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Theoretical model of chirality-induced helical self-propulsion
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We recently reported the experimental realization of a chiral artificial microswimmer exhibiting helical self-
propulsion [T. Yamamoto and M. Sano, Soft Matter 13, 3328 (2017)]. In the experiment, cholesteric liquid
crystal (CLC) droplets dispersed in surfactant solutions swam spontaneously, driven by the Marangoni flow, in
helical paths whose handedness is determined by the chirality of the component molecules of CLC. To study
the mechanism of the emergence of the helical self-propelled motion, we propose a phenomenological model
of the self-propelled helical motion of the CLC droplets. Our model is constructed by symmetry argument in
chiral systems, and it describes the dynamics of CLC droplets with coupled time-evolution equations in terms
of a velocity, an angular velocity, and a tensor variable representing the symmetry of the helical director field of
the droplet. We found that helical motions as well as other chiral motions appear in our model. By investigating
bifurcation behaviors between each chiral motion, we found that the chiral coupling terms between the velocity
and the angular velocity, the structural anisotropy of the CLC droplet, and the nonlinearity of model equations
play a crucial role in the emergence of the helical motion of the CLC droplet.
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I. INTRODUCTION

Chirality is an essential aspect of organisms since
biomolecules such as DNA, amino acids, and proteins that
serve as building blocks are chiral. Living microswimmers,
which swim spontaneously in fluid media without an external
field in microscale, often exhibit chiral motions, such as rota-
tional [1,2], circular [3,4], and helical [5,6] motions, due to the
chiral shapes and motions of the force-generating machineries
such as flagella and cilia. For instance, a sperm cell of a sea
urchin controls its flagellum in a chiral manner to steer in
a circular and a helical path [5,6]. Such chiral dynamics of
microswimmers is receiving much attention within the field of
active matter physics [7–10].

The chiral motions of microswimmers have also been
studied in artificial experimental systems. For instance, in
two dimensions, an L-shaped, self-propelled particle exhibits
circular motion owing to the chirality of the L shape [9].
We recently reported the first example of chirality-induced
helical motion in chiral artificial microswimmers in three
dimensions [11], where droplets of cholesteric liquid crystal
(CLC), a chiral phase of liquid crystal, swim in helical paths in
surfactant solutions. The experimental system of CLC droplets
is an ideal three-dimensional (3D) model system for chiral
microswimmers, since the strength of both chirality and self-
propulsion can be experimentally controlled by altering the
concentration of chiral molecules (chiral dopants) in CLC and
the surfactant solution. However, the mechanism of the 3D
helical motion of CLC droplets is not yet understood.

In this paper, we propose a mathematical model of the
chirality-induced helical motion of CLC droplets. In our
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experimental system [11], when the CLC was injected as mi-
crosized droplets in aqueous surfactant solutions, we observed
helical motions of the CLC droplets with uniform helical
director fields inside the droplets (summarized in Fig. 1). The
underlying self-propulsion mechanism is the same as that of the
swimming nematic liquid crystal (NLC) droplet in surfactant
solution [12–14]; the Marangoni flow induced spontaneously
by the dissolution of NLC molecules in surrounding surfactant
solutions allows the NLC droplets to move around without
any external fields due to the spontaneous symmetry breaking
(SSB). By confirming that the helicity of the motion of
CLC droplets was determined by the chirality of dopants, we
concluded that the helical motion is induced by the chirality.
Another remarkable observation was that the helical axis of
the droplet precesses around the helical axis of the helical
path [see Fig. 1(a)]. This observation means that the helical
director field of the droplet and the helical motion are coupled.
Consequently, we concluded that the CLC droplets exhibit
helical motion as a result of the chiral coupling between the
rotation and the Marangoni flow inducing the translation via
the helical director field of CLC droplets [see Fig. 1(d)].

Based on the experimental results above, we constructed a
simplified model of the swimming CLC droplet by symmetry
argument. We applied the model for self-propulsion of the
droplets without intrinsic polarity, for which SSB is essential,
in contrast to the propulsion of polar self-propelled particles
such as asymmetric colloidal particles [15–17]. Tarama and
Ohta proposed a model for such a system [18,19], where
the dynamics of the particle obeys a coupled time-evolution
equation, written in terms of velocity, angular velocity, and a
tensor variable representing the geometry of the particle. By
introducing coupling terms between the velocity and angular
velocity allowed only in chiral systems into their model,
we constructed a model for chiral self-propelled droplets.
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FIG. 1. Summary of chirality-induced helical motion of a CLC droplet, as reported in Ref. [11]. Reproduced from Ref. [11] with permission
from the Royal Society of Chemistry. See Ref. [11] for the detail. (a) A helical trajectory of a CLC droplet projected on a two-dimensional plane
is shown. The arrows indicate the direction of the helical axis of the director field of the CLC droplet, as enlarged in panels (a-1)–(a-5). Panels
(a-1)–(a-5) correspond to the droplet indicated by the circles numbered 1–5 in (a), respectively. (b) The 3D helical trajectory of the droplet is
shown. (c) Schematic image of a CLC droplet with uniform helical director field. Spheroids represent CLC molecules. The red arrow indicates
the helical axis a of the CLC droplet. The scale bars are 10 μm in panels (a) and (a-1)–(a-5). (d) Schematic image of the mechanism of helical
self-propulsion. The Marangoni flow and the translational motion are represented as the white curved arrows in the CLC droplet and the red
arrow, respectively. The green dotted line and curved arrow represent the rotational axis and the rotation, respectively.

Since our model is constructed systematically by symmetry
argument, our model should be applicable not only for the
self-propulsion of CLC droplets, but also for other chiral
self-propelled objects.

II. MODEL DESCRIPTION

We describe the dynamics of a CLC droplet by the coupled
Eqs. (1)–(3) in terms of a velocity v, an angular velocity ω,
and a second rank traceless symmetric tensor Qij representing
the helical director field inside the droplet. Our model does
not explicitly contain the surfactant concentration field, which
induces the Marangoni flow. Such a reduced model was
recently derived in the self-propulsion of the isotropic self-
propelled droplet driven by the Marangoni flow by eliminating
the degrees of freedom of the concentration field [20,21]:

dvi

dt
= γ vi − vjvjvi + a1Qijvj︸ ︷︷ ︸

Self−propulsion or damping

+ a2εijkωjvk︸ ︷︷ ︸
Rotation

+μisoωi + μQijωj︸ ︷︷ ︸
Chiral coupling

, (1)

dωi

dt
= ζωi − ωjωjωi + b1Qijωj︸ ︷︷ ︸

Self−spinning or damping

+ b2εijkQjlvlvk︸ ︷︷ ︸
Force dipole

+ν isovi + νQijvj︸ ︷︷ ︸
Chiral coupling

, (2)

dQij

dt
= εkjlQikωl − εiklωlQkj︸ ︷︷ ︸

Rotation

. (3)

In Eqs. (1)–(3) we define Qij = S/2(3aiaj − δij ) +
P/2(bibj − cicj ) to describe the global symmetry of a whole
CLC droplet with a homogeneous helical director field, as
we observed in our experiments. a,b, and c are unit vectors.
The subscripts i,j,k,l = 1,2,3 denote Cartesian components
of the tensors. The primary axis a represents the direction of
the helical axis of the director field [Fig. 1(c)]. Note that the
CLC molecules themselves align perpendicularly to a. Hence,
the meaning of Qij in our model is different from that of the
tensor order parameter defined in the NLC [22,23]. We used
the second rank tensor Qij instead of directly using the vector
a to represent the helical axis of the droplet because a and
−a are equivalent in the case of homogeneous helical director
field. We may also consider a biaxial parameter P and the
secondary axes b and c (a ⊥ b,b ⊥ c), since, if we look at the
plane crossing the center of the droplet and perpendicular to
a, CLC molecules align in a certain preferred direction. In the
definition of Qij , S, and P represent the degrees of anisotropy
of the CLC droplet. In this paper, we investigate the behavior
of our model by setting S = 1 and changing the value of P .

Using Qij defined above, we constructed the time-evolution
Eqs. (1)–(3) by considering the possible terms in a chiral
system and keeping some relevant terms. Here we follow the
Einstein summation convention and εijk is a Levi-Civita sym-
bol. The model equations are required to satisfy parity sym-
metry; they have to be invariant under a parity transformation
P : (x,y,z) → (−x,−y,−z). Under the parity transformation,
the components of the velocity v, angular velocity ω, and
symmetry tensor Qij of a CLC droplet are transformed as
vi → −vi , ωi → ωi , and Qij → Qij , respectively. Also, the
components of a Levi-Civita symbol εijk are invariant under the
transformation. The most important point is that, in chiral sys-
tems, we can introduce terms with pseudoscalar coefficients,

012607-2



THEORETICAL MODEL OF CHIRALITY-INDUCED … PHYSICAL REVIEW E 97, 012607 (2018)

which change the signs under a parity transformation and thus
are not allowed in achiral systems [24]. In Eqs. (1)–(3), the
coefficients μiso, μ, ν iso, ν are pseudoscalars allowed only in
chiral systems, while γ, ζ, a1, a2, b1, b2, are scalars allowed
even in achiral systems. We certainly find that Eqs. (1)–(3)
satisfy parity symmetry.

The meaning of each term with scalar coefficients in
Eqs. (1)–(3) is as follows: The first term on the right-hand side
of Eqs. (1) and (2) represents the self-propulsion or damping
in translation and the self-spinning or damping in rotation,
respectively. The second term on the right-hand side of Eqs. (1)
and (2) represents nonlinear saturation. If γ or ζ is positive,
the droplet has an injection of the energy, resulting in the
self-propelled dynamics [18,19,25]; otherwise, the terms mean
a damping force and torque. We consider that γ > 0,ζ < 0
in our experiments, since the dynamics of the droplet is
triggered by the gradient of the surface tension, which results
in the Marangoni flow and then translational self-propulsion.
In general, the self-spinning may exist in some systems. For
instance, a water droplet on silicon oil rotates spontaneously
when vibrated vertically [26]. In such a case, ζ should be
positive. The terms with the coefficients a1 and b1 represent
the anisotropy of self-propulsion or damping. The signs of
the coefficients determine the easy axis of the translation or
rotation. If the coefficients are positive, a is the easy axis.
Otherwise, any direction perpendicular to a is the preferred
direction in an uniaxial case, and an eigenvector corresponding
to the minimum eigenvalue of Qij is the preferred direction in
biaxial cases. The terms with a2 and b2 are the lowest order
terms describing the achiral coupling between v and ω in each
time-evolution equation. The term with a2 means the turning
of the translational direction due to the rotation; a2 should
approach 1 from 0, as the coupling between v and ω gets
stronger. We later discuss the term with b2 in detail.

The most essential part of our model is the coupling terms
with pseudoscalar coefficients μiso, μ, ν iso, ν, which represent
the chiral coupling between the translation induced by the
Marangoni flow and the rotation through the helical director
field of the CLC droplet. Since these terms are the off-diagonal
couplings in the linear nonequilibrium thermodynamics [24],
we expect a reciprocal relation and hence assume that μiso =
ν iso and μ = ν.

Numerical simulations were performed based on Eqs. (1)–
(3) by the fourth-order Runge-Kutta method (�t = 1.0 ×
10−4). The initial conditions for velocity v and angular velocity
ω were provided by a Gaussian distribution with a mean of zero
(standard deviation σ = 0.5). We investigate the dynamics
by changing the strength of the self-propulsion γ , the chiral
couplings μiso, μ, ν iso, ν, and b2. For simplicity, we control
the strength of chiral couplings with a pseudoscalar parameter
μ by setting μ = ν, μiso = ν iso = 0.7μ. The other parameters
are fixed as a1 = −1, a2 = 0.9, ζ = −3, b1 = 0, b2 = 0.4,
unless otherwise noted. Here a1 is set as negative for the
following reason. It is reported that the effective viscosity in
the direction of the helical axis is comparably higher than
that of perpendicular to the helical axis [27]. Hence, the
Marangoni flow, which induces the translation, is likely to
occur perpendicularly to the helical axis to minimize the dissi-
pation. Here a2 is set to be smaller than 1, since the surfactant
concentration field, which is the origin of the translation v,
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FIG. 2. Phase diagrams (a) in the uniaxial (P = 0) and (b) biaxial
case (P = 0.1), respectively [square: NM (no motion), upward trian-
gle: SSS (spinning straight motion along secondary axis), downward
triangle: SSP (spinning straight motion along primary axis), diamond:
ST (straight motion) and circle: H (helical motion)]. The lines indicate
linear stability limits of NM, SSS, and SSP (solid line: pitchfork
bifurcation, dashed line: Hopf bifurcation).

should not fully follow the rotation ω. In addition, we consider
isotropic damping of rotational motion (ζ < 0,b1 = 0), since
the droplet is spherical. Furthermore, we examine the effects of
the uniaxiality and the biaxiality by setting P = 0 or P = 0.1.

III. RESULTS AND DISCUSSION

A. Phase diagram

Figure 2 shows the phase diagrams obtained by numerical
simulations and linear stability analysis of Eqs. (1)–(3) in
both the uniaxial and biaxial case. We numerically obtained
five phases: No Motion (NM), Straight motion (ST), Spinning
Straight motion (SS) along Secondary axis (SSS) and SS along
Primary axis (SSP), and Helical motion (H). In NM phase,
the droplet is motionless. In ST phase, the droplet moves
perpendicularly to a without any rotation, which is observed
in the limit of μ = 0. SS is a phase where the droplet moves
with v ‖ ω. SS can be classified into two phases: SSS and SSP,
where v is perpendicular and parallel to a, respectively (see
Fig. 3). When neither v ‖ ω nor v ⊥ ω, we classify the motion
into H phase. In H phase, the helix was right-handed when
μ > 0. Importantly, changing the sign of μ—inversion of the
chirality—provided a mirror image of the dynamics, consistent
with our experiments in Ref. [11].

SSPSSS HSSS SSP H

FIG. 3. Schematic images of SSS (spinning straight motion along
secondary axis), SSP (spinning straight motion along primary axis),
and H (helical motion), respectively. Each arrow represents a,v,
and ω.
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FIG. 4. Time evolution of (a) curvature κ and torsion τ , (b) a
component of v and absolute value of velocity v, (c) a component
of ω, absolute values of ω and �, and (d) θ1 and θ2 in a helical
motion (P = 0,b2 = 0.4,γ = 6,μ = 1.4). The same properties for a
helical motion in a biaxial case (P = 0.1,b2 = 0.4,γ = 6,μ = 1.4)
are shown in (e)–(h). The enlarged time series of |ω| and |�| are
shown in (c-2) and (g-2) for uniaxial and biaxial cases, respectively.

In Figs. 2(a) and 2(b), the lines indicate the linear stability
limits of the NM, SSS, and SSP phases, consistent with the
numerical results. We show the details of the bifurcation
analysis in Appendix B. In the uniaxial case where P = 0,
pitchfork bifurcations occur at the NM-SSS, NM-SSP, and
SSS-H boundaries, whereas the Hopf bifurcation occurs at the
SSP-H boundary. The Hopf bifurcation at the SSP-H boundary
in the uniaxial case is probably related to the rotational
symmetry around a ‖ v ‖ ω in SSP. In contrast, this rotational
symmetry is broken in biaxial cases. As a result, we did not
observe the Hopf bifurcation at the SSP-H boundary in the
biaxial case (P = 0.1).

B. Dynamics

In our model, whether the droplet is uniaxial or biaxial also
plays a key role in the dynamics of helical motion. Figure 4
shows the time evolution of several essential variables in helical
trajectories for uniaxial and biaxial cases which identify the
helical motion. In both the uniaxial case (P = 0) and the
biaxial case (P = 0.1), we numerically found that the helical

FIG. 5. Definition of each vector characterizing the property of
helical motion is schematically drawn for a perfect helical trajectory.
(a) The direction of helical axis a, velocity v, angular velocity ω of a
CLC droplet, and angular velocity � of the helical motion are shown.
The dotted circle represents the projection of the helical trajectory
(yellow curve) on the plane perpendicular to �. (b, c) Definitions of
θ1 and θ2 are shown.

path is a perfect helix; that is, the curvature κ and torsion τ of
the path are time-independent in the steady state as shown in
Fig. 4(a) for a uniaxial case and Fig. 4(e) for a biaxial case.
|v| and |ω| are also time-independent [Figs. 4(b), 4(c), 4(f),
and 4(g)].

In contrast, the details of rotational motion are different in
both cases. We define the angular velocity of the helical motion
as � = 
eq , where 
 is the absolute value of the angular
velocity, and eq is a unit vector parallel to the direction of the
helical axis of the trajectory. As shown in Fig. 5(a), v̇/|v̇| and
v̈/|v̈| are, respectively, the radius and tangential unit vectors
of the circular trajectory which is a projection of the helical
trajectory on the plane perpendicular to the helical axis, when
the trajectory is a perfect helix and |v| is time-independent like
in our cases. Hence, eq is defined as eq = (v̇/|v̇|) × (v̈/|v̈|).
In order to identify the geometrical relationship between
the direction of the helical axis eq of the trajectory and
the helical axis a of the droplet, we introduce the angle
θ1 and θ2, which are defined as θ1 = arccos (v̇ · a/|v̇|) and
θ2 = arccos (−v̈ · a/|v̈|). θ1 and θ2 are depicted schematically
in Figs. 5(b) and 5(c), respectively. Figures 4(g) and 4(g-2)
show that, in the biaxial case, |ω| is identical to |�| and the
components of ω are time-independent (we show one of the
components). In contrast, Figs. 4(c) and 4(c-2) show that, in the
uniaxial case, oscillation of the components of ω and deviation
of |ω| from |�| are observed. θ1 and θ2 were time-independent
for both cases in the steady states [Figs. 4(d) and 4(h)]. Hence,
we find that, in the uniaxial case, an additional spinning motion
around the helical axis a of the CLC droplet occurs during the
helical motion. The oscillation should be originating from a
limit cycle in H phase, consistent with the Hopf bifurcation in
the uniaxial case. This insight into the uniaxial limit P = 0 will
be important, since the biaxiality of the CLC droplet should
decrease until it vanishes as the wave number of the helical
director field gets larger.

C. Force dipole represented by term with b2

Here we discuss the term with b2. As the arrows in Fig. 1(a)
indicate, we find that the helical axis of the droplet is directed
towards the outside from the helical axis of the helical path.
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FIG. 6. (a) Relation between θ1 and b2 in the uniaxial case
(γ = 6,μ = 1.4). The solid line represents θ1 = π/2. (b-1) and (b-2)
Flow fields around a pusher-type and a puller-type microswimmer are
shown by the curved arrows. Escherichia coli and Chlamydomonas
reinhardtii are used as an example of each type of microswimmer,
respectively.

To quantify this feature, we use θ1 = arccos (v̇ · a/|v̇|) [see
Fig. 5(b)]. When a is directed outside like in the experimental
result, θ1 > π/2. The effect of b2 on θ1 is numerically investi-
gated in Fig. 6(a), which suggests that θ1 is larger than π/2
when b2 > 0. Accordingly, our model predicts that b2 > 0
in the CLC droplet experiment. Meanwhile, the second-rank
symmetric tensor vivj in the term with b2 represents the
symmetry of the flow field generated by the force dipole, by
which the droplet is classified into a pusher- or a puller-type
microswimmer in the squirmer model [28,29]. We schemati-
cally depict such flow fields in Fig. 6(b). For example, since
Escherichia coli pushes the surrounding fluid forwards and
backwards while swimming, it is classified as a pusher [30,31].
In contrast, Chlamydomonas reinhardtii pulls surrounding
fluid along the center line of the body, and hence it is called a
puller [31,32]. This term with b2 is derived from the torque on
the helical director field due to a force dipole. We can determine
the sign of b2 if we know whether the CLC droplet is a pusher
or a puller, as well as how the force dipole induces the torque on
the CLC droplet. Further investigation into the flow field and
the response of the CLC droplet in it is required to elucidate
the term with b2. Nevertheless, our model certainly shows the
importance of the force dipole in CLC droplet dynamics.

D. Effects of the structural anisotropy of a particle and the
nonlinearity on the phase behavior

We found that our model exhibits several chiral motions—
SSS, SSP, and H—depending on the parameters γ and μ

for self-propulsion and chiral couplings (Fig. 2). Here we
discuss the mechanism of the emergence of the H phase in our
model. We suspected that the helical motion appears owing
to either one or both of the structural anisotropy of a particle,
represented by the second-rank tensor Qij and the nonlinearity
in our model. In our model, we have four nonlinear terms
with respect to v and ω: vjvjvi, a2εijkωjvk, ωjωjωi , and
b2εijkQjlvlvk . Note that the term with a2 brings nonlinearity
to our models when a2 �= 1, since if we look at our equations
with the particle frame introduced in Appendix A, (a2 − 1)
is a coefficient which brings nonlinearity into the equations
[see Eq. (A7) in Appendix A]. We investigated the effects
of the particle anisotropy and the nonlinearity on the model
behavior by eliminating (1) both the particle anisotropy and
the nonlinearity, (2) only particle anisotropy, and (3) only
nonlinearity, as follows.

0.0
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μi
so
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NM
Case1 Case2

FIG. 7. Phase diagram of our model without particle structural
anisotropy represented by a second-rank tensor Qij (cases 1 and 2
in the main text). Since the phase diagrams for cases 1 and 2 are the
same, a single phase diagram is shown.

In case 1, we performed numerical simulations with Eqs. (4)
and (5) by eliminating the terms including Qij and the
nonlinear terms ωjωjωi,b2εijkQjlvlvk from Eqs. (1)–(3) and
setting a2 = 1. We kept the nonlinear term vjvjvi , since it
is essential for the self-propulsion of the droplet. Note that
the time evolution equation of Qij is unnecessary in cases 1
and 2, since we are considering isotropic chiral self-propelled
particles:

dvi

dt
= γ vi − vjvjvi︸ ︷︷ ︸

Self−propulsion or damping

+ εijkωjvk︸ ︷︷ ︸
Rotation

+ μisoωi︸ ︷︷ ︸
Chiral coupling

,

(4)

dωi

dt
= ζωi︸︷︷︸

Damping

+ ν isovi︸ ︷︷ ︸
Chiral coupling

. (5)

Figure 7 shows the phase diagram. Since we eliminated the
terms with μ and ν here, we controlled the chirality of our
system by changing μiso and ν iso. Here we again assumed a
reciprocal relation μiso = ν iso; ζ is also set to the same value
as that used in Fig. 2 (ζ = −3). We found that the model does
not exhibit helical motions, but only NM, ST, and SS. Here
SS is not classified into SSS or SSP since we eliminated the
particle anisotropy Qij . The linear stability limit of NM is
shown as a curve μiso = √

ζγ in Fig. 7. We also confirmed
that SS is linearly stable in this case. In Eqs. (4) and (5), the
isotropic chiral coupling terms μisoωi and ν isovi tend to align
v and ω in the parallel direction. Since there is no term which
potentially disturbs this condition v ‖ ω, we do not observe
helical motions in case 1.

In case 2, we added two nonlinear terms ωjωjωi and
a2εijkωjvk(a2 �= 1) into Eqs. (4) and (5) and obtained Eqs. (6)
and (7). In the numerical simulation of Eqs. (6) and (7), a2 and
ζ are set to the same values as that used in Fig. 2 (a2 = 0.9 and
ζ = −3). We found that the phase diagram and linear stability
limit of NM in case 2 are the exact same as that of case 1.
Hence, isotropic chiral self-propelled particles considered here
do not exhibit helical motion even when we introduce nonlinear
terms into our model. The structural anisotropy of the particle
is necessary for helical self-propulsion. We consider that SS
phase is stable also in case 2, since ωjωjωi only effectively
reduces the damping constant ζ in Eq. (7), and ω still tends to
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FIG. 8. Phase diagrams of our model without nonlinear terms
except for the self-propulsion term, for (a) the uniaxial (P = 0) and
(b) the biaxial case (P = 0.1). The other coefficients in linear terms
are the same as those we applied in the nonlinear cases in Fig. 2. The
phase boundaries between SSS and SSP are parallel to the horizontal
axes.

align in the direction parallel to v:

dvi

dt
= γ vi − vjvjvi︸ ︷︷ ︸

Self−propulsion or damping

+ a2εijkωjvk︸ ︷︷ ︸
Rotation

+ μisoωi︸ ︷︷ ︸
Chiral coupling

,

(6)

dωi

dt
= ζωi − ωjωjωi︸ ︷︷ ︸

Self−spinning or damping

+ ν isovi︸ ︷︷ ︸
Chiral coupling

. (7)

To investigate case 3, we eliminated the terms ωjωjωi and
b2εijkQjlvlvk from Eqs. (1)–(3) and set a2 = 1. Hence, the
model equations for case 3 are as follows:

dvi

dt
= γ vi − vjvjvi + a1Qijvj︸ ︷︷ ︸

Self−propulsion or damping

+ εijkωjvk︸ ︷︷ ︸
Rotation

+μisoωi + μQijωj︸ ︷︷ ︸
Chiral coupling

, (8)

dωi

dt
= ζωi + b1Qijωj︸ ︷︷ ︸

Damping

+ ν isovi + νQijvj︸ ︷︷ ︸
Chiral coupling

, (9)

dQij

dt
= εkjlQikωl − εiklωlQkj︸ ︷︷ ︸

Rotation

. (10)

Figure 8 shows the phase diagrams in case 3 for both uni-
axial (P = 0) and biaxial (P = 0.1) cases. Other parameters
are the same as those used in Fig. 2. We found that the model
does not exhibit helical motions, but only NM, ST, SSS, and
SSP. The linear stability limits of NM, SSS, and SSP are also
shown as curves in Fig. 8. The linear stability limits of SSS
and SSP coincide at the boundary between SSS and SSP, and
the boundary between SSS an SSP is parallel to the γ axis.
Under the parameters applied in case 3, the easy axis of the
translational self-propulsion is perpendicular to the helical axis

a of the droplet, while chiral couplings between v and ω are
stronger in the direction parallel to a than in that perpendicular
to a. Hence, SSS appears when μ is low and the easy axis
of the translational self-propulsion takes priority, while SSP
appears when μ is high and chiral couplings are dominant. In
our original nonlinear model with Eqs. (1)–(3), since the vector
εijkωjvk (εijkQjlvlvk) is perpendicular to ω (v), the term tends
to orientv (ω) perpendicularly toω (v). Hence, we consider that
nonlinear terms a2εijkωjvk and b2εijkQjlvlvk in Eqs. (1)–(3)
can break the condition v ‖ ω satisfied in SSS and SSP, and H
phase appears between SSS and SSP phases. Given all these
results for cases 1, 2, and 3, both the structural anisotropy Qij

and the nonlinearity are essential for helical self-propulsion in
our model.

IV. SUMMARY

In this paper, we proposed a phenomenological model of
chirality-induced helical self-propulsion of a CLC droplet
based on a theoretical framework of the self-propelled objects
[18,19,25]. We found that our model exhibits helical motion
owing to the nonlinearity of our model equations and the chiral
coupling terms between v and ω. Interestingly, in addition to
the helical motion, we found that other chiral motions which we
call SSS and SSP appear as solutions of the model equations.
Transitions between each chiral motion are associated with
the bifurcation of the dynamical system. Although it has been
already reported in Refs. [19,33] that the helical motion of
the self-propelled droplets can appear with the bifurcation
behavior in their models, the left- and right-handed helical
trajectories appear with equal probability because the chiral
symmetry is not broken in such models. Also, we found that
the uniaxiality and biaxiality of the CLC droplet change the
type of bifurcation between SSP and H: Hopf bifurcation
for uniaxial case (P = 0) and pitchfork bifurcation in biaxial
case (P = 0.1). These features have not been investigated yet
in previously reported models which exhibit helical motions
[8,19,33–38]. Furthermore, our model sheds light on the im-
portance of the force dipoles on the detail dynamics of helical
motions, which classify the microswimmer into a pusher-type
or a puller-type.

To justify our model as a model of a CLC droplet, it
is necessary to experimentally test the phase diagrams and
bifurcations. In principle, we can control the parameters μ

and γ by changing the concentration of chiral dopants and
surfactant solutions. We also expect that the uniaxiality of the
droplet will increase by increasing the chirality of the droplet,
since the anisotropy perpendicular to the helical axis will
decrease when the pitch of the CLC is short. Furthermore, the
measurement of the flow field inside and outside the droplet is
also required to justify our model and especially the importance
of force dipoles.

To summarize, our model succeeded in predicting nontrivial
phase diagrams and bifurcation structures in the dynamics of
CLC droplets in surfactant solution. We believe that our model
will provide important insights into the role of chirality in
dynamics of self-propelled particles because of the generaliz-
ability of the formulation of our model equations constructed
by the symmetry argument.
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APPENDIX A: COORDINATE TRANSFORMATION FROM
THE LABORATORY FRAME TO THE PARTICLE FRAME

To simplify the linear stability analysis, a coordinate trans-
formation from the laboratory frame (v,ω, Q) to the particle
frame (ṽ,ω̃, Q̃) was performed. For simplicity, we rewrite
Eqs. (1)–(3) in more general form as follows:

dvi

dt
= fi(v, Q,ω), (A1)

dωi

dt
= gi(v, Q,ω), (A2)

dQij

dt
= εkjlQikωl − εiklωlQkj . (A3)

Since the particle frame is a rotating reference frame with
the angular velocity ω, we have the following time-evolution
equations in the particle frame:

dṽi

dt
= fi(ṽ, Q̃,ω̃) − εijkω̃j ṽk, (A4)

dω̃i

dt
= gi(ṽ, Q̃,ω̃), (A5)

dQ̃ij

dt
= 0. (A6)

Note that, if we define a 3 × 3 orthogonal matrix P as the trans-
formation matrix, where ṽ = Pv,ω̃ = Pω, Q̃ = P Q PT , we
have the relation Ṗ(t) = �(t)P(t). Here the second rank
antisymmetric tensor � is defined as 
ij = εijkωk .

Consequently, we only need to perform the linear stability
analysis of the following time-evolution equations with respect
to ṽ and ω̃ in the particle frame:

dṽi

dt
= γ ṽi − ṽj ṽj ṽi + a1Q̃ij ṽj + (a2 − 1)εijkω̃j ṽk

+μisoω̃i + μQ̃ij ω̃j , (A7)

dω̃i

dt
= ζ ω̃i − ω̃j ω̃j ω̃i + b1Q̃ij ω̃j + b2εijkQ̃jl ṽl ṽk

+ ν isoṽi + νQ̃ij ṽj . (A8)

In the linear stability analysis, we set Q̃ij as follows:

Q̃ =
⎡
⎣q1 = S 0 0

0 q2 = − 1
2 (S − P ) 0

0 0 q3 = − 1
2 (S + P )

⎤
⎦.

(A9)
Here a,b, and c in the main text are parallel to x axis, y axis,
and z axis in the particle frame, and q1, q2, and q3 are the
eigenvalues of Qij , corresponding to the eigenvectors a,b and
c. S and P are the uniaxial and biaxial parameters from the
main text. We investigated the behavior of our model by setting
S = 1 and changing the value of P (P = 0 or P = 0.1).

APPENDIX B: LINEAR STABILITY ANALYSIS

We show the detail of the linear stability analysis of NM
(No motion), SSS (Spinning Straight motion along Secondary
axis), and SSP (Spinning Straight motion along Primary axis)
using the particle frame introduced above. In the following, we
take (ṽ1,ṽ2,ṽ3,ω̃1,ω̃2,ω̃3) as our dynamical variables.

1. Linear stability analysis of NM

In NM phase, ṽ = ω̃ = 0, which is a trivial fixed point of
Eqs. (A7) and (A8). We obtain the Jacobian JNM as follows:

JNM =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

γ + a1q1 0 0 μiso + μq1 0 0

0 γ + a1q2 0 0 μiso + μq2 0

0 0 γ + a1q3 0 0 μiso + μq3

ν iso + νq1 0 0 ζ + b1q1 0 0

0 ν iso + νq2 0 0 ζ + b1q2 0

0 0 ν iso + νq3 0 0 ζ + b1q3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B1)

With respect to the reciprocal relation among pseudoscalar parameters described in the main text, we introduce a parameter α for
simplicity as follows:

μiso = (
1
2 + α

)
μ, (B2)

μ = ν, (B3)

μiso = ν iso. (B4)
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Note that we set α = 0.2 in the main text. Setting a1 = −1, b1 = 0 as in the main text, we analytically obtain the linear stability
limit as follows:

γ =
{

1 + 1
ζ

(
3
2 + α

)2
μ2, if γ <

−3/4−P/2−α−α2

3/2−P/2+2α
,

−(
1
2 + P

2

) + 1
ζ

(
α − P

2

)2
μ2, otherwise.

(B5)

Also, the coordinate of the intersection of the two branches are

(γ,μ) = ( −3/4−P/2−α−α2

3/2−P/2+2α
,
√

−ζ

(2α+3/2−P/2) ).

Now we investigate the types of bifurcation from NM to
SSS and SSP, respectively.

a. Bifurcation from NM to SSS

SSS is the spinning straight motion (SS) along secondary
axis. When a1 < 0 as considered in the main text, the axis
which has the lowest negative eigenvalue is the favorable
direction of the motion in SSS. Hence, in the biaxial case, the
spinning straight motion (SS) with ṽ ‖ ω̃ ‖ c appears as SSS.
In contrast, since two secondary axes b and c are degenerate
in the uniaxial case, ṽ and ω̃ in SSS are in the arbitrary
direction perpendicular to the primary axis a. Putting the
solution ṽ = (0,0,ṽs) and ω̃ = (0,0,ω̃s) for SSS in both cases,
we obtain the following equations for (ṽs ,ω̃s):

(μiso + q3μ)ω̃s = ṽ3
s − (γ + a1q3)ṽs , (B6)

(ν iso + q3ν)ṽs = ω̃3
s − (ζ + b1q3)ω̃s . (B7)

In the range of the parameters in the main text, we have
three solutions: 0 and two symmetric solutions with respect to
the origin of the phase space. In the uniaxial case with the pa-
rameters used in the phase diagram in Fig. 2(a), the symmetric
solutions are obtained analytically by using Mathematica as
follows:

ω̃s = A(μ,�1), (B8)

ṽs = 1

μ
[15A(μ,�1) + 5A(μ,�1)3], (B9)

where �1 > 0 is defined as �1 = γ −
{−(1/2 + P/2) + (α − P/2)2μ2/ζ } to represent the deviation
of γ from the NM-SSS boundary calculated in Eq. (B5), and
A(μ,�1) is real solutions of the following equation:

A2{(50 625 − 75�1μ
2 + μ4) + 50 625A2

+ 16 875A4 + 1875A6} = 225�1μ
2. (B10)

Considering that the left-hand side of Eq. (B10) is an even
function which has a minimum equal to zero at A = 0 and a

monotonically increasing function when A > 0, Eq. (B10) has
only two real solutions with opposite signs which converge
continuously to zero in the limit �1 = 0. Hence, we find that
the bifurcation from NM to SSS is a pitchfork bifurcation in
the uniaxial case. Also in the biaxial case (P = 0.1), we found
that the bifurcation is a pitchfork bifurcation with the same
explanation qualitatively as that for the uniaxial case above.

b. Bifurcation from NM to SSP

In SSP, ṽ is parallel to a and ω̃ for both uniaxial and biaxial
cases. Putting the solution ṽ = (ṽp,0,0) and ω̃ = (ω̃p,0,0), we
obtain the following equations for (ṽp,ω̃p):

(μiso + q1μ)ω̃p = ṽ3
p − (γ + a1q1)ṽp, (B11)

(ν iso + q1ν)ṽp = ω̃3
p − (ζ + b1q1)ω̃p. (B12)

In the range of the parameters in the main text, we have
three solutions: 0 and two symmetric solutions with respect to
the origin of the phase space. With the parameters used in the
phase diagram in Figs. 2(a) and 2(b), the symmetric solutions
are obtained analytically by using Mathematica as follows:

ω̃p = B(μ,�2), (B13)

ṽp = 1

17μ
[30B(μ,�2) + 10B(μ,�2)3], (B14)

where �2 > 0 is defined as �2 = γ − {1 + (3/2 + α)2μ2/ζ }
to represent the deviation of γ from the NM-SSP boundary
calculated in Eq. (B5), and B(μ,�2) is real solutions of the
following equation:

B2{(810 000 − 86 700�2μ
2 + 83 521μ4) + 810 000B2

+ 270 000B4 + 30 000B6} = 260 100�2μ
2. (B15)

Considering that the left-hand side of Eq. (B15) is an even
function which has a minimum equal to zero at B = 0 and
a monotonically increasing function when B > 0, Eq. (B15)
has only two real solutions with opposite signs which converge
continuously to zero in the limit �2 = 0. Hence, we find that
the bifurcation from NM to SSP is a pitchfork bifurcation for
both uniaxial and biaxial cases.

2. Linear stability analysis of SSS

Using the SSS solutions ṽ = (0,0,ṽs) and ω̃ = (0,0,ω̃s), we
obtain the following Jacobian JSSS of the SSS solutions:

JSSS =

⎡
⎢⎢⎢⎢⎢⎣

γ + a1q1 − ṽ2
s −(a2 − 1)ω̃s 0 μiso + μq1 (a2 − 1)ṽs 0

(a2 − 1)ω̃s γ + a1q2 − ṽ2
s 0 −(a2 − 1)ṽs μiso + μq2 0

0 0 γ + a1q3 − 3ṽ2
s 0 0 μiso + μq3

ν iso + νq1 b2(q2 − q3)ṽs 0 ζ + b1q1 − ω̃2
s 0 0

b2(q3 − q1)ṽs ν iso + νq2 0 0 ζ + b1q2 − ω̃2
s 0

0 0 ν iso + νq3 0 0 ζ + b1q3 − 3ω̃2
s

⎤
⎥⎥⎥⎥⎥⎦. (B16)
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FIG. 9. Absolute values of velocity v and angular velocity ω, and the angles θv and θω defined in the main text as a function of μ with a
fixed value of γ = 8.0 for both uniaxial [(a)–(c)] and biaxial cases [(d)–(f)], respectively. The values of μ are changed around the bifurcation
points from SSS to H, while the other parameters are the same as those used in the phase diagram in Fig. 2. The dashed vertical lines indicate
the bifurcation points calculated using the method discussed in the main text.

Since it is readily verified that the degrees of the freedom in the z axis span the stable manifold, we considered the following
Jacobian J ′

SSS by removing the degrees of the freedom in the z axis from JSSS:

J ′
SSS =

⎡
⎢⎢⎢⎢⎣

γ + a1q1 − ṽ2
s −(a2 − 1)ω̃s μiso + μq1 (a2 − 1)ṽs

(a2 − 1)ω̃s γ + a1q2 − ṽ2
s −(a2 − 1)ṽs μiso + μq2

ν iso + νq1 b2(q2 − q3)ṽs ζ + b1q1 − ω̃2
s 0

b2(q3 − q1)ṽs ν iso + νq2 0 ζ + b1q2 − ω̃2
s

⎤
⎥⎥⎥⎥⎦. (B17)

Next, we define the characteristic polynomial fs(λ) of J ′
SSS. In the biaxial case, substituting one of the nontrivial solutions of

Eqs. (B6) and (B7) into fs(λ), we calculated the linear stability limit by numerically solving fs(0) = 0 with respect to γ and μ.
Here, the function ContourPlot on Mathematica was used. In the uniaxial case, J ′

SSS always has a zero eigenvalue, and we obtain

fs(λ) = λ

∣∣∣∣∣∣∣∣
−(μiso + q2μ) ω̃s

ṽs
+ a1(q1 − q2) − λ −(a2 − 1)ω̃s μiso + μq1

(a2 − 1)ω̃s − b2(q2 − q1) ṽ2
s

ω̃s
−(μiso + q2μ)

(
ω̃s

ṽs
+ ṽs

ω̃s

) − λ −(a2 − 1)ṽs

μiso + μq1 0 − ṽs

ω̃s
(μiso + q2μ) + b1(q1 − q2) − λ

∣∣∣∣∣∣∣∣. (B18)

Here we used the uniaxiality q2 = q3, Eqs. (B3) and (B4), and
the following relations obtained from Eqs. (B6) and (B7):

(μiso + q3μ)
ω̃s

ṽs

= ṽ2
s − (γ + a1q3), (B19)

(ν iso + q3ν)
ṽs

ω̃s

= ω̃2
s − (ζ + b1q3). (B20)

Equating the determinant in Eq. (B18) to zero and setting
λ = 0, we calculated the linear stability limit in the same
way as performed in the biaxial case. As a result, we found
that zero-eigenvalue bifurcations occur at the boundaries in
both uniaxial P = 0 and biaxial case P = 0.1. Here zero-
eigenvalue bifurcation means a bifurcation in which a real
eigenvalue passes through 0.

Now we investigate the type of zero-eigenvalue bifurcation
from SSS to H. To this end, we numerically calculated |v|,|ω|,
an angle θv between v and a, and an angle θω between ω and

a by changing μ with a fixed γ = 8.0 for both uniaxial and
biaxial cases in the phase diagrams in Fig. 2, respectively. Here
both θv and θω are equal to π/2 in SSS, while either θv or
θω deviates from π/2 in H. Figure 9 shows that |v|,|ω|,θv

and θω are continuous at the bifurcation point. Hence, we
find that v and ω are also continuous at the bifurcation point.
Furthermore, in the particle frame, if a H solution is ṽ =
(ṽx,ṽy,ṽz) and ω̃ = (ω̃x,ω̃y,ω̃z), then ṽ = (−ṽx,−ṽy,ṽz) and
ω̃ = (−ω̃x,−ω̃y,ω̃z) is also a H solution, since these symmetric
solutions with respect to the z axis represent equivalent helical
motions which appear with the same probability. These facts
indicate that the bifurcations from SSS to H are pitchfork
bifurcations.

3. Linear stability analysis of SSP

Using the SSP solutions ṽ = (ṽp,0,0) and ω̃ =
(ω̃p,0,0), we obtain the following Jacobian JSSP of the

012607-9



TAKAKI YAMAMOTO AND MASAKI SANO PHYSICAL REVIEW E 97, 012607 (2018)

2.90

2.91

2.92

1.50
1.51
1.52
1.53
1.54

1.63 1.64 1.65

|v
| |

|

μ
0.0

1.63 1.64 1.65

0.3 0.2

μ
0.0

1.63 1.64 1.65
μ

|v| |ω|

θ v
 (r

ad
)

θ ω
 (r

ad
)

(a) (b) (c)
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SSP solutions:

JSSP =

⎡
⎢⎢⎢⎢⎢⎢⎣

γ + a1q1 − 3ṽ2
p 0 0 μiso + μq1 0 0

0 γ + a1q2 − ṽ2
p −(a2 − 1)ω̃p 0 μiso + μq2 (a2 − 1)ṽp

0 (a2 − 1)ω̃p γ + a1q3 − ṽ2
p 0 −(a2 − 1)ṽp μiso + μq3

ν iso + νq1 0 0 ζ + b1q1 − 3ω̃2
p 0 0

0 ν iso + νq2 b2(q3 − q1)ṽp 0 ζ + b1q2 − ω̃2
p 0

0 b2(q1 − q2)ṽp ν iso + νq3 0 0 ζ + b1q3 − ω̃2
p

⎤
⎥⎥⎥⎥⎥⎥⎦. (B21)

Here ṽ = (ṽp,0,0),ω̃ = (ω̃p,0,0) is a steady solution of Eqs. (A7) and (A8). Hence, (ṽp,ω̃p) is a nontrivial solution of the following
equations:

(μiso + q1μ)ω̃p = ṽ3
p − (γ + a1q1)ṽp, (B22)

(ν iso + q1ν)ṽp = ω̃3
p − (ζ + b1q1)ω̃p. (B23)

Since it is readily verified that the degrees of the freedom in the x axis span the stable manifold, we considered the following
Jacobian J ′

SSP by removing the degrees of the freedom in the x axis from JSSS:

J ′
SSP =

⎡
⎢⎢⎢⎢⎣

γ + a1q2 − ṽ2
p −(a2 − 1)ω̃p μiso + μq2 (a2 − 1)ṽp

(a2 − 1)ω̃p γ + a1q3 − ṽ2
p −(a2 − 1)ṽp μiso + μq3

ν iso + νq2 b2(q3 − q1)ṽp ζ + b1q2 − ω̃2
p 0

b2(q1 − q2)ṽp ν iso + νq3 0 ζ + b1q3 − ω̃2
p

⎤
⎥⎥⎥⎥⎦. (B24)

In our analysis, one of the nontrivial solutions of Eqs. (B22)
and (B23) was substituted into J ′

SSP. We calculated the largest
eigenvalue of J ′

SSP for each γ and μ, and plotted the linear
stability limit as a contour on γ -μ space, where the real part
of the largest eigenvalue λmax equals to zero. Here the function
ListContourPlot on Mathematica was used. By checking the
imaginary part of the largest eigenvalues, we determined
whether zero-eigenvalue bifurcation or Hopf bifurcation oc-
curs at the boundaries. Consequently, the Hopf bifurcation oc-
curs in the uniaxial case, while the zero-eigenvalue bifurcation
occurs in the biaxial case P = 0.1.

Now we investigate the type of the zero-eigenvalue bifur-
cation from SSP to H in the biaxial case. To this end, we
numerically calculated |v|,|ω|, an angle θv between v and

a, and an angle θω between ω and a by changing μ with
a fixed γ = 8.0 for both uniaxial and biaxial cases in the
phase diagrams in Fig. 2, respectively. Here both θv and θω

are equal to 0 in SSP, while either θv or θω deviates from 0
in H. Figure 10 shows that |v|,|ω|,θv and θω are continuous
at the bifurcation point. Hence, we find that v and ω are
also continuous at the bifurcation point. Furthermore, in the
particle frame, if a H solution is ṽ = (ṽx,ṽy,ṽz) and ω̃ =
(ω̃x,ω̃y,ω̃z), then ṽ = (ṽx,−ṽy,−ṽz) and ω̃ = (ω̃x,−ω̃y,−ω̃z)
is also a H solution, since these solutions which are sym-
metric with respect to the x axis represent equivalent helical
motions which appear with the same probability. These facts
indicate that the bifurcations from SSP to H are pitchfork
bifurcations.
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