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In this paper we propose and explore a method of analysis of the scattering experimental data for uniform
liquidlike systems. In our pragmatic approach we are not trying to introduce by hands an artificial small parameter
to work out a perturbation theory with respect to the known results, e.g., for hard spheres or sticky hard spheres
(all the more that in the agreement with the notorious Landau statement, there is no physical small parameter
for liquids). Instead of it being guided by the experimental data we are solving the Ornstein-Zernike equation
with a trial (variational) form of the interparticle interaction potential. To find all needed correlation functions
this variational input is iterated numerically to satisfy the Ornstein-Zernike equation supplemented by a closure
relation. Our method is developed for spherically symmetric scattering objects, and our numeric code is written
for such a case. However, it can be extended (at the expense of more involved computations and a larger amount of
required experimental input information) for nonspherical particles. What is important for our approach is that it
is sufficient to know experimental data in a relatively narrow range of the scattering wave vectors (q) to compute
the static structure factor in a much broader range of q. We illustrate by a few model and real experimental
examples of the x-ray and neutron scattering data how the approach works.
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I. INTRODUCTION

Liquids (and not only so-called complex liquids or colloidal
suspensions but also not exotic at all conventional simple or-
ganic and inorganic ones) are not structureless at any scale uni-
form media. The knowledge of their structure is very essential
for understanding the underlying physics and chemistry, and it
allows a nonblind search of new “smart” materials possessing
properties required for various applications. Nowadays the
topic is a multidisciplinary area including many basic science
problems involving physics, chemistry, biology, and applica-
tions. Recently there has been an essential evolution in our
understanding of the structures and phase transitions in liquids.
It can be illustrated merely by a continuously growing number
of exciting new publications (some of those will be cited in
what follows in our paper). The progress, as always, is driven
not only by developments of new experimental techniques but
also theoretical advances, promising potential applications and
related interesting fundamental scientific problems.

Experimentally complete and detailed structural informa-
tion is obtained by various scattering methods (x rays, neu-
trons, light). Results are summarized in many reviews and
monographs, e.g., in multiple editions of the well-known
Hansen and McDonald book [1], containing also numerous
relevant references. However, liquids as any objects studied
in physics have so-to-speak two faces. First, the mentioned
above experimental data, and second their theory descriptions.
Modern powerful computers and software enable one to per-
form large-scale simulations of molecular liquids or colloidal
dispersions. Thus, there are high precision scattering data and
high accuracy simulations, and therefore it is tempting to
think that nothing else is needed in the field. Unfortunately
this is not completely true. The fact of the matter is that the

full set of parameters which determine the experimentally
measured scattering intensity I [or related to I the static
structure factor S(q)], and the parameters needed to perform
numeric simulations are not exactly the same, and what is
worse only barely known. Readers can find a lot of original
publications, reviews, and monographs from the theory and
simulation sides (just to mention a few, see [2–5]). One of
the main difficulties in comparing the results of the large-
scale simulations with specific experimental measurements
is the availability of an accurate connection between the
experimental control parameters and the theoretical variables
needed for the simulations. The actual values of the parameters
are determined by the microscopic interactions, which are
not well known. It might be not so important because in
simulations the level of details is much greater than can be
obtained experimentally, but there is another disadvantage
of large-scale simulations in that they do not tell us which
elements of the interactions are the most essential for a given
system behavior. It should be cause for general embarrassment
in the field that there are still no answers on even the most
basic questions on structural and thermodynamic properties of
liquids.

To overcome somehow this mutual uncertainty of the
scattering data and simulations, and to relate the data to
physical system characteristics we need the theory guideline.
And here we face another problem. Theory in the rigoristic
meaning of the word (see e.g., [6]) may not be developed for
molecular or not very dilute colloidal liquids, since there is
no small parameter. To find a way around the impasse we
propose a pragmatic approach. The rigoristic theoretical view
is certainly correct, however, the heuristic theory approach
combined with experimental input and common physical wis-
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dom, provides a useful tool to describe experimental data with a
few phenomenological parameters. Moreover, results obtained
theoretically also can be used for certain new predictions.
We introduce some effective (model) interparticle potentials,
which we regard as experimentally determined ones. Along
this way to test such a combined (theory-experiment) ap-
proach we need a standard reference system. For the colloidal
dispersions such a reference system is the dispersion of hard
spheres. The fact is that structural and even dynamic properties
of liquids are dominated by the molecular repulsive cores. This
general deceptively simple Van der Waals observation leads to
the idea that hard spheres are a suitable starting model of the
liquid state.

The liquid structure factor which can be determined from
the measured scattering intensity is a Fourier transform of the
pair density correlation function. The density correlation func-
tion satisfies the formally exact Ornstein-Zernike (OZ) equa-
tion. Unfortunately the equation is not in a closed form, because
it contains two unknown functions, and to solve this equation
one has to add a closure relation. It turns out that the structure
factor of the hard-sphere liquid can be accurately calculated
using the Percus-Yevick (PY) closure relation. Unfortunately
the remainder (with respect to hard spheres) interactions may
not always be treated as a perturbation. Then one has to rely
on different methods (see, e.g., [7–10]). In this work we are
solving the OZ equation for a specially selected combination
of the correlation functions (see details in the next section) and
introduce an effective interparticle interaction potential. This
combination, γ (r) ≡ h(r) − c(r), where h(r) is called a total
correlation function, and c(r) is the so-called direct correlation
function [unlike separately taken correlation functions h(r),
c(r), and the pair correlation function g(r)] turns out to be a
smooth function of space variables, what allows one to perform
numerically fast and accurate its Fourier transformation. To
find the other correlation functions this input is iterated nu-
merically to satisfy the OZ equation supplemented by a closure
relation [1].

For the sake of simplicity we study the case of spherically
symmetric scatterers. It is simply one example (although
an important one which often occurs in practice, e.g., as a
solution of micelles or small vesicles for an application of our
general results. In principle the formalism could be extended
for nonspherical particles (at the expense of more involved
computations and a larger amount of required experimental
input information). Furthermore the generalization requires
more caution. The fact is that depending on a specific scattering
technique the data collection time can be about 0.1 s (and up to
10 min for neutrons). Due to rotational diffusion of the particles
their nonsphericity effectively generates the results similar to
those from the spherical particles polydispersity. Both effects
can be taken into consideration via the particle form factor. If
the corresponding size variation due to particle nonsphericity
is less than several percents, our approach remains valid.

We test the approach investigating a number of model and
real experimental examples of the x-ray and neutron scattering
data.

Common experience with the experimental data fitting
shows that for short-range interactions between the particles,
the PY closure relation gives a very reasonable description of

the data. For more long-ranged interactions the better descrip-
tion of the data is obtained by the so-called hypernetted-chain
(HNC) closure relation [1]. Variation of external conditions and
material parameters results in the change of physical properties
of the system. The static structure factor S(q) is the main
quantity one needs to analyze experimental data and to confront
the data with the theory. The OZ equation with PY closure can
be solved analytically only for hard spheres [11,12] or hard
spheres with a very short-range attraction (sticky hard-sphere
model [13], and more recent experimental and theoretical
advances and improvements can be found in [14,15]). The first
example (hard spheres) is very important but oversimplified to
describe the real molecular liquids and colloidal dispersions.
As it concerns the second model (sticky hard spheres) its
application is strongly limited [16]. In fact this is a general
drawback of the standard approach. The interpretation of the
scattering data and the obtained values of the parameters are
model dependent, and heavily rely on the assumptions used
in the data analysis. Although the OZ integral equation can
be solved by iterations [1], the method of the solution which
provides the convergence and stability for a general case is
not proposed (see the documentation to SASFIT software [17]).
Stability of the algorithm can be obtained if one can guess
in advance the form of the solution with several adjustable
parameters, and it is not a trivial and not always realizable
task.

Thus, the desire to understand and to get a sort of “express
analysis” of the physical system characteristics behind its
measured structure factor which is the main aim of this paper,
is hardly surprising.

Any experimental data treatment is always concerned with
fitting, however, our goal in this work is not a fitting itself. The
problem is that in many cases (e.g., in complex fluids) the in-
teraction potential is unknown (even its functional form). Very
often many relevant details of the particle internal structure are
unknown. In such a case the automatic numeric routine bluntly
applied can produce not very reliable results. Our approach
and numeric procedure allows one to estimate the correctness
of the chosen model and the quality of the description. Our
semiempirical and approximate express-analysis method can
give a guideline for more elaborate automatic routine numerics
and simulations.

The plan of our paper is as follows. In Sec. II we describe the
main steps of our approach. We analyze the scattering data in
the framework of the OZ equation. Our method can be applied
for not too dense colloidal dispersions, if polydispersity is not
too high. Sometimes the method as well works for molecular
liquids (see below in Sec. III as an example the neutron data
and our model analysis for liquid krypton). Then in Sec. III we
illustrate how our approach works and present a few models
(with known form for the structure factor) and experimental
results which we analyze by our method. Finally, in Sec. IV
we summarize the main steps of our approach and the results
of the work.

II. THEORY

Consider suspension of monodisperse hard spheres of
diameter σ . The volume fraction occupied by the spheres
is φ = πσ 3n̄/6, where n̄ is its average concentration. The
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pair correlation function is defined as g(r) = 1 + n̄h(r) =
〈n(r)n(0)〉/n̄2 − n̄δ(r), and one more correlation function
useful to describe the scattering data is the direct correlation
function c(r) = −[δ2F/(T δn(r)δn(0))] (where F stands for
the system free energy). The functions h(r) and c(r) enter to
the exact OZ equation,

h(x) = c(x) + n̄

∫
d3y h(y)c(x − y). (1)

Static structure factor S(q) is determined as

S(q) = 1 + 4πn̄

q

∫ ∞

0
dr rsin(qr)h(r). (2)

Then, the OZ equation can be rewritten in the Fourier repre-
sentation as

S(q) = 1 + n̄h(q) = 1/(1 − n̄c(q)), (3)

and to solve this equation it is necessary to add a closure
relation.

Two of the most popular closure relations are the PY and
HNC closure equations. It is easy to see that the PY closure
relation implies that

g(r) ∝ e−βV̄ , if r < σ,

c(r) = 0, if Rint < r. (4)

For the HNC closure if Rint < r , c(r) = h(r) − ln(1 + h(r)).
If we take |h(r)| < 0.1, then |c(r)| < 0.005. Thus with a
sufficient accuracy in our express-analysis method we put
c(r) = 0, r > 3.3σ . In fact the cutoff can be chosen more or
less arbitrarily in the region where the interparticle potential is
small: V (r) << kT .

c(r) = (1 − eβV (r))g(r), (5)

where V (r) is the interaction potential between particles and
β = (kBT )−1. The HNC closure reads as

g(r) = eγ (r)−βV (r), (6)

where γ (r) = h(r) − c(r).
If the form of the interparticle potential V (r) is known,

the closure relation allows one to solve the OZ equation and
then to compute S(q). Unfortunately it is almost never the
case, and one has either to guess about V (r), or try to find
some insight by fitting the scattering data. It looks like a
vicious circle (because to fit the data we need to solve the
OZ and the closure equations, what is impossible without
knowledge of the potential). Luckily the situation is not so
hopeless, and both tasks [namely to compute S(q) and to guess
the form of V (r)] can be done simultaneously by iterations.
We choose first (guided by qualitative physical arguments)
a model potential, then compute S(q), compare the results
to the experimental data, and repeat the procedure, until the
agreement with experimental data becomes satisfactory. What
is important for our approach is that it is sufficient to know
experimental data in a relatively narrow [around the first peak
in I (q)] range of the scattering wave vectors to compute the
static structure factor in a much broader range of q.

The main object of investigation in this work is colloidal
dispersions of spherical particles. The formalism could be
extended for nonspherical particles (at the expense of more

involved computations and a larger amount of required exper-
imental input information). Since our aim is a theory from an
experimental point of view, the generalization requires more
caution. The fact is that depending on a specific scattering
technique the data collection time can be about 0.1 s (and up
to 10 min for neutrons). Therefore due to rotational diffusion
of the particles their nonsphericity effectively generates results
similar to those from the spherical but polydisperse particles.
Both effects can be taken into consideration via the particle
form factor. If the corresponding effective polydispersity is
less than several percents, our approach remains valid. Thus
we believe it was worthwhile to develop a theory which works
for spherical particles with short-range interactions and not too
large polydispersity.

Usually it is supposed that the interaction potential is very
large and repulsive for small interparticle distance r < σ

(where σ stands for an effective size of the particle hard core),
V (r) = V̄ � kBT , and vanishes outside the interaction region
Rint < r , V (r) = 0. It is easy to see that the PY and HNC
closure relations imply that

g(r) ∝ e−βV̄ , if r < σ, (7)

and in the range Rint < r , we can approximate c(r) as

c(r) = 0, if Rint < r. (8)

However, what is directly measured in any scattering experi-
ment is not the static structure factor. The measured quantity
is the scattering intensity I (q,n̄) (where as before q is the
scattering wave vector, and n̄ is the average particle concen-
tration). For a very dilute dispersion, when n̄ = n̄dil is small
n̄dilσ

3 � 1, I (q,n̄dil) is the scattering intensity from a single
particle, termed traditionally as the particle form factor. For
molecular liquids, or for colloidal dispersions with relatively
small polydispersity (e.g, protein solutions have very narrow
particle-size distribution function [18]), the static structure
factor can be determined as S(q) = n̄dil I (q,n̄)/(n̄ I (q,n̄dil)).

Unfortunately it is impossible to calculate accurately the
correlation functions h(r), c(r) in the r space by the inverse
Fourier transformation of the static structure factor, because
S(q) decreases too slow, usually as q−1. Luckily, for the
function γ (r) the situation is much better. It can be obtained by
the Fourier transformation. The reason is that γ (r) is a smooth
function unlike the total and direct correlation functions, and
its Fourier transform decreases fast, e.g., for the hard spheres
like 1/q3. The required range of the wave vectors in the
experimentally measured scattering intensity depends on the
interaction potential. For the hard spheres at not too high
particle volume fraction [say φ � 0.4)], it is sufficient to know
the scattering intensity for q < 10/σ . Then the function γ (r)
can be calculated directly from the static structure factor and
the exact OZ equation (without an explicit use of any closure
equation):

γ (r) = 1

2π2rn̄

∫ ∞

0
dq q sin(qr)(S(q) − 2 + 1/S(q)). (9)

Equation (9) allows one to calculate γ (r) in the broad
range of r needed for sufficiently accurate data analysis. Of
course to compute c(r), g(r), and h(r) separately one has to
supplement the OZ equation by one or another closure relation.
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The equation for the direct correlation function for the PY
closure reads as

c(ri) = (1 + γ (ri))(e−βV (ri ) − 1), (10)

and for the HNC closure it is

c(ri) = eγ (ri )−βV (ri ) − 1 − γ (ri). (11)

Technically to solve the OZ equation we develop a simple
numerical method (see our code and comments in the Supple-
mental Material to the paper [19]). In its spirit our approach
is similar to that proposed by Gillan [20]. The original [20]
method is based on the discrete form of the equations and
Fourier transform of the correlation functions [instead of direct
calculation of the integral in (1)]. By our code we are solving
the following discretized equations:

c̃j = 4πhr

qj

N∑
i=1

ciri sin(qj ri),

(12)

S ′
i = hq

2π2ri

N∑
j=1

qj sin(qj ri)

1 − n̄c̃j

,

where ri = i hr , qj = j hq, hq = π/(Nhr ), and hr and hq

are steps in r space and q space, correspondingly. Fitting
the results obtained from Eqs. (9)–(12) to the experimentally
found static structure factor, we also are able to determine the
interaction potential, calculate the density correlation function
g(r), and its main characteristic features, and compute as
well some thermodynamic properties of the system, e.g., the
pressure. (See also discussion of the inverse problem to find
the interaction potential from the scattering data in the work
[21].)

For the illustrative examples considered below, both closure
relations (PY and HNC) lead to comparable accuracy predic-
tions, although it is believed that the PY closure is an adequate
approach for short-range interactions and the HNC closure
is better for long-range interactions. However, we are not
dealing with the ideal scattering data. Usually accurate data are
available only for the finite (and not very broad) range of wave
vectors. To catch the difference between these two closures,
one needs the data in a sufficiently broad range of wave vectors.
How broad the range depends on the interaction potential
length scale. For the examples considered in our manuscript
(with basically short-range interaction) both closures give very
similar results. For truly long-range potential, one has to rely
on the HNC closure.

III. ANALYSIS OF EXPERIMENT

Before presenting our illustrative examples, one essential
comment is in order. Our theory consideration is based on the
pairwise approximation. No doubts that in molecular liquids
or dense colloidal suspensions many-body interactions are
essential. And this is the main problem in any description of
a liquid state. For not too dense (i.e., not too close to critical,
crystallization, value of the particle volume fraction) colloidal
dispersions, the pairwise approximation is a reasonable starting
point in the theory analysis of the data. Besides in many
cases the properties of the liquid state are dominated by the
first peak in the pair-correlation function. This is the spirit

of the Landau-Brazovskii weak crystallization theory (see the
original Brazovskii [22] publication, or review paper [23], and
discussions on so-called Frenkel-like liquid state in [24,25]).
For such a situation (when liquidlike short-range order is
not dramatically different from solidlike order) the pairwise
approach (supplemented by some not too large experimental
input) can provide the adequate data description. We illustrate
the issue presenting below our analysis of the neutron scatter-
ing data in liquid krypton.

As the first test of our approach we treat the hard-sphere
model data obtained by the exact solution of the OZ and PY
equations. This is our input “experimental” data. The test also
will allow us to estimate the accuracy of our computation
due to the limited range of the available wave vectors, and
finite precision of the discretized Fourier transform. In the
test (in dimensionless r measured in units of σ ) we take the
hard-sphere volume fraction φ = 0.17 and 200 points from
the data set of the exact solution for the structure factor S(r)
in the range of dimensionless r r/σ = 1 ÷ 11. To analyze
these “experimental” data by our method, we should first find
the effective interaction potential. The suitable choice of the
potential is a guarantee of the efficiency, accuracy, and fast
convergence of the procedure. For the hard-sphere data, the
natural choice is the hard-sphere potential supplemented by
the correction terms,

βV (x) = (−Va e−κa (x−1) + Vr e−κr (x−1))/x, (13)

where x is r/σ . Fitting four adjustable parameters Va , Vr , κa ,
and κr we estimate the corrections to the hard-sphere potential
smaller than βV (r) < 0.05. The calculated structure factor
deviates from its “experimental” value less then 0.07%!.

If we take the Lenard-Jones potential without the hard core
part,

βV (r) = −Va r−6 + Vr r−12, (14)

then the fitting to the “experimental” data (the exact OZ and PY
equation solution for the hard spheres) gives Va = 0.4, Vr =
1.26, and the deviation of the calculated structure factor from
the “experimental” data is about 0.7%, i.e., 10 times worse
than for the potential (13). A bit larger (but still not too bad)
differences between both potentials take place if we compare
the computed and “experimental” pair-correlation functions
(see Fig. 1.). In turn with the pair-correlation function in hand,
we can find such physically relevant quantity as the average
coordination number N ,

N = 4πn̄

∫ 1.2 σ

σ

dr r2g(r). (15)

Here the integral has taken over the relatively narrow region of
r (around the main peak of the correlation function at r = σ ).
For the potential (13) N 
 3.97, whereas for the Lenard-
Jones potential N 
 3.89. For the Lenard-Jones potential the
correlation function is nonzero at r < σ . Then, the main
peak of the pair-correlation function for this potential is more
broad and has a smaller height, however, the coordination
number is approximately the same. We conclude from these
two pure methodical (but instructive) examples, that both
model effective potentials provide fairly good (although not
ideal) data descriptions. The accuracy of the computed integral
characteristics (like the average coordination number N ) is

012610-4



SIMPLE ANALYSIS OF SCATTERING DATA WITH THE … PHYSICAL REVIEW E 97, 012610 (2018)

FIG. 1. Pair correlation function for hard-sphere (squares) and LJ
(circles) potentials (x ≡ r/σ is dimensionless distance in the particle
diameter σ units.)

less impressive; it is about 2%. Nevertheless, if we are dealing
with real experimental data (with finite systematic errors and
noise), the accuracy of our method can be considered a very
satisfactory one.

The fact that at low concentrations and short-ranged poten-
tials S(q) has only very weak dependence on the potential
shape (we illustrate above for entropic hard spheres with
short-ranged energetic corrections or LJ potentials) is known
in the literature: See, e.g., [26] with an extended corresponding
state principle which enables one to formulate a few relevant
characteristics of the effective potential, or [27] with so-called
isosbestic points [q values for which S(q) is invariant under
changes of the effective potential well depth] introduced
instead. The identification of the effective potential with the
physical “microscopic” interaction energy is possible only
in the very low concentration limit. At higher density the
physically relevant quantity is just the effective potential
related to the pair-correlation function. Another problem with
such approaches is that the effective potential that reproduces
the structure factor, may not be the same as the potential to
reproduce thermodynamic properties. In this work we bypass
the problem: First we are not trying to find the potential from
the scattering data [we calculate the static structure factor
solving the OZ equation with a trial effective potential found
from the fitting experimental data in a relatively narrow range
of the scattering wave vectors (q)], and then we can compute
the static structure factor in a much broader range of q. Second,
we determine the value of S(q = 0) from the independently
computed thermodynamic characteristics of the system under
consideration.

Let us move now to the real experimental data. We take
the scattering intensity data from the work [28] for the poly-
methylmetacrylate (PMMA) spheres. Using our methodology
and depletion interaction potential induced by the polystyrene
globules dispersed in the solution [29] (see also more recent
results and advances on the depletion interaction [30]), we
fitted all the experimental data presented in the work [28]
with our new method described above and the corresponding

FIG. 2. Static structure factor for PMMA spheres with attraction
caused by the depletion potential. Circles present the experimental
data obtained in [28]; dotted line are the results of calculation in [28];
solid line present the results of the current approach.

numerical procedure (which is simpler and faster than that
used in [28]). One more advantage of the new approach is
that it is flexible and can be adapted for a rather wide range of
interaction potentials. Just as illustrated in Fig. 2, we plot the
static structure factor calculated by the method of [28] (black
squares) and by our new method (red circles). Presented data
correspond to the volume fraction of the PMMA particles φ =
0.2 and the polyethylene glycol concentration cp = 23 mg/L.
The radius of particles was fixed at the experimental value,
and the interaction potential is the depletion potential. Note
to the point that the method of [28] gives the value for the
potential amplitude Va1 = −3.3kT , and our new method leads
to Va2 = −2.97kT and the coordination number is about 5.8.

FIG. 3. Structure factor of liquid krypton at liquid-gas coexis-
tence. The squares present the data for the temperature 133 K; circles,
153 K; and triangles, 183 K. Our calculations are presented by the
solid black line (133 K), dashed red line (153 K), and dotted blue line
(183 K), correspondingly.
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TABLE I. Values of the parameters determined from the fitting
for the Lenard-Jones potential to the experimental data for krypton.

T σ n̄ Va Vr Coordination number

133 3.91 0.72 2.56 1.91 7.3
153 3.55 0.68 3.11 3.77 6.5
183 3.55 0.68 2.64 3.6 4.7

Our next example is related to the neutron scattering data
on liquid krypton [31]. We reproduce the data borrowed from
the work [31] on scattering intensity in Fig. 3. The data cover
the large interval of the scattering wave vectors qσ ∼ 1 ÷ 40
(where σ is estimated by the position of the main peak in the
static structure factor). Results of the fitting for the Lenard-
Jones potential to the experimental data are presented in Fig. 3
by solid lines. The values of parameters determined from the
same fitting are presented in Table I. Four parameters were
used as adjustable: scaling factor for the wave vector σ , density
n̄, and the amplitudes of the Lenard-Jones potential Va and Vr .

By the common physical wisdom for the krypton (noble
gas) one should expect the Lenard-Jones interaction potential
provides an adequate description of the system. Surprisingly
enough (see Fig. 3) this is not the case (as was mentioned in [31]
and as we confirmed by our own computation). Something is
evidently wrong. In our opinion, the catch is in a small q region.
As is known (see, e.g., [1]) there is the exact thermodynamic
relation,

S(0) = kBT

(
∂n̄

∂P

)
T

. (16)

We take the values entering (16) parameters from [31] and
the handbook [32] and calculate the structure factor atq = 0 for
a few temperature points along the liquid-gas coexistence line:
S(q = 0,T = 133 K) ≈ 0.076, S(q = 0,T = 153 K) ≈ 0.13,
S(q = 0,T = 183 K) ≈ 0.459.

FIG. 4. Lenard-Jones interaction potential for liquid krypton.
Solid black line corresponds to 133 K, dashed red line, 153 K;
and dotted blue line, 183 K (x ≡ r/σ , and vint ≡ V/kBT is the
dimensionless interaction potential in kBT units).

FIG. 5. Interaction potential for liquid krypton, rescaled to the
temperature T ∗ = 153K (v∗

int ≡ V/kBT ∗, and x ≡ r/σ ). Lines are
the same as in Fig. 4.

With these thermodynamic correct values for the S(q = 0),
we perform the fitting of the scattering data in the broad
range of the wave vectors. We present the results of our
approach for the Lenard-Jones effective interparticle potential.
The magnitudes of all computed parameters are presented in
Table I. To find all three correlation functions we utilize the
PY closure relation, but a similar-quality fitting also can be
obtained with the HNC closure relation.

As we said already the separate important task is to find
(estimate) the interaction potential. We plot the result obtained
by our method in Fig. 4.

The curves in Fig. 4 present the potential divided by kBT .
All three curves can be rescaled and collapsed into a single
universal (master) curve. The result of such a procedure is
presented in Fig. 5.

In principle our method also can be extended to study a gas-
liquid critical point (e.g., to find the critical exponent for the
correlation length). However, in practice it is hardly feasible,
since it requires very large (in a broad range of wave vectors
and temperatures) and very accurate the scattering data. Note
to the point that although the OZ equation is exact, the closure
relations needed to calculate the critical behavior of the pair-
correlation function are mean field in their nature. Furthermore
approaching the critical point long-range forces becomes more
and more relevant; therefore one has to utilize the HNC closure
relation.

IV. CONCLUSION AND PERSPECTIVES

In recent years there has been an upsurge in interest in
structural investigations of various colloidal suspensions and
molecular liquids (see, e.g., [33,34] and references therein),
although the problem itself is anything but new. The van der
Waals theory is the cornerstone of the current understanding
of fluid structures and phase behavior. Although modern
experimental and numeric methods of structure investigations
can provide very detailed information about many structural
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features and physical properties of the liquid state, no simple
way allows one to relate both.

For simple liquids the intermolecular interactions are well
known and summarized in textbooks. However, this is not the
case for colloidal systems, the main object of our work. For
the colloidal systems very often even a functional form of the
potential is unknown. In the realm of nonideal experimental
data, to analyze the data one can use a sort of iteration procedure
starting with a variational form of the potential. For our
method (and the relatively short-range interaction potential),
the choice of the closure relation is not very important. We
checked an approach with the so-called bridge function b(r),
often used in the literature (see, e.g., [35]) which is believed
to provide thermodynamic consistency. In the approach the
pair-correlation function is represented as

g(r) ≡ h(r) + 1 = exp[−βV (r) + γ (r) + b(r)].

With the Rogers and Young (RY) closure, the bridge function
is

b(r) = −γ (r) + ln

(
1 + exp(γ (r)f (r)) − 1

f (r)

)
,

with f (r) = 1 − exp(−αr) and α is an adjustable parameter.
For α = 0 the RY closure is reduced to the PY, while for α >

0 and upon increase of r it approaches the HNC closure. In
this limit, we have checked that a theory with the reference
bridge function gives the same results as our method (up to a
nonessential numerical prefactor).

In our work we follow a pragmatic approach and our method
allows one to get at least qualitative insight into which form
of the interaction potential can provide a reasonable accuracy
description of the data. The quality of our fitting (the so-called
χ2 value) depends essentially on the normalization of the static
structure factor S(q). For neutron scattering data typically
it can be determined accurately and directly from the data.
However, for x-ray scattering data the fitting requires more
caution, because the density fluctuations of the solution modify
the effective shape of the individual scatterers. Then there is
no simple way to determine the normalization of the structure
factor directly from the experiment, and it should be considered
as one additional fitting parameter.

All mentioned above difficulties are equally relevant for
the direct simulation methods. The methods are more pow-
erful and effective, but there is a price to pay; more input
data are needed. Besides using only the simulation meth-
ods in practice one cannot solve all problems (there are
limitations to performing effective simulations). For exam-
ple, sometimes the system relaxation time can be so large
that the only practical way to overcome this difficulty is
to rely on some ansatz for the correlation functions. For
such a case our approach can provide a certain useful
hint.

To get such insight one has to rely on the traditional methods
of the statistical physics; namely, having in mind the fluid
state structure, it is necessary to solve the exact OZ equation.
Unfortunately, here we face a problem because the equation
is not in a closed form: It contains two unknown functions. In
a general case (molecular liquids, or not very dilute colloidal
dispersions) it is not possible to derive by a regular theoretical
method the needed closure relations. The most popular closure

relations (PY and HNC) are basically sort of self-consistent ex-
trapolations from the very dilute dispersion limit. The PY clo-
sure allows one to find the exact analytical solution of the OZ
equation for the dispersion of hard spheres. Moreover, the PY
closure leads to a reasonably good description of the ex-
perimental data for the dispersions somehow similar to the
hard-sphere ones. Then it is tempting to try to describe
experimental data for a more broad class of dispersions using
the trial PY or HNC ansatz for the correlation functions and
computing perturbatively corrections to the ansatz to fit the
data. Unfortunately such a perturbative approach does not
always work, and besides this leads to not very efficient and
fast computations. To find how to overcome the difficulty,
there is no way to improve the theory (it is impossible for
a system without any small parameter). As one can expect this
intermediate range of parameters is the most difficult one to
treat theoretically, all the more, analytically.

Instead, we propose a simple and working instrument,
combining the theory solution to the OZ equation for the
function γ (r) and experimentally measured scattering inten-
sity. It is based on the observation that it is possible to
determine the smooth function γ (r) ≡ h(r) − c(r) directly
from the experimental data for the structure factor (scattering
intensity data for the system under consideration and from its
diluted state). Then our method enables one to compute the
correlation functions and the interparticle potential by using the
OZ equation with a closure relation. The procedure is robust
and simple, and does not use any ansatz for the correlation
functions.

The delicate issue in the procedure is the choice of the
functional form for the interaction potential. The accuracy
of the resulting description (especially as it concerns the
integral characteristics) depends essentially on the choice. An
equally delicate issue concerns the input experimental data
needed to perform our procedure. First, we need to know
the accurate values of the value of the static structure factor
at relatively large wave vectors. Second, if the data at small
wave vectors are not available (which is often the case),
the corresponding values should be found (e.g., by separate
thermodynamic computations) and added to the set of fitting
data. Last, one note of caution concerns the x-ray form factor
of the particle. In a dense solution it can be different from the
form factor in the dilute solution. The important conclusion
drawn from the aforesaid notes is the need for raw input data
tuning. Luckily the tuning concerns the physically measurable
quantities and therefore can be well controlled, and besides
the tuning never modifies the data in the intermediate wave-
vector region which is essential for the solution of the OZ
equation.

Our main justification in this work for adding one more
approach (numerically very simple and fast) to perform an
approximate express analysis of the data is based on our finding
that many relevant features of the experimentally measured
scattering intensity can be found theoretically with a minimal
input from the experiment. Moreover, these features can be
computed directly from the exact OZ equation, without an
explicit use of the semiempirical closure relations. Our work
explicitly separates the aspect of a scattering data fitting
independent of the particle interaction potential (provided the
latter one is not a long range). The results can be obtained by
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simply plugging a few input parameters into our numeric code
(see Supplemental Material [19]).

We illustrate by a hard-sphere model and real experimental
examples how the method works. For a relatively small number
of fitting parameters, namely the parameters entering the
interaction potential and the scaling factor σ for the wave
vectors, the results are very satisfactory. In this sense our
approach and the model can be considered as the minimal
model, which is just at the border between those that are too
primitive to fit even qualitatively the data, and those that fit the
data too well by using too many parameters.

It is worth noting that all experimental data are not perfect
and always have certain limitations. Neutrons or x rays do
not study the same physical quantities and characteristics. For
example, very often a position of the so-called base line is

only approximately known (neither are many relevant details
of the particle internal structure known). In this respect our
express-analysis method is more robust (but of course less
accurate) than the automatic fitting routine, or more involved
Monte Carlo or molecular dynamics simulations. Our method
can be considered as a sort of guiding line to get some hints as
to what can be expected from these more powerful approaches.
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