eq. (55) below 0.5 mT, whereas
the approximation for large magnetic fields, Eq. (60), is within 1% of
the numerical value already when above 0.8 mT.

of the magnetic fields at which the approximations become
valid depend on the values of the static parameters. We use the
values Eqs. (44)–(47) extracted from the fits to the macroscopic
model.

In Fig. 5 we compare analytic and numeric results for the
z component of the magnetization and the normalized phase
difference. Again we find a good agreement between the results
at similar ranges of the magnetic field. From the insets of
Fig. 5 one can conclude that for our system a magnetic field as
small as 1 mT can be considered as large already. The notable
discrepancy of the numeric and analytic normalized phase
difference at large magnetic fields is due to the fact that one
has expanded the expression for the phase difference, Eq. (23),
up to the order θ4. Since θ does not saturate to zero, this means
that the constant term of Eq. (61) is slightly different from the
actual value determined numerically.

The agreement between experimental data and the model for
two key static properties underscores that we have solid ground
for the analysis of the dynamic results which now follows.
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FIG. 6. Top: Time evolution of the measured normalized phase
difference, r(H ), fitted by the dynamic model Eqs. (1)–(11). The
linear-quadratic onset of r(H ) is in accord with the analytic result
given in Eq. (79). Bottom: The corresponding theoretical time
evolution of Mz/M0, initially growing linearly as given in Eq. (85).

VI. SWITCH-ON DYNAMICS

In this section we present the experimental and theoretical
results of the dynamics that takes place when the magnetic
field is switched on.

In Fig. 6 we plot the comparison of experimental and
theoretical data for the dynamics of the normalized phase
difference (top) as well as the theoretical results for the
normalized z component of the magnetization (bottom) for two
values of the applied magnetic field. As an inset we show that
for small times the magnetization grows linearly, which is also
obtained analytically in Sec. VI A. As expected the rise time
for the magnetization is reduced as the applied magnetic field
is increased. The inset for the top graph shows that the initial
phase difference is quadratic in time, which is again obtained
also analytically, see Sec. VI A.

The fits for the comparison of the experimental and theo-
retical normalized phase difference are performed by varying
the dynamic parameters taking into account the fundamental
restrictions [30] on their values, at fixed values of the static
parameters Eqs. (44)–(47). The model captures the dynamics
very well for all times from the onset to the saturation. The
extracted values of the dynamic parameters are

γ1 ∼ 0.13 Pa s, (64)

FIG. 7. The overall relaxation rate, 1/τ (H ), as a function of the
magnetic field μ0H , extracted from the experimental data and the
theoretical results using the fitting function Eq. (68). Inset: Without
the dynamic cross-coupling, the relaxation rate levels off already at
low fields (dashed).

bD
⊥ ∼ 1.5 × 105 Am/V s2, (65)

χD
2 ∼ 4 (Pa s)−1. (66)

The dissipative cross-coupling coefficient χD
2 is within the

allowed interval determined by the restriction [30]

∣∣χD
2

∣∣ <

√
bD

⊥
γ1M

2
0

≈ 5.4 (Pa s)−1. (67)

The remaining two dynamic parameters do not affect the
dynamics significantly and are set to b‖ = b⊥ and χD

1 = 0.
To extract from the time evolution of the normalized phase

difference, Fig. 6 (top), a switching time τ as a measure of
an overall relaxation rate of the dynamics, we use a squared
sigmoidal model function,

f (t) = C ′
[

1 − 1 + C

1 + C exp(−2t/τ )

]2

. (68)

Remarkably, the relaxation rate, 1/τ (H ), shows a linear de-
pendence on H , Fig. 7. We were first interested in the effect of
the dissipative cross-coupling on 1/τ (H ). We find that a rea-
sonably strong dynamic cross-coupling χD

2 is needed in order
to obtain the observed linear magnetic field dependence of the
relaxation rate. In the absence of this dynamic cross -coupling,
Fig. 7, the relaxation rate levels off already at low fields as
expected since the transient angle between M and n gets larger
and starts to decrease for even higher magnetic fields.

The best match of the relaxation rates 1/τ (H ) extracted
from the experimental data and the model, Fig. 7, allows for
a robust evaluation of the dissipative cross-coupling between
the magnetization and the director:

χD
2 = (4.0 ± 0.7) (Pa s)−1. (69)

A. Initial dynamics

We investigate the initial dynamics of the normalized phase
difference and magnetization on application of the magnetic
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field. Up to linear order we also take into account the pretilt.
Initially, n and M are parallel to nS . Keeping the modulus of the
magnetization exactly fixed, the initial thermodynamic forces
Eqs. (6) and (7) are

hn = 0, h⊥M = μ0H (ϕs,0,−1). (70)

where h⊥M is the projection of hM perpendicular to M. With
that, the initial quasicurrents are

Yi = χD
ij h⊥M

j + χRεijknjh
⊥M
k ⇒

Y = μ0H
(
χD

2 M0ϕs,χ
R,−χD

2 M0
)
, (71)

Xi = bD
ij h

⊥M
j + bR

ijh
⊥M
j ⇒

X = μ0H
(
bD

⊥ϕs,−
(
bR

1 + bR
2

)
M0,−bD

⊥
)
. (72)

At finite χD
2 and zero χR it follows from Eq. (71) that the z

component of the director field responds linearly in time as
well as linearly in the magnetic field for small times:

nz(t) ≈ ϕs + χD
2 M0μ0H t. (73)

As a contrast, if χD
2 is zero, then the director responds

through the nonzero molecular field hn
z due to the static

coupling A1,

hn
z = −A1M0Mz(t) = −A1M0b

D
⊥μ0H t, (74)

where Mz(t) = bD
⊥μ0Ht is the initial response of the z com-

ponent of the magnetization, Eq. (72). The z component of the
director field thus responds quadratically in time rather than
linearly,

nz(t) ≈ ϕs + A1M0b
D
⊥μ0H

2γ1
t2. (75)

For small times t we can express the refractive index
Eq. (20) as

ne(t) ≈ ne0

[
1 − n2

e0 − n2
o

2n2
o

(
ϕs + χD

2 M0μ0Ht
)2

]
. (76)

The coefficients a and b from Eq. (34) are then

a ≈ k0d

2
[ne(t) − no][1 − 2(χRμ0H )2t2],

b ≈ k0d

2
[ne(t) − no](−2χRμ0H )t (77)

and the normalized intensity of the transmitted light for small
times is

I

I0
≈ sin2

(
φ0

2

)
− r0ϕsχ

D
2 μ0HM0φ0 sin(φ0)t

−
[
r0

2

(
χD

2 μ0HM0
)2

φ0 sin(φ0)

+ 4(χRμ0H )2 sin2

(
φ0

2

)]
t2. (78)

In the lowest order of t , for the phase difference, one gets a
linear term that is also linear in pretilt and a quadratic term
which does not vanish if the pretilt is zero:

r(H ) ≈ r0
[(

χD
2 M0μ0H

)2
t2 + 2ϕsχ

D
2 M0μ0Ht

]
≡ k2t2 + pt. (79)

FIG. 8. Inverse of the time of the minimum determined from the
measured normalized phase difference as a function of the magnetic
field. The linear behavior in magnetic field is in agreement with
Eq. (80).

Equation (79) will be used to extract the dissipative cross-
coupling coefficient χD

2 and the pretilt ϕs from the experimen-
tal data. Furthermore, from Eq. (79) one can see that in the case
of positive (negative) pretilt the normalized phase difference
has a minimum at negative (positive) magnetic fields. By
measuring the time of this minimum, Fig. 8,

tmin = − ϕs

χD
2 μ0HM0

, (80)

one can calculate the ratio of the pretilt and the dissipative
cross-coupling. If χD

2 = 0, then the time of the minimum
decreases more slowly with increasing magnetic field:

tmin =
√

− 2γ1ϕs

A1b
D
⊥μ0HM0

. (81)

The normalized phase difference evaluated at tmin is of
second order in the pretilt:

r(H )min = −r0ϕ
2
s . (82)

The minimum value Eq. (82) is independent of the applied
magnetic field. This can be explained by the fact that the
director field goes through an intermediate state which is
approximately aligned with the glass plates of the cell.

We note that if both the dissipative cross-coupling coef-
ficient χD

2 and the pretilt ϕs are zero, the normalized phase
difference initially grows as t4.

Assuming a negative pretilt, Eq. (79) predicts a minimum
for positive magnetic fields, which is also seen in experiments,
Fig. 6 (top). In Fig. 8 we show experimental inverse times of the
minima. The large error at high magnetic fields is due to the
time resolution limitations (1 ms). From the linear behavior
predicted by Eq. (80) we can extract the ratio between the
dissipative cross-coupling and the pretilt. Independently, we
can extract the pretilt by measuring the values of the minima,
Fig. 9.

Fitting Eq. (79) to the initial time evolution of measured
normalized phase differences (like those presented in Fig. 6)
for several values of the magnetic field μ0H , we determine the
parameters k and p shown in Figs. 10 and 11, respectively.
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FIG. 9. Pretilt, determined from experimental data using Eq. (82).

Therefrom we extract the value of the dissipative cross-
coupling parameter χD

2 between director and magnetization,

χD
2 ∼ (4.0 ± 0.5) (Pa s)−1, (83)

and from the parameter p of Eq. (79) we extract the pretilt,

ϕs ∼ −0.065 ± 0.01. (84)

The normalized z component of the magnetization Eq. (18)
is linear in t :

Mz

M0
= ϕs + bD

⊥
M0

μ0Ht, (85)

which is in accord with Fig. 6 (bottom). From the initial
behavior one can therefore directly determine the dissipative
coefficient bD

⊥ .
Let us define the initial rate of the director reorientation as

the time derivative of the director z component at t = 0,

1

τd

= ∂nz

∂t

∣∣∣∣
t=0

. (86)

FIG. 10. The coefficient k of Eq. (79) as a function of the magnetic
field μ0H . The straight line fits are used to extract χD

2 .

FIG. 11. The coefficient p of Eq. (79) as a function of the
magnetic field μ0H . The straight line fit is used to extract ϕs .

For a nonzero dissipative cross-coupling coefficient χD
2 the

initial rate, Eq. (73), is

1

τd

= χD
2 M0μ0|H |. (87)

However, if χD
2 = 0, then the initial rate of the director reorien-

tation is proportional to the z component of the magnetization,
Eq. (74),

1

τs

= A1M0

γ1
|Mz(t)|. (88)

The relaxation rates Eqs. (87) and (88) describe two different
mechanisms of the director reorientation. The former is as-
sociated with the dynamic coupling of the director and the
magnetization, whereas the latter is governed by the static
coupling A1 of the director and the magnetization. Here a
deviation of the magnetization from the director is needed to
exert a torque on the director.

B. Dissipative cross-coupling

We have demonstrated that the dissipative cross-coupling of
the director and the magnetization, i.e., the χD

ij terms of Eqs. (8)
and (9), affects the dynamics decisively and is crucial to explain
the experimental results. It is described by the parameters χD

1
and χD

2 of Eq. (10). Here we check the sensitivity of the
dynamics to the values of these two parameters. Varying χD

1
while keeping χD

2 = 0, Fig. 12, we see that the influence of
χD

1 is rather small and is not substantial. Moreover, the initial
dynamics is not affected, Fig. 12 (inset).

On the other hand, increasing χD
2 strongly reduces the rise

time of the normalized phase difference, Fig. 13, and also
strongly affects the initial behavior (inset). For large values
of χD

2 one also observes an overshoot in the normalized phase
difference.

By inspecting Eq. (10) one sees that the influence of χD
1

is largest when M ⊥ n, hn ‖ M, and hM ‖ n. On the other
hand, the influence of χD

2 is largest when M ‖ n. Since M
and n are initially parallel and, moreover, the transient angle
between them never gets large due to the strong static coupling
compared to the magnetic fields applied, it is understandable
that χD

2 affects the dynamics more than χD
1 .
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FIG. 12. Normalized phase difference at different values of the
dissipative cross-coupling parameter χD

1 , χD
2 = 0, μ0H = 50 mT.

Inset: The initial behavior is not affected.

C. Reversible cross-coupling

The reversible cross-coupling of the director and the mag-
netization, described by the χR terms of Eqs. (12) and (13), has
not been considered up to this point. We focus on the reversible
cross-coupling coefficient χR and put both reversible tensors
bR

ij and (γ −1)Rij of Eqs. (14) and (15) to zero.
If the reversible currents are included, then both vari-

ables wander out of the xz plane dynamically, which
will be described by the azimuthal angles δ and ϕ of
the magnetization and the director, respectively, defined
by M = M0(cos δ sin ψ, sin δ sin ψ, cos ψ), n = (cos ϕ sin θ,

sin ϕ sin θ, cos θ ). The dynamic behavior of both azimuthal
angles is shown in Fig. 14.

Contrary to the polar angles we find that the response
of the azimuthal angle of the director is faster than that
of the magnetization. From Fig. 14, we read off that the
maximum azimuthal angles increase with χR , being higher
for the magnetization than for the director.

We note again that here we only included the reversible
cross-coupling χR . From the initial quasicurrents Eqs. (71)
and (72) one can see that the initial azimuthal response of

FIG. 13. Normalized phase difference at different values of the
dissipative cross-coupling parameter χD

2 , χD
1 = 0, μ0H = 50 mT.

Inset: The initial behavior is strongly affected as well.

FIG. 14. The time dependencies of the azimuthal angles (degrees)
of the director (ϕ) and the magnetization (δ) at z = d/2 for different
values of χR , χD

1 = χD
2 = 0, μ0H = 10 mT.

the magnetization can be faster than that of the director if the
coefficients of the tensor bR

ij are sufficiently large,∣∣bR
1 + bR

2

∣∣ > |χR|/M0. (89)

There exists a direct way of detecting the possible dynamics
in the xy plane. The intensity of the transmitted light in the
experiments with crossed polarizers at 45◦ and −45◦ is given
by Eq. (37),

I

I0
= a2

c2
sin2(c). (90)

It is this quantity that is typically measured. On the other hand,
crossed polarizers at 0◦ and 90◦ give us the intensity

I

I0
= b2

c2
sin2(c), (91)

with a and b given by Eq. (34). This method is better suited
for detecting the xy dynamics, since b is more sensitive to the
deviation of the director field from the xz plane.

Our numerical calculations have revealed that, due to the
reversible dynamics, the magnetization and the director are
not confined to the xz plane. As a consequence, the maxima
of the time-dependent intensity of transmitted light are lower
than unity, Fig. 15, in contrast to the case of a purely in-plane
(dissipative) dynamics. Observation of the lower maxima could
thus be an indication of the azimuthal dynamics. This effect is
more prominent at higher magnetic fields and at higher values
of the reversible cross-coupling coefficients.

In recent experiments no clear-cut consequences of the
azimuthal dynamics have been found using crossed polarizers
at 0◦ and 90◦. In the following we will therefore discard the
reversible dynamics.

VII. SWITCH-OFF DYNAMICS

Dynamics of the normalized phase difference after switch-
ing off the magnetic field has been also measured. In ex-
periments, the initial state is obtained by switching on the
desired magnetic field and waiting for a couple of seconds.
Contrary to the previous experiments, here the initial state is
not homogeneous.
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FIG. 15. Time dependence of the normalized intensity of trans-
mitted light for zero and nonzero values of the reversible cross-
coupling coefficient χR; μ0H = 5 mT.

In Fig. 16 we compare the experimental and numerical
normalized phase difference at two different fields. We ob-
serve, similarly to the switch-on case, that the normalized phase
difference goes through a minimum. This is again explained
by the fact that the director field goes through a state, which
is approximately aligned with the surfaces of the glass plates.
Numerical calculations reveal that a strong dissipative cross-
coupling causes the initial behavior of the normalized phase
difference to be a linear function in time, Fig. 17, as found
experimentally, Fig. 16.

To extract a relaxation time τ of the normalized phase
difference, we use an exponential function

f (t) = f (0)e−t/τ . (92)

FIG. 16. Experimental and numerical normalized phase differ-
ence as a function of time at different values of the applied magnetic
field.

FIG. 17. Normalized phase difference as a function of time at
5 mT, calculated with χD

2 = 0 and χD
2 = 4.0 (Pa s)−1.

The relaxation rate 1/τ for the experimental data is shown
in Fig. 18. It saturates at a finite value as one increases the
magnetic field. This is expected since the initial director and
magnetization fields do not change much with magnetic field
any more when the field is large. In Fig. 19 the relaxation rate
of both the computed phase difference and the magnetization is
shown. One can see that the relaxation rate of the magnetization
is smaller than that of the normalized phase difference, due to
the fact that it is the director that is driven by the nonzero elastic
force, while the magnetization only follows. This is true for all
allowed values of the dynamic cross-coupling parameters.

One can derive analytic formulas for the relaxation rate in
the limit of low magnetic fields. With the assumption that
the relaxation follows a simple exponential function, it is
possible to extract the relaxation rate 1/τ off from the initial
time derivative of the normalized phase difference,

r(H,t) ≈ r(H,t = 0)

(
1 − t

τ off

)
. (93)

Note that Eq. (93) is defined only when r(H,t = 0) �= 0.
One starts with the director quasicurrent Y, Eq. (9).

The response of the z component of the director field is

FIG. 18. Experimental switch-off relaxation rate of the normal-
ized phase difference as a function of the applied magnetic field.
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FIG. 19. Relaxation rate of the normalized phase difference and
z component of the magnetization after switching off the magnetic
field of strength μ0H at χD

2 = 4 (Pa s)−1 and ϕs = 0.

nz ≈ nz(z,t = 0) − Yz(z,t = 0) t , which one uses in Eq. (23)
for the phase difference,

1

τ off
= 2k0r0(ne0 − no)

φ0r(H,t = 0)

∫ d

0
dz

nz(z)Yz(z)[
1 + n2

e0−n2
o

n2
o

n2
z(z)

]3/2
, (94)

where all z-dependent quantities are evaluated at t = 0. In the
last step the integrand is expanded up to linear order in time
and the relaxation rate in the low-magnetic-field limit is finally
expressed as

1

τ off
=

(
1 + r0ϕ

2
s

)[
μ0HM0

(
1 + 6 ξ

d

) + 12 K1ϕs

d2

]
χD

2
μ0HM0d2

20K1

(
1 + 10 ξ

d
+ 30 ξ 2

d2

) + (
1 + 6 ξ

d

)
ϕs

, (95)

which is linear in the dissipative cross-coupling coefficient χD
2 .

Not only does the dissipative cross-coupling make the
switching process faster when switching on the field, this
can be also true for switching off the field, Figs. 17 and 20.
Figure 20 shows the relaxation rate of the normalized phase
difference at a high magnetic field as a function of the
dissipative cross coupling coefficient χD

2 . As expected, the

FIG. 20. Relaxation rate at μ0H = 50 mT as a function of the
dissipative coefficient χD

2 for different values of the director rotational
viscosity γ1.

relaxation rate decreases with increasing rotational viscosity
γ1. The relaxation rate at first increases with increasing values
of χD

2 , which seems also to be the case for small magnetic
fields described by Eq. (95). For values above approximately
χD

2 = 3.5 (Pa s)−1, the relaxation rate starts to decrease rather
rapidly. This is in contrast with the field switch-on case, where
the response is faster for increasing values of χD

2 .
The increasing part of the dependence τ−1(χD

2 ) in Fig. 20
is due to the director elastic forces, which drive the switch-
off dynamics and also enter Eq. (4) through the dissipative
cross-coupling governed by χD

2 . At higher values of χD
2 one

must, however, also consider the part of the thermodynamic
forces corresponding to the static (A1) coupling between the
director and the magnetization. Focusing only on the director
equation Eq. (5), one sees that the director relaxes towards the
magnetization with a characteristic time set by the rotational
viscosity and the static coupling (A1). On the other hand, the
positive value of χD

2 has the opposite effect. While both fields
eventually relax to the ground state parallel to x, the angle
between them is decreasing slower and slower as the dynamic
cross-coupling (χD

2 ) gets larger. For small magnetic fields
one can study the relaxation rate of the dynamic eigenmodes
[Eq. (122)] of the next section. The value of χD

2 above which
the relaxation rate starts to decrease then reads

χD
2 =

⎧⎨
⎩

A1b
D
⊥

A1M
2
0 +K(π/d)2 if 1

γ1
>

bD
⊥

M2
0
,

1
γ1

if 1
γ1

<
bD

⊥
M2

0
.

(96)

In our case 1
γ1

>
bD

⊥
M2

0
holds and the maximum is at χD

2 ≈
3.5 (Pa s)−1.

The switch-on case is different in that the dynamics is driven
by the external magnetic field. If the external field is sufficiently
high (large compared to A1M0), the static cross-coupling
effects, which decrease the relaxation rate in the switch-off
case through the increasing dynamic cross-coupling χD

2 , can
be neglected and hence the relaxation rate is monotonically
increasing with χD

2 .

VIII. FLUCTUATIONS AND LIGHT SCATTERING

Nematic liquid crystals appear turbid in sufficiently thick
layers [32]. The scattering of light is caused by strong director
fluctuations which cause fluctuations in the dielectric tensor

εij = ε⊥δ⊥
ij + ε‖ninj , (97)

where ε⊥ and ε‖ are dielectric susceptibilities for the electric
field perpendicular and parallel to the director, respectively.
Fluctuations are easy to observe experimentally and are used
to determine the viscoelastic properties of liquid crystals [36].

In this paper we derive the relaxation rates of the fluctuations
without taking into account the effects of flow. Since the
director is coupled to the magnetization, we now have two
fluctuation modes for each director fluctuation mode of the
usual nematic [22].

The fluctuating director and magnetization fields are lin-
earized as

n = n0 + δn, M = M0 + M0δm, (98)
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where the equilibrium director n0 and magnetization M0 fields
point in x direction in which a magnetic field is applied,
whereas fluctuations δn and δm are perpendicular, n0 · δn =
M0 · δm = 0. The ansatz for the director fluctuations is

δn(r) = 1

V

∑
q

δn(q)eiq·r, (99)

where q = qx êx + qy êy + qzêz is the wave vector of the fluc-
tuation. A similar ansatz is used for the fluctuations of the
magnetization. In a confined system, the fluctuation spectrum
generally depends on the interaction of the nematic with the
surface [36]. For simplicity we will use the infinite anchoring
limit, so thatqz = nπ/d,n ∈ N, whileqx andqy are in principle
arbitrary. For details regarding the anchoring effect we refer to
Ref. [36].

To understand the static light-scattering experiments one
must determine thermal averages of the fluctuations. This is
done by finding linear combinations of the variables in terms
of which the free energy functional Eq. (1) is expressed as a sum
of quadratic terms and making use of equipartition. Such linear
combinations are uncorrelated (statistically independent). A
systematic way to perform this decomposition is to write the
free energy of a fluctuation q-mode as a quadratic form and
find the corresponding eigenvalues and eigenvectors,

F (q) = 1
2δx(q)H E(q)δx(q), (100)

where δx(q) = {δnz(q),δmz(q),δny(q),δmy(q)}, in short
δx(q) ≡ {nz,mz,ny,my}, is the vector of the fluctuation am-
plitudes, E(q) is a self-adjoint matrix, and superscript H is the
conjugate transpose.

In lowest order of fluctuations, the contributions Eq. (100)
of the free energy Eq. (1) are [32]

F (q) = 1

2V

[(
K1q

2
y + K2q

2
z + K3q

2
x + A1M

2
0

)|ny |2

+ (
K1q

2
z + K2q

2
y + K3q

2
x + A1M

2
0

)|nz|2

+ (K1 − K2)qzqy(nyn
∗
z + n∗

ynz)

+ (
μ0HM0 + A1M

2
0

)
(|my |2 + |mz|2)

− A1M
2
0 (nym

∗
y + n∗

ymy + nzm
∗
z + n∗

zmz)
]
.

(101)

For completeness (not needed here), the volume-integrated free
energy is F = ∑

q F (q).
Before giving the eigenvectors of the quadratic form E,

we perform a rotation in the yz plane, (ny,nz) → (n1,n2) and
(my,mz) → (m1,m2), where the new bases in this plane are
{ên

1,ê
n
2} and {êM

1 ,êM
2 }. Vectors ên

2 and êM
2 are normal to the

(q,n0) and (q,m0) plane, respectively, and vectors ên
1 and êM

1
are normal to ên

2 and êM
2 , respectively. It should be emphasized

that we are studying the case n0‖m0, so the planes (q,n0) and
(q,m0) are identical. In the confined system, this would not
be the case if the external magnetic field were applied in any
direction other than parallel to the initial homogeneous state.

A general fluctuation δx(q) can be written as

δx = t1t1 + p1p1 + t2t2 + p2p2, (102)

where t1,t2,p1, p2 are the eigenvectors of the quadratic form
E and t1,t2,p1, p2 are the amplitudes of these uncorrelated

FIG. 21. The normalized coefficients Eq. (103) of the eigenvec-
tors t1 and t2 as a function of the applied magnetic field with qx = 0
and q⊥ = π/2; K1 = K2.

excitations. The eigenvectors are

tα = at
α ên

α + bt
α êM

α

= Z−
α√

1 + (Z−
α )2

ên
α − 1√

1 + (Z−
α )2

êM
α , (103)

pα = ap
α ên

α + bp
α êM

α

= Z+
α√

1 + (Z+
α )2

ên
α − 1√

1 + (Z+
α )2

êM
α , (104)

where

Z±
α = −μ0HM0 + Kαq2

⊥ + K3q
2
x ± sα

2A1M
2
0

, (105)

with q2
⊥ = q2

y + q2
z and

s2
α = 4A2

1M
4
0 + (

Kαq2
⊥ + K3q

2
x − μ0HM0

)2
. (106)

The excitation modes t1 and p1 are the analogues of the
splay-bend mode in the usual NLCs, whereas t2 and p2 are the
analogues of the twist-bend mode.

It is found that in the limit of large magnetic fields these ex-
citations become decoupled, i.e., one eigenvector only contains
the fluctuation of the director field and the other the fluctuation
of the magnetization field, Figs. 21 and 22.

The thermal averages of the squared amplitudes of the
independent excitations read

〈|tα(q)|2〉 = kBT V
1
2

(
2A1M

2
0 + μ0HM0 + Kαq2

⊥ + K3q2
x − sα

) ,

(107)

〈|pα(q)|2〉 = kBT V
1
2

(
2A1M

2
0 + μ0HM0 + Kαq2

⊥ + K3q2
x + sα

) ,

(108)

with kB the Boltzmann constant and T the temperature,
whereas their thermal cross-correlations are zero.

If K1 = K2, then the splay-bend (α = 1) and the twist-bend
(α = 2) excitation modes have the same structure [Eqs. (105)
and (106)] (Figs. 21 and 22), as well as the same energy
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FIG. 22. The normalized coefficients Eq. (104) of the eigenvec-
tors p1 and p2 as a function of the applied magnetic field with qx = 0
and q⊥ = π/2; K1 = K2.

and thermal amplitude [Eqs. (107) and (108)]. The same is
true in the degenerate case when q = q êx , i.e., for a pure
bend excitation (in an unconfined system), where there is no
difference between the modes α = 1,2 and the bases {ên

1,ê
n
2}

and {êM
1 ,êM

2 } are chosen arbitrarily in the yz plane.
The space correlations are expressed as

〈tα(r)tα′(r′)〉 = 1

V 2

∑
q,q′

〈tα(q)tα′(q′)〉e−i(q·r+q′ ·r′)

= δα,α′

V 2

∑
q

〈tα(q)tα(−q)〉e−iq·(r−r′), (109)

and similarly for 〈pα(r)pα′ (r′)〉, whereas 〈tα(r)pα′(r′)〉 = 0. In
the large magnetic field limit these correlations are

〈tα(r)tα(r′)〉 ≈ kBT

4πK

1

r
e−q0r , (110)

〈pα(r)pα(r′)〉 ≈ kBT

(2π )3μ0HM0
δ(r), (111)

where r = |r − r′| and q0 =
√

A1M
2
0 /K .

In experiments one measures the intensity of the scattered
light. To calculate this intensity, we need an expression for
the amplitude of the outgoing electric field. We start with
an incident electric field Ei , described by a plane wave: E =
E0 î ei(ki ·r−ωt), where ki is the wave vector, E0 the amplitude,
and ω the frequency of the incident light. We then proceed with
a summation of the electric field contributions of the scattered
light through the whole cell, treating every point r as a radiating
dipole. Last, we project the electric field on the axis f̂ of the
analyzer. The electric field amplitude of the scattered light is
[32]

Ef (q,t) = E0ω
2

c2R
ei(kf ·r′−ωt)

∫
V

d3r e−iq·rf̂i [εij (r,t) − δij ] îj

= E0ω
2

c2R
ei(kf ·r′−ωt) f̂iεij (q,t) îj , (112)

where kf is the wave vector of the scattered light, R is the
distance from the sample to the detector at r′, and q = kf − ki

is the fluctuation wave vector. In the last line of Eq. (112) we

discarded the Fourier contribution of δij , since it is nonzero
only if q = 0. We have assumed that R is large compared to
the size of the scattering region, which in turn is much larger
than the wave length of the light, and that we are in the limit
of small dielectric anisotropy.

In our calculations below, we will be using details of an
experimental setup usually used for measuring splay-bend
fluctuations in a NLC, which in our geometry have δn = δnzêz,
qy = 0, ên,M

2 = êy , and ên,M
1 = êz. In this case we have a

polarizer and an analyzer that are both in the xz plane. The
polarizer î is parallel to the x axis, whereas the analyzer f̂ is at
an angle ζ from the x axis. In Eq. (112), the projection of the
fluctuating part of the dielectric tensor Eq. (97) reads

f̂i εij (q,t) îj = εafzδnz, (113)

where fz = f̂ · êz. Using the expansion

δnz = (t1t1 + p1p1) · ên
1, (114)

the scattering cross section σ = 〈E∗
f (q,t)Ef (q,t)〉 with

q · êy = 0 is

σ = ε2
aω

4

c4
〈|δnz(q)|2〉f 2

z

= ε2
aω

4

c4
(C+

1 〈|t1(q)|2〉 + C−
1 〈|p1(q)|2〉)f 2

z , (115)

with the coefficient

C±
1 = (Z∓

1 )2

1 + (Z∓
1 )2

. (116)

In the usual experimental setup one observes two splay-bend
modes, t1 and p1, as opposed to the usual NLC, where one
observes only one splay-bend mode.

Asymptotic behaviors of the coefficients C+
1 and C−

1 at large
magnetic fields,

C+
1 � 1 − A2

1M
4
0

(μ0HM0)2
, (117)

C−
1 � 2

(
Kαq2

⊥ + K3q
2
x

)2 − 3A2
1M

4
0

(μ0HM0)2
, (118)

reveal that in the large-magnetic-field limit only the eigenmode
t1 contributes to the scattering cross section [Eq. (115)].

The dynamics of the fluctuations is probed by dynamic light
scattering, where one measures the time correlation of the light
intensity I (t),

g(2)(t) = 〈I (0)I (t)〉
〈I (0)〉2

. (119)

Assuming Gaussian fluctuations it follows that

g(2)(t) = 1 + |g(1)(t)|2, (120)

where

g(1)(t) = 〈E∗
f (q,0)Ef (q,t)〉
〈|Ef (q,0)|2〉 (121)

is the time correlation of the scattered light electric field.
To calculate the time dependence of the fluctuations, we

first linearize the system of dynamic equations and determine
the dynamic eigenmodes. Considering only the dissipative
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dynamics, Eqs. (8) and (9), and using δn = δn1ên
1 + δn2ên

2 ,
δm = δm1êM

1 + δm2êM
2 , we find a 2 × 2 homogeneous system

for each α = 1,2,

1

τ
δnα =

[
1

γ1

(
Kαq2

⊥ + K3q
2
x + A1M

2
0

) − χD
2 A1M

2
0

]
δnα

+
[
A1M

2
0

(
χD

2 − 1

γ1

)
+ χD

2 μ0HM0

]
δmα,

1

τ
δmα = [−bD

⊥A1 + χD
2

(
Kαq2

⊥ + K3q
2
x + A1M

2
0

)]
δnα

+
[
bD

⊥A1

(
1 + μ0HM0

A1M
2
0

)
− χD

2 A1M
2
0

]
δmα,

(122)

which can be rewritten as(
A − 1

τ
I
)(

δnα

δmα

)
= 0 (123)

and has nontrivial solutions if det(A − 1
τ
I) = 0. The dynamic

eigenmodes are the eigenvectors of the matrix A,

th
α = ct

α ên
α + dt

α êM
α , (124)

ph
α = cp

α ên
α + dp

α êM
α , (125)

where the components ct
α,c

p
α ,dt

α,d
p
α are functions of the static

and dynamic material parameters and will not be given ex-
plicitly. It is important to realize that the dynamic fluctuation
modes [Eqs. (124) and (125)] in general differ from the
statistically independent excitation modes [Eqs. (103) and
(104)]. If the reversible dynamics [Eqs. (12) and (13)] is
included, then a 4 × 4 eigensystem is obtained coupling both
α’s. In that case, splay-bend and twist-bend dynamic modes are
no longer decoupled and each eigenmode spans all directions
{ên,M

1 ,ên,M
2 }.

The time dependence of a fluctuation is first expressed in
terms of the dynamic eigenmodes [Eqs. (124) and (125)],
which are then further expressed by the uncorrelated exci-
tation modes [Eqs. (103) and (104)]. Using Eqs. (112) and
(113) and expressing δnz(t) of the splay-bend fluctuation as
just explained, the electric field time correlation [Eq. (121)]
becomes

|g(1)(t)| = D+
1 (t)〈|t1(q,0)|2〉 + D−

1 (t)〈|p1(q,0)|2〉
C+

1 〈|t1(q,0)|2〉 + C−
1 〈|p1(q,0)|2〉 , (126)

where

D+
1 (t) = (

t1 · ên
1

)2
fI(t) + (

t1 · ên
1

)(
t1 · êM

1

)
fII(t),

D−
1 (t) = (

p1 · ên
1

)2
fI(t) + (

p1 · ên
1

)(
p1 · êM

1

)
fII(t). (127)

The functions fI(t) and fII(t) are expressed using the com-
ponents ct

1,c
p

1 ,dt
1,d

p

1 and the relaxation times of the dynamic
eigenmodes denoted by τ t

1 and τ
p

1 :

fI(t) = ct
1d

p

1 e−t/τ t
1 − c

p

1 dt
1e

−t/τ
p

1

ct
1d

p

1 − c
p

1 dt
1

, (128)

fII(t) = dt
1d

p

1

(
e−t/τ t

1 − e−t/τ
p

1
)

ct
1d

p

1 − c
p

1 dt
1

. (129)

FIG. 23. Relaxation rates of almost pure bend fluctuations (qx �
q⊥) and the corresponding dynamic eigenmodes as a function of
the applied magnetic field. The dashed lines represent the limiting
behavior of the relaxation rates, described by Eqs. (132) and (133).
For clarity, a smaller value of the rotational viscosity was used to
make the asymptotic behavior set in sooner.

In the limit of large magnetic fields one gets D±
1 →

C±
1 e−t/τ t

1 . Taking into account also the large-magnetic-field
dependence of the coefficients C±

1 , Eqs. (117) and (118), the
intensity correlation function Eq. (120) is a single exponential

g(2)(t) = 1 + e−2t/τ t
1 . (130)

It is found that the dynamics of the eigenmodes th
α slows

down (τ t
α → ∞) at a negative critical magnetic field, here given

for q = qzêz:

μ0H
(α)
c = − A1M0Kαq2

z

Kαq2
z + A1M

2
0

. (131)

The negative value of the critical magnetic field means that it
is pointing in the direction opposite to the magnetization. If the
applied magnetic field is more negative than the critical field,
then the magnetization starts to reverse. In NLCs, K2 < K1

usually holds and it is the twist mode th
2 that slows down at a

less-negative magnetic field. With the smallest wave number
qz = π/d we get μ0H

(2)
c = −2.5 mT.

In Fig. 23 we present the magnetic field dependence of the
relaxation rate of almost pure bend (qx � q⊥) fluctuations. We
also depict the corresponding eigenmodes at a small positive
field and at large magnetic fields.

For a general fluctuation, in the limit of large magnetic fields
the relaxation rate of the faster (magnetization-like) ph

α mode
is proportional to the applied magnetic field (Fig. 23 presents
the bend fluctuation as an example),

1

τ
p
α

= A1
(
bD

⊥ − χD
2 M0

)2 + (
χD

2 M0
)2(

Kαq2
⊥ + K3q

2
x

)
bD

⊥

+ bD
⊥

M0
μ0H. (132)

The relaxation rate of the slower (director-like) th
α mode

saturates at a finite value (Fig. 23 presents the bend fluctuation
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as an example),

1

τ t
α

= A1M
2
0 + (

Kαq2
⊥ + K3q

2
x

)
γ1

[
1 −

(
χD

2 M0
)2

γ1

bD
⊥

]
. (133)

It is also illuminating to study the relaxation rates of general
fluctuations at zero magnetic field, H = 0. Expanding the
relaxation rates to second order in qx and q⊥ one gets

1

τ
p
α

= A1M
2
0

γ1

(
1 − 2χD

2 γ1 + bD
⊥γ1

M2
0

)

+
(
Kαq2

⊥ + K3q
2
x

)
�p

γ1
, (134)

1

τ t
α

=
(
Kαq2

⊥ + K3q
2
x

)
�t

γ1
, (135)

where

�p =
(
χD

2 γ1 − 1
)2

M2
0

bD
⊥γ1 + (

1 − 2χD
2 γ1

)
M2

0

, (136)

�t = γ1
(
bD

⊥ − (
χD

2 M0
)2

γ1
)

bD
⊥γ1 + (

1 − 2χD
2 γ1

)
M2

0

. (137)

From Eqs. (134) and (135) one can see that the relaxation rate
1/τ

p
α of the faster (optic) mode ph

α stays finite in the limit
q → 0. The slower mode th

α is, on the other hand, acoustic,
i.e., 1/τ t

α → 0 as q → 0.

IX. SUMMARY AND PERSPECTIVE

In the present extensive study we have presented detailed ex-
perimental and theoretical investigations of the dynamics of the
magnetization and the director in a ferromagnetic liquid crystal
in the absence of flow. We have shown that a dissipative cross-
coupling between these two macroscopic variables, which has
been determined quantitatively, is essential to account for the
experimental results also for the compound E7 as a nematic
solvent for the ferromagnetic nematic phase. Before, this was
demonstrated for 5CB as a nematic solvent [30]. We also find
that all the experimental results presented here for E7 com-
plement well and are consistent with the previous ones using
5CB as the nematic component. Remarkably, the dissipative
cross-coupling (χD

2 ) found for the E7-based ferromagnetic
nematic liquid crystal is about a factor of 5 smaller than
that of the 5CB based, while the dissipative coefficient of the
magnetization (bD

⊥ ) is (only) twice as large. This leads to an
interesting suggestion for future experimental work, namely
to address the question of which molecular features determine
the strength of this dissipative cross-coupling. The nematic
phases of 5CB and E7, respectively, show one qualitatively
different feature: The nematic phase of 5CB is well known
to favor the formation of transient pairlike aggregates [37]
because of its nitrile group, while such tendencies are reduced
in E7 since it is mixture of four different compounds and

also contains a terphenyl. A natural experiment to study these
features in more detail would be to investigate the dependence
of the dissipative cross-coupling on the magnetic particle
concentration on one hand and to investigate mixtures of the
nematic solvents 5CB and E7 on the other to learn more about
the coupling mechanisms between the nematic order and the
magnetic order.

We have also analyzed the consequences of an out-of-plane
dynamics, i.e., out of the plane spanned by the magnetic field
and the spontaneous magnetization. We give predictions for
both the azimuthal angles of director and magnetization as well
as for the intensity change related to the reversible dynamic
cross-coupling terms between the two order parameters, the
magnetization and the director. We find that from both mea-
surements a value for the reversible cross-coupling terms can
be extracted.

From the present analysis the next steps in this field appear
to be quite well defined. First, the incorporation of flow effects
appears to be highly desirable both from a theoretical as well as
from an experimental point of view. Early experimental results
in this direction have been described in Ref. [38], where it has
been shown that viscous effects can be tuned by an external
magnetic field of about 10−2 T by more than a factor of two.
From a theoretical perspective, questions like the analogs of
the Miesowicz viscosities and flow alignment are high on the
priority list [39].

Moreover, it will be important to realize, although perhaps
experimentally challenging, a nematic or cholesteric liquid
crystalline version of uniaxial magnetic gels and rubbers
[40,41]. Cross-linking a ferromagnetic nematic would give rise
to the possibility to obtain a soft ferromagnetic gel, opening the
door to a new class of magnetic complex fluids. This way, one
could combine the macroscopic degrees of freedom of the first
liquid multiferroic, namely the ferromagnetic nematic liquid
crystal, with the strain field as well as with relative rotations.
In a step towards this goal, we will derive macroscopic
dynamic equations generalizing those for uniaxial magnetic
gels and ferronematics to obtain the macroscopic dynamics
for ferromagnetic nematic and cholesteric gels [42].
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