
PHYSICAL REVIEW E 97, 012606 (2018)

Three-body correlations and conditional forces in suspensions of active hard disks

Andreas Härtel,1,* David Richard,2 and Thomas Speck2

1Institute of Physics, University of Freiburg, Hermann-Herder-Straße 3, 79104 Freiburg, Germany
2Institute of Physics, Johannes Gutenberg-University Mainz, Staudinger Weg 9, 55128 Mainz, Germany

(Received 3 August 2017; revised manuscript received 7 November 2017; published 11 January 2018)

Self-propelled Brownian particles show rich out-of-equilibrium physics, for instance, the motility-induced
phase separation (MIPS). While decades of studying the structure of liquids have established a deep understanding
of passive systems, not much is known about correlations in active suspensions. In this work we derive an
approximate analytic theory for three-body correlations and forces in systems of active Brownian disks starting
from the many-body Smoluchowski equation. We use our theory to predict the conditional forces that act on
a tagged particle and their dependence on the propulsion speed of self-propelled disks. We identify preferred
directions of these forces in relation to the direction of propulsion and the positions of the surrounding particles.
We further relate our theory to the effective swimming speed of the active disks, which is relevant for the physics
of MIPS. To test and validate our theory, we additionally run particle-resolved computer simulations, for which we
explicitly calculate the three-body forces. In this context, we discuss the modeling of active Brownian swimmers
with nearly hard interaction potentials. We find very good agreement between our simulations and numerical
solutions of our theory, especially for the nonequilibrium pair-distribution function. For our analytical results, we
carefully discuss their range of validity in the context of the different levels of approximation we applied. This
discussion allows us to study the individual contribution of particles to three-body forces and to the emerging
structure. Thus, our work sheds light on the collective behavior, provides the basis for further studies of correlations
in active suspensions, and makes a step towards an emerging liquid state theory.
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I. INTRODUCTION

Research on active matter recently revealed exciting new
phenomena at the intersection of physics, chemistry, and
biology [1–13]. It deals with particles and individuals that show
self-propelled motion, which includes living “matter” like fish,
flocks of birds [14], and bacteria [4,15], as well as artificial
colloidal swimmers [6,11,13,16–20] and robots [21]. Accord-
ingly, detailed knowledge of the fundamental mechanisms that
drive active systems is important to understand and control
swimming mechanisms and self-organization phenomena such
as collective motion [7,22], phase separation due to motility
differences [9,23], and formation of periodic stripe patterns
[4]. The rich variation of nonequilibrium phenomena in active
matter results in potential applications in self-assembly and
materials research [24].

The fundamental mechanisms in active many-body systems
can be studied with methods from out-of-equilibrium statistical
physics. Beyond the well-studied behavior of equilibrated
passive systems, new concepts are needed in active systems,
for instance, to define pressure [25,26]. The motion of active
particles is governed by many different driving mechanisms
such as amoeboid or human swimming [1,27], running of
animals on land [28], phoretic motion [6,17,29], use of flagella
[30,31], and rocket propulsion where fuel is expelled. Depend-
ing on whether their shapes and pair interactions are apolar
or polar [2,7], active particles can also show nematic ordering
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[2,3,7,15,32,33]. Further, the coupling of active particles to hy-
drodynamic interactions determines whether systems behave
wet or dry, where the theoretical description of dry systems
does not include an explicit solvent [7]. For this reason, the
identification of model organisms [10] and minimal models
[27,34–45] is important to isolate and study basic principles.

One minimal model for active matter is the model of active
Brownian particles, which combines volume exclusion and
Brownian directed motion but neglects long-range phoretic
and hydrodynamic interactions. Accordingly, this model of
“scalar active matter” solely involves scalar fields [46]. The
model shows many phenomena when self-propelled individ-
uals (swimmers) interact with surfaces, channels, and traps
[37,44,45] or with additional passive particles [41,47]. In
bulk it describes a motility-induced phase separation (MIPS)
[9,20,36,40,48], where repulsive Brownian swimmers separate
in dense and dilute phases at sufficiently high propulsion
speeds and number densities even in the absence of cohesive
forces.

To unveil the fundamental mechanism of MIPS, previous
and the present work use the Smoluchowski equation [49]
for the time evolution of the distribution of particle positions
[40,47,50]. Until now, the set of hierarchically connected
equations was closed only on the two-particle level [40,47],
which already allows to define an anisotropy parameter ζ1

that describes the anisotropy of the pair-distribution function
around a tagged particle [40]. The parameter ζ1 is strongly cor-
related to the propulsion speed of a single particle and presents
a key ingredient for the theoretical description of MIPS [40]. To
go beyond one-body densities and in order to a priori predict
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two-body correlations, forces, and effective swimming speeds,
one has to consider three-body correlations. This is the aim
of the present work. Studying them and finding reasonable
approximations will allow us to set up an analytical theory
that describes conditional three-body forces and their preferred
directions for self-propelled Brownian particles. Moreover, it
will enable us to define effective hard-disk coefficients that
have the potential to act as order parameters for active systems.

Already in passive colloidal systems not much work has
explicitly addressed three-body correlations [51,52] and three-
body forces actually have not explicitly been reported in this
field at all. One reason might be the difficulty of finding an
adequate closure on the three-body level [53–57]. One com-
mon closure is the superposition approximation by Kirkwood
[51,53,58], which shows reasonable structural agreement with
simulations [51] even if it is just a first-order expansion of the
triplet distribution function [59]. Thus, research beyond the
typical study of two-body correlations might give additional
insight into correlations and structure even in passive systems.

In the present work we study three-body correlations and
forces in suspensions of active Brownian particles using
theory and simulations. In Sec. II we develop the general
theoretical framework beyond the two-body level based on
the Smoluchowski equation for active Brownian particles.
In order to find a closed form of our theory, we apply the
Kirkwood superposition approximation. We further focus on
the special case of completely steric pair interactions (hard
disks) to achieve analytical results for averaged three-body
forces in active systems. In Sec. III we first present data from
Brownian dynamics simulations. Then we compare these data
with our analytical results. In addition, we solve our theoretical
framework numerically. By comparing our results from these
numerical calculations, the analytical theory, and the simula-
tions, we establish the range of validity and identify limitations
of our theory. We discuss in Sec. IV our results and theoretical
predictions for active systems and summarize in Sec. V.

II. THEORY

In this section we derive step by step an analytical theory
for the microscopic structure of active Brownian particles that
interact via a pair potential. Intermediate results are valid for
general pair interactions and some of these results are even
exact. We structure our derivation as follows. First, in Sec. II A
we formulate the general model and framework and in Sec.
II B we introduce the relevant variables. Then in Sec. II C we
take advantage of symmetries to further reduce the number
of parameters and in Sec. II D we discuss the closure of the
ensuing hierarchy of equations. Only then do we restrict our
theory in Sec. II E to the special case of hard disks and simplify
in Sec. II F our closure relation from Sec. II D. Finally, in Sec.
II G we expand the pair-distribution function to achieve our
final analytic results.

A. Active Brownian particles

Active Brownian particles (ABPs) are a minimal model of
particles moving in contact with a heat bath and combining di-
rected motion with volume exclusion. Although strictly speak-
ing this model falls into the class of dry active matter without

FIG. 1. Simulation snapshot of 4096 self-propelled disks at
number density ρ̄ = 0.3 and constant propulsion speed v0/deff = 5.
The system size is L × L, with L ≈ 116.85, and the directions of
propulsion êi for each particle i are shown by arrows. (b) Situation
from within the snapshot in (a) with two tagged particles and
our corresponding relative coordinates. The origin is fixed at the
position of the first particle with the x direction along its direction
of propulsion. The second particle is located at the position �r =
(r cos θ,r sin θ ). The normalized basis vectors êr and êθ are shown for
the position of particle 2. (c) Situation from within the snapshot in (a)
with two tagged particles interacting via two intermediate particles 3
and 4.

an explicit solvent [7], we will use the term “swimming”
to describe the directed motion of particles. We consider
N particles in a two-dimensional system of area V with
mean number density ρ̄ = N/V , as shown in Fig. 1. The
particles at positions �rk interact via general radial-symmetric
pair potentials u(r) with total potential energy

U =
∑
k<k′

u(|�rk − �rk′ |). (1)

Every particle is self-propelled, i.e., it swims with a constant
propulsion speed v0 in the direction

êk =
(

cos(ϕk)
sin(ϕk)

)
. (2)
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The coupled equations of motion for the particle positions
�rk and orientations êk are

�̇rk = −μ0 �∇kU + v0êk + �ξk, (3)

˙̂ek = �ηk × êk, (4)

with a mobility μ0 and the white Gaussian noises �ξk and �ηk .
We write �∇kU (�r1, . . . ,�rN ) for the partial gradient of the scalar
function U , where the gradient is only taken with respect to
the k-th parameter �rk while all remaining �ri with i �= k are kept
fixed. The white Gaussian noises have zero mean and temporal
mean-square deviations

〈�ξk(t) ⊗ �ξk′(t ′)〉 = 2D01δkk′δ(t − t ′), (5)

〈�ηk(t) ⊗ �ηk′(t ′)〉 = 2Dr1δkk′δ(t − t ′). (6)

Here 1 denotes the identity matrix. We assume that the spatial
diffusion constant D0 and the rotational diffusion constant
Dr are hydrodynamically coupled by Dr = 3D0/σ

2 [60] such
that the no-slip boundary condition holds as in previous work
[40,61]; σ is the (effective) particle diameter.

Throughout this work we employ dimensionless quantities
and measure lengths in units of σ , time in units of σ 2/D0, and
energy in units of kBT . Here kB denotes Boltzmann’s constant
and T is the temperature of the system. Consequently, we use
Dr = 3.

B. Many-body hierarchy

The time evolution of the probability density
PN (�r (N),ϕ(N); t) to find N particles at positions �r (N) with
directions of propulsion (orientations) denoted by the angles
ϕ(N) is governed by the Smoluchowski equation [49]

∂tPN =
N∑

k=1

�∇k · [( �∇kU ) − v0êk + �∇k]PN

+ Dr

N∑
k=1

∂2
ϕk

PN . (7)

We use �r (n) as a multi-index denotation for (�r1, . . . ,�rn). The
joint probability distribution PN is normalized to unity, i.e.,∫ · · · ∫ PN = 1. Then we define a hierarchy of n-body densities
�n ≡ �n(�r (n),ϕ(n); t) for 1 � n � N by

�n(�r (n),ϕ(n); t)

=
∫

d�rn+1 · · · d�rN

∫
dϕn+1 · · · dϕN

N !

(N − n)!
PN. (8)

The n-body number densities ρn = ∫
dϕ(n)�n at a certain

time t are achieved by integrating out the orientations. We
further define a conditional one-body probability P1 in order
to describe �3 in terms of �2, i.e.,

�3(�r (3),ϕ(3); t) = �2(�r (2),ϕ(2); t)
N − 2

V

× V P1(�r3,ϕ3|�r (2),ϕ(2); t). (9)

We also define the conditional distribution

g1(�r3|�r (2),ϕ(2); t) = V

∫ 2π

0
dϕ3P1(�r3,ϕ3|�r (2),ϕ(2); t), (10)

which describes the distribution of a (third) particle when two
particles 1 and 2 are given with positions �r (2) and orientational
angles ϕ(2). Note that in the limit of large N the factor (N −
2)/V → ρ̄.

The integration
∫

d�r3 · · · d�rN

∫
dϕ3 · · · dϕN (N − 1)N on

both sides of the Smoluchowski equation (7) leads to

∂t�2(�r1,ϕ1,�r2,ϕ2; t)

=
∑
k=1,2

( − �∇k · {−[ �∇ku(|�r1 − �r2|)] + �Fk + v0êk − �∇k}

× �2(�r1,ϕ1,�r2,ϕ2; t)

+ Dr∂
2
ϕk

�2(�r1,ϕ1,�r2,ϕ2; t)
)
, (11)

with the conditional forces

�Fk(�r1,ϕ1,�r2,ϕ2; t)

= −ρ̄

∫
d�r3u

′(|�rk − �r3|) �rk − �r3

|�rk − �r3|g1(�r3|�r1,ϕ1,�r2,ϕ2; t).

(12)

These terms describe the summed contribution of all forces
�Fi→k acting from a particle i ∈ {3, . . . ,N} on the respective

particle k ∈ {1,2} in the presence of the remaining second
particle, i.e., �Fk = ∑N

i=3
�Fi→k . This is illustrated in Fig. 1(b),

where particles 1 and 2 are shown in red and green, respectively.
All third particles that contribute to the conditional forces �Fk

are shown in gray. Note that this formalism is not restricted
to a specific pair interaction between individual particles; we
only assumed rotational symmetry. In the special case of hard
interactions most of the contributions of the gray particles in
Fig. 1(b) would vanish, because hard pair interactions lead
to forces only when particles touch. For example, only one
gray particle in Fig. 1(b) would contribute a nonvanishing
force. Similarly, only the blue particles with indices 3 and 4
in Fig. 1(c) would contribute to the direct forces �F1 and �F2 in
this case. Later we will see that particle 1 is influenced by the
presence of particle 2 in the situation shown in Fig. 1(c) via
both blue particles 3 and 4. A consequence of the rare event
of a particle contact in the case of hard disks is that statistical
averaging must be performed over a much larger number of
snapshots than in the case of softer interactions, at least when
aiming at a similar quality of statistics.

C. Symmetries and parametrization

In the following we focus on the homogeneous phase such
that the two-body density �2(�r (2),ϕ(2); t) depends only on the
displacement vector �r2 − �r1. Note that this assumption does
not rule out the ability of our theory to study phase separations
like MIPS, because the theory is still able to describe both
phases individually. Further, divergent behavior in a theory
for a homogeneous phase may indicate phase instabilities
and thus be a signature of other phases. Our theory still
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holds for any rotationally symmetric pair-interaction potential
u(r). Provided the assumption of a homogeneous phase, we
change to relative coordinates in the reference frame of a
tagged particle, say, particle 1, such that the tagged particle
is oriented in the x direction and its position �r1 becomes
the origin of our coordinate system. Accordingly, the set
{�r1,ϕ1,�r2,ϕ2} of parameters reduces to the relative position and
orientation of the second particle with respect to the first one,
as sketched in Fig. 1(b). We parametrize the relative position
by �r = (r cos θ,r sin θ ) such that the normalized directions
of the circular coordinates r and θ are êr = (cos θ, sin θ )
and êθ = (− sin θ, cos θ ). For completeness, the gradient and
divergence operators for a vector �A and a scalar A in these
polar coordinates read

�∇ · �A = 1

r

∂

∂r
(rêr · �A) + 1

r

∂

∂θ
(êθ · �A), (13)

�∇A = ∂A

∂r
êr + 1

r

∂A

∂θ
êθ . (14)

We further transform the two-body density from Eq. (11) into
the form of a pair-distribution function by integrating out the
orientation ϕ2 of the second particle and multiplying by a
factor 2π/ρ̄2, where again we use (N − 1)/V → ρ̄ for large
N . Accordingly, we obtain

2π

ρ̄

V

N − 1

∫ 2π

0
dϕ2�2(�r1,ϕ1,�r2,ϕ2; t)

�r2 − �r1 = �r
ϕ1 = 0−→ g(r,θ ; t) (15)

and the Smoluchowski equation (11) becomes

∂tg(r,θ ; t) = �∇ · {−2[ �∇u(r)] + �F1(r,θ ; t) − �F2(r,θ ; t)

+ v0ê1 + 2 �∇}g(r,θ ; t) + Dr∂
2
θ g(r,θ ; t) (16)

for the pair-distribution function g(r,θ ; t). Consequently, the
conditional forces from Eq. (12) now read

�F1(�r; t) = −ρ̄

∫
dϕ2

∫
d�r ′u′(|�r ′|)−�r ′

|�r ′| g1(�r ′| 0,0,�r,ϕ2; t),

(17)

�F2(�r; t) = −ρ̄

∫
dϕ2

∫
d�r ′u′(|�r ′|)−�r ′

|�r ′| g1(�r ′| − �r,0,0,ϕ2; t).

(18)

D. Closure on the two-body level

In order to obtain a closed form of Eq. (16), we have to
determine the conditional distribution g1(�r3| · · · ) that enters
the force terms from Eqs. (17) and (18). For this purpose, we
apply the Kirkwood superposition approximation [51,53,58],
which is attained by the first order of a diagrammatic expansion
of the triplet distribution function [59], i.e.,

g123 = g12g13g23

[
1 +

∫
d�r4

∫
dϕ4f14f24f34 + · · ·

]
, (19)

with fij the Mayer function and subscripts indicating particle
indices [49]. The expansion describes the three-body distri-
bution g123 as the sum of products of pairwise distributions
between (i) the three particles 1, 2, and 3, (ii) the three particles

and one additional fourth particle, (iii) five particles, and so
on. The Kirkwood approximation has mainly been applied to
systems in equilibrium, but there is no restriction apart from
assuming pairwise particle interactions as we have introduced
in Eq. (1). By applying the Kirkwood approximation g123 =
g12g13g23 as a closure for our theoretical framework, we find

�3(�r1,ϕ1,�r2,ϕ2,�r3,ϕ3; t)

= �2(�r1,ϕ1,�r2,ϕ2; t)

× g2(�r2,ϕ2,�r3,ϕ3; t)g2(�r3,ϕ3,�r1,ϕ1; t)�1(�r3,ϕ3; t). (20)

Note that normalization is not contained within the Kirkwood
approximation and that the equality in Eq. (20) only holds
in the limit of large particle numbers, where N (N − 2)/
(N − 1)2 ≈ 1. However, our calculations are still valid for any
kind of pair interaction u(r). According to Eq. (20), we find
closed terms for the conditional distributions that occur in the
force terms from Eqs. (17) and (18), i.e.,∫

dϕ2g1(�r ′|0,0,�r,ϕ2; t)

= 〈g(|�r ′ − �r |,ϕ2; t)〉ϕ2g(|�r ′|,�(�r ′); t), (21)∫
dϕ2g1(�r ′| − �r,0,0,ϕ2; t)

= 〈g(|�r ′|,ϕ2; t)〉ϕ2g(|�r ′ + �r |,�(�r ′ + �r); t), (22)

where 〈g(r,ϕ2; t)〉ϕ2 = (2π )−1
∫ 2π

0 dϕ2g(r,ϕ2; t) is an average
over angles ϕ2 holding the separation fixed and �(�r ) denotes
the angle enclosed by êx and �r .

E. Special case of hard disks

An important pair interaction is that of hard disks with only
steric contributions. The reason is that short-range repulsive
potentials can be mapped onto effective hard potentials with an
effective particle diameter [62]. Thus, fundamental properties
of systems dominantly governed by volume exclusion and
packing can be studied and described by one unique model
system of hard-core particles.

In the special case of hard disks with diameter σ (1 in our
dimensionless units), the pair-interaction potential reads

u(r) =
{∞, r < 1

0, r > 1.
(23)

In this case, the derivative of the pair potential simply becomes
u′(r) = −δ(r − 1), where δ denotes the Dirac-δ distribution.
Accordingly, the force terms from Eqs. (17) and (18) together
with the Kirkwood closure from Eqs. (21) and (22) lead to

�F1(r,θ ; t) = − ρ̄

∫ 2π

0
dθ ′ê(θ ′)g(1,θ ′; t)

× 〈g(|ê(θ ′) − rê(θ )|,ϕ2; t)〉ϕ2 , (24)

�F2(r,θ ; t) = −ρ̄

∫ 2π

0
dθ ′ê(θ ′)〈g(1,ϕ2; t)〉ϕ2

× g(|ê(θ ′) + rê(θ )|,�[ê(θ ′) + rê(θ )]; t), (25)

where ê(θ ) = (cos θ, sin θ ) denotes a unit vector in the direc-
tion of θ . We further rewrite Eq. (16) by using the definition of
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the operators from Eqs. (13) and (14) and by the pair potential
from Eq. (23). Consequently, we find

∂tg(r,θ ; t) = 1

r

∂

∂r

(
rêr · �F1(r,θ ; t) − rêr · �F2(r,θ ; t)

+ rv0êr · ê1 + 2r
∂

∂r

)
g(r,θ ; t)

+ 1

r

∂

∂θ

(
êθ · �F1(r,θ ; t) − êθ · �F2(r,θ ; t)

+ v0êθ · ê1 + 2

r

∂

∂θ

)
g(r,θ ; t)

+ Dr
∂2g(r,θ ; t)

∂θ2
(26)

for r > 1. Since hard disks are not allowed to overlap, the flux
in the radial direction at particle-particle contact must vanish
with the no-flux condition

[êr · �F1(r,θ ; t) − êr · �F2(r,θ ; t) + êr · ê1v0]g(r,θ ; t)|r=1

= −2
∂g(r,θ ; t)

∂r

∣∣∣∣
r=1

. (27)

F. Simplified closure for hard disks

In order to achieve an analytical result, we will further
simplify the conditional forces that we derived in the preceding
section. It is known that fixing a single particle in bulk leads
to a structured radial pair-distribution function. Now fixing a
second particle at relative position �r to the first particle (see
Fig. 2) has a twofold outcome: On the one hand, it leads
to a direct distribution around the two particles while, on
the other hand, an indirect structure develops on top of the
direct distribution due to the mutual influence of both fixed
particles. For instance, these structures are discussed in a work
on three-body correlations in passive systems [51].

These two contributions can also been understood from
analyzing the force terms in Eqs. (24) and (25), where two pair-
distribution functions cause them, respectively. One contribu-
tion stems from the interplay between the third and the fixed
particle, on which the respective force �Fi is acting, while the
second contribution arises from the interplay between the third
and the remaining second particle. This situation is sketched
in Fig. 2(a) for the fixed particle having the index i = 1.

To give an example, we first discuss a similar situation
where two hard disks are in contact with a third one. This
system has been studied by Attard, who proposed an adjusted
Kirkwood approximation as a reasonably good closure [63].
The system he studied corresponds to the situation shown in
Fig. 2 for |�r | = 1, when the second and third particles both
are in contact with the particle labeled by 1. The third particle
can move along the surface of particle 1 and its position can
be parametrized by the enclosed angle θ. The closure Attard
proposed reads [63]

g1(1,1, cos θ) = g(1)g(1)

(
1 + g(s(θ)) − 1

2

)
, (28)

s(θ) =
{

1 + 1(θ − θ∗), θ � π

1 + 1(2π − θ − θ∗), θ > π,
(29)

1

2

ê1

ê2

�r

σ
σ

θ∗ θΔ

excluded
volume
due to
disk 2

1

2

ê1

�r

excluded
volume
due to
disk 2

(�F1)r (
�F

1 )
1

�F1

(a)

(b)

FIG. 2. Sketch for two fixed hard disks labeled 1 and 2 and
additional hard disks (dashed) in contact with the first one. The shaded
area around particle 2 (red) is not accessible to a third particle due
to the presence of the second particle. (a) Angles θ∗ and θ and (b)
example of the decomposition of the conditional force �F1 acting on
the first particle. The projected components are ( �F1)r = (êr · �F1)êr

and ( �F1)1 = (ê1 · �F1)ê1.

which is valid for θ∗ � θ � 2π − θ∗ with θ∗ =
arccos(1/2) = π/3. For other values of θ the probability
of finding a particle vanishes and g1(1,1, cos θ) = 0,
because particles 2 and 3 are not allowed to overlap. In this
approximation, the separation between the two particles 2 and
3 is not measured along a straight line but along the surface
of the first particle. The angle θ∗ = π/3 denotes the limiting
case when both particles 2 and 3 are in contact. Note that for
separations r = |�r | > 1 this angle gets smaller dependent on
the separation r .

In our theory, the approximation proposed by Attard [63]
relates to the pair-distribution function between particles 2
and 3. This function can be split into two contributions: One
simply originates from the excluded volume that the third
particle cannot access due to the presence of the second
particle; the other contribution stems from the indirect part
of the pair distribution between particles 2 and 3. Considering
the closure by Attard [63] in Eq. (28), neglecting the second
contribution would correspond to approximating the term
(1+…) in Eq. (28) as 1. In our theory, we would have to replace
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the respective pair-distribution function g in the conditional
forces in Eqs. (24) and (25) by a spherical step function

g(r,θ ) →
{

0, r < 1
1, r � 1.

(30)

When we apply this simplification to the respective second
function g in Eqs. (24) and (25), the conditional forces simplify
to

�F1(r,θ ; t) = − ρ̄

∫ 2π

0
dϕ

(
cos(ϕ)
sin(ϕ)

)
g(1,ϕ; t)

+ ρ̄

∫ θ+θ∗

θ−θ∗
dϕ

(
cos(ϕ)
sin(ϕ)

)
g(1,ϕ; t), (31)

�F2(r,θ ; t) = − ρ̄

∫ 2π

0
dϕ

(
cos(ϕ)

sin(ϕ)

)
〈g(1,ϕ2; t)〉ϕ2

+ ρ̄

∫ θ+π+θ∗

θ+π−θ∗
dϕ

(
cos(ϕ)

sin(ϕ)

)
〈g(1,ϕ2; t)〉ϕ2 . (32)

The limiting r-dependent angle θ∗ that spans the excluded area
[see Fig. 2(a)] reads

θ∗ = θ∗(r) =
{

arccos(r/2), 1 � r � 2

0, r > 2.
(33)

Now we can identify two main contributions to the condi-
tional forces �Fi in our theory. We can understand their origin
from Fig. 2(b), where an exemplary force �F1 is constructed
from two components. The first component ( �F1)r = (êr · �F1)êr

acts along the separation vector �r . It originates from the
excluded volume due to disk 2 such that the surrounding third
particles on average push the first particle (approximately)
in the direction of the excluded volume. This component is
expected to vanish for large separations r = |�r |. In our theory,
we can see this behavior from Eqs. (31) and (32). If g(r,θ ; t)
were homogeneous in the angle θ , the respective second terms
on the right-hand sides of Eqs. (31) and (32) would point
exactly along the direction of the separation vector �r . The
second component ( �F1)1 = (ê1 · �F1)ê1 along the direction ê1

of self-propulsion of the first particle clearly originates from
collisions with surrounding third particles. This component
is expected to be independent of r at large separations and
to vanish only in the limit of vanishing propulsion speed v0.
Moreover, the function g(r,θ ; t) is symmetric in the angle θ ,
i.e.,g(r,θ ; t) = g(r, − θ ; t). For this reason, the first term on the
right-hand side of Eq. (31) points exactly along the orientation
ê1 of the first particle, while the first term on the right-hand side
of Eq. (32) vanishes. In conclusion, the two main directions
of the contributions to the conditional forces �Fi , as shown in
Fig. 2(b), are the direction of the (normalized) separation vector
êr = �r/|�r | between both tagged particles and the direction of
self-propulsion ê1 of the first particle.

G. Expansion of the pair-distribution function

In this section we derive analytic expressions for the condi-
tional forces, for the effective swimming speed, and for some
properties of the pair-distribution function in systems of ABPs.
We further define parameters to characterize systems of ABPs
following previous work. According to the identification of

the two main directions in the preceding section, we will study
the projections of the conditional forces onto those directions
and derive explicit terms from our theory. In this context, we
are solely interested in steady-state solutions of Eq. (26) and
for this reason we will skip the parameter t throughout the
remaining part of our work.

To achieve analytical expressions for the conditional forces
�Fi , we expand the pair-distribution function g(r,θ ) in Fourier

modes by

g(r,θ ) =
∞∑

k=0

gk(r) cos(kθ ). (34)

We discuss details on the full expansion in the Appendix.
When we neglect higher Fourier modes with k > 1, we find
the resulting projections of the conditional force �F1 onto êr

and êθ with

êr · �F1(r,θ ) = 2ρ̄g0(1) sin(θ∗)

− ρ̄g1(1)

(
π − θ∗ − sin(θ∗)

r

2

)
cos(θ ), (35)

êθ · �F1(r,θ ) = ρ̄g1(1)

(
π − θ∗ + sin(θ∗)

r

2

)
sin(θ ). (36)

The limiting angle θ∗(r) that spans the excluded area due to the
presence of particle 2 has been defined in Eq. (33). The angle
is shown in Fig. 2 and, for completeness, we give sin(θ∗) =√

1 − (r/2)2. The orientation of the first particle is given by
ê1 = cos(θ )êr − sin(θ )êθ such that we also find

ê1 · �F1(r,θ )

ρ̄
= fa(r) + fb(r) cos(θ ) + fc(r) cos(2θ ), (37)

fa(r) = g1(1)[θ∗(r) − π ], (38)

fb(r) = 2g0(1) sin[θ∗(r)], (39)

fc(r) = g1(1) sin[θ∗(r)]
r

2
. (40)

For large separations r � 2 the function θ∗ vanishes and we
find ê1 · �F1(r,θ ) = −ρ̄πg1(1). This finding agrees with our ex-
pectation from the preceding section, where we discussed that,
in this limit, the second particle does not affect the contribution
of third particles on the first one anymore. Consequently, we
find a constant force along the direction of propulsion of the
first particle.

In previous work, Speck et al. analyzed the anisotropy of the
pair-distribution function for active colloidal disks by studying
an anisotropy parameter of this function [40,50,64]. Following
the definition of this parameter ζ1 in previous work [40], we
define the first two moments

ζ0 = −
∫ ∞

0
dr r u′(r)

∫ 2π

0
dθ g(r,θ ), (41)

ζ1 = −
∫ ∞

0
dr r u′(r)

∫ 2π

0
dθ cos(θ )g(r,θ ). (42)

These parameters can easily be extracted from simulations
and could have the role of order parameters in the description
of systems of ABPs and their states. For hard disks, we find
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relations between these parameters and the prefactors gi(1) in
the expansion from Eq. (34) at particle contact (r = 1) that
read

ζ0 = 2πg0(1), (43)

ζi = πgi(1) ∀i � 1. (44)

For almost hard potentials, we will discuss deviations from this
equalities in the following sections.

Further insight into our theory is gained by considering the
flux �j that follows from ∂tg(r,θ ; t) = −�∇ · �j both at particle
contact (r = 1) and for infinite particle separation (r → ∞).
In the case of particle contact, we can combine the expansion
(34) and the no-flux condition (27), as shown in the Appendix.
In the limit of vanishing propulsion speed v0 → 0, where all
gk for k > 0 vanish, we find g′

0(1) = −√
3g0(1)g0(1)ρ̄ [see

Eq. (A9)] as an analytical result for passive systems. In the
case of large particle separations r → ∞, both tagged particles
are uncorrelated and the flux in the moving reference system
is simply given by the effective swimming speed v of the
tagged first particle in the opposite direction of propulsion,
i.e., �j = −vê1. In this limit, our theory in Eq. (37) predicts a
flux ρ̄ζ1ê1 − v0ê1 such that we find the relation

v = v0 − ρ̄ζ1 (45)

in accord with previous work [40].

III. RESULTS

The first main result of this work is the analytic theory
for the microscopic structure around a tagged particle in
suspensions of active Brownian particles that we derived in
the preceding section. For instance, the theory describes the
conditional forces �Fk as defined in Eq. (12). In order to
achieve a more detailed picture and to apply and test our
theory, we also perform Brownian dynamics (BD) simulations
that we describe in this section first. Then we draw a direct
comparison between our theoretical predictions and our results
from simulations. In a third step, we test our theory for a general
pair-distribution function, i.e., without skipping higher modes
in the expansion from Sec. II G. For this purpose, we solve
Eq. (26) numerically and compare its solutions to the results
from our simulations.

A. Brownian dynamics simulations

We simulate N = 4096 two-dimensional Brownian swim-
mers interacting via the repulsive short-range Weeks-
Chandler-Andersen (WCA) potential

uWCA(r) = 4ε

[(
λ

r

)12

−
(

λ

r

)6

+ 1

4

]
(46)

for r � rc = 21/6λ and zero otherwise. We employ over-
damped dynamics as described in Eq. (3), where t = t − t ′
is the time step. The orientation ϕ undergoes free rotational
diffusion with a diffusion constant Dr = 3D0/δ

2, where δ is
the particle diameter. We set δ equal to the effective diameter
δ = deffλ, computed by the Barker-Henderson approximation
[62,65]. The energy is scaled by a bath temperature kBT .

The repulsive strength ε of the potential is set to 100kBT ,
which results in deff = 1.106 88. The time step is set to
2 × 10−6λ2/D0.

To obtain the conditional force �F1 from our BD simulations,
we have chosen an equidistant binning of 2π/20 for each
angle θ and ϕ2, respectively, and 5/500 for the separation
r . To check consistency, we additionally have calculated
distribution functions at a higher resolution 2π/80 and 2/1000;
the calculation of distribution functions is less time consuming
than the calculation of the three-body forces. We found almost
no deviations between the data for both resolutions.

Figure 3 shows data obtained for a number density ρ̄ = 0.3
and a propulsion speed v0/deff = 5. For each of the 80 000
snapshots that we analyzed after the system was equilibrated,
we successively tagged two particles and summed up the force
contributions of all remaining particles onto the first one.
Figures 3(a), 3(d), and 3(g) show the distribution of second
particles around the tagged first particle as used for our analy-
sis. The axes correspond to the angular position θ of the second
particle in relation to the propulsion direction and position of
the tagged first particle, as well as to the orientation angle
ϕ2 of the second particle relative to that of the first one. This
situation is also illustrated in Fig. 1(b). In addition, we sketch a
visualization of the different relative positions and orientations
in Fig. 3(g) for selected settings. Here the position of the second
(red) particle relative to the tagged (black) particle changes
along the θ axis and the relative orientation of the second
particle (direction of arrows) changes along the ϕ2 axis. In
the different rows of Fig. 3, we show data for three absolute
separations r ≈ 1 [Figs. 3(a)–3(c)], r ≈ 1.5 [Figs. 3(d)–3(f)],
and r ≈ 4 [Figs. 3(g)–3(i)]. For small separations of particles 1
and 2 we observe a much higher probability of finding a second
particle in front [spot at (θ/π,ϕ2/π ) = (0,1) in Fig. 3(a)] than
behind [spot at (1,1)] the first particle when both particles
have opposite orientations. When both particles have the same
orientation (when they move together), second particles seem
to be distributed uniformly around the first particle [ϕ2 = 0 in
Fig. 3(a)]. For increasing separation r between both particles,
the observed spots in the distribution get less pronounced [see
Fig. 3(d)] and vanish completely in the uniform distribution in
Fig. 3(g).

Figures 3(b), 3(e), and 3(h) and Figs. 3(c), 3(f), and 3(i)
show the projection of the conditional force �F1 on the direction
of the separation �r between both tagged particles and on the
direction of propulsion of the first particle, respectively. The
choice of these directions is motivated by the main directions
that can be identified in the conditional forces in Eqs. (31) and
(32) and we have discussed their origin and expected values us-
ing Fig. 2(b) in Sec. II G. In accordance with these expectations,
the value of the projection ê1 · �F1 becomes constant for large
separations as shown in Fig. 3(i), because �F1 becomes parallel
to ê1. Our theory in Sec. II G even predicts the value ê1 · �F1 =
−ρ̄ζ1, which perfectly fits to a ζ1 ≈ 5.0 that corresponds to the
system analyzed in Fig. 3. The uniform distribution further is
confirmed by the projection êr · �F1 in Fig. 3(h), which shows a
cosinelike dependence on θ as expected from the definition
of ê1 = (1,0) and êr = (cos θ, sin θ ) in Sec. II C. At small
separations r the excluded-volume effect of the second particle
becomes important too. For instance, Fig. 3(c) shows that at
θ = π the constant value of approximately −1.6 from Fig. 3(i)
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FIG. 3. Pair distribution g(r,θ,ϕ2) (first column) and conditional force �F1(r,θ,ϕ2) (second and third columns) from BD simulations at
number density ρ̄ = 0.3 and propulsion speed v0/deff = 5. The first column shows the distribution of a second particle around the first one, the
second column shows the projection of �F1 onto the radial direction êr , and the third column shows the projection of �F1 onto the orientation ê1.
The relative position of the second particle with respect to the first one is given by the separations (a)–(c) r ≈ 1, (d)–(f) r ≈ 1.5, and (g)–(i)
r ≈ 4 and by the angle θ , where θ = 0 corresponds to the position in front of the tagged first particle as sketched in Fig. 1(b). The relative
orientation of the second particle with respect to the first one is given by ϕ2. To help interpret these plots both the relative position θ and the
orientation ϕ2 are sketched in (g) for certain settings of particles 1 (black) and 2 (red) at the corresponding position in the plot.

has doubled to a value of around −3.2. In this situation, the
second particle is located behind the first one such that any
third particle likely pushes the first one from ahead due to the
excluded volume. This component adds to the collision effect
due to the propulsion of the particle. In comparison, at θ = 0
the second particle is located in front of the first one such that
the force due to the excluded volume pushes the particle from
behind. However, the excluded volume of the second particle
in front of the first particle at the same time prevents collisions
with third particles such that the absolute value of the projected
force in Fig. 3(c) at θ = 0 is only half of the value at θ = π .

Moreover, the results in Fig. 3 illustrate that the dependence
of the force �F1 on the orientation ϕ2 of the second particle is
weak in comparison to the relative position of the second par-
ticle. In particular, Figs. 3(c), 3(e), 3(h), and 3(i) show almost
no dependence on the orientation ϕ2, while Figs. 3(b) and 3(f)
show only minor dependences. Interestingly, when particles 1
and 2 are in contact, the dependence on the orientation ê2 of the
second particle is stronger for the projection êr · �F1 [Fig. 3(b)
vs Fig. 3(c)], while at intermediate separations it is stronger for
the projection ê1 · �F1 [Fig. 3(f) vs Fig. 3(e)]. Furthermore, we
could connect the strength of inhomogeneities in the projection
of the force onto êr with the strength of its component due to

collisions, if we study the limit of large separations in Figs. 3(h)
and 3(i). If this connection would also hold at small separations,
the orientation of the second particle would be most important
for the force component due to collisions at particle contact
(r ≈ 1) and for the component due to excluded volume at
intermediate separations r .

From Fig. 3 we could conclude that the resulting force and
its anisotropy are weakened when the separation r between the
two particles 1 and 2 is increased. For this reason, we study
the dependence of the conditional force �F1 on the separation r

between the two particles in more detail using Fig. 4. To obtain
the data shown in Fig. 4 we have averaged over the orientation
ϕ2 of the second particle, which we previously have seen to
have only a minor impact on the force �F1. The plot in Fig. 4(a)
is supported by the three right plots in Figs. 4(b)–4(d) that
show data along the marked cutting lines b, c, and d. These
supporting plots also present data for additional propulsion
speeds. The data clearly show an exception from a monotonic
decay of the force strength with increasing separation r at a
separation of r ≈ 2: For a second particle located ahead of
the tagged particle, the conditional force shows a strong dip.
This dip exists because a third particle exactly fits in between
particles 1 and 2 when the second particle is located at r � 2.
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FIG. 4. Projected conditional force ê1 · �F1 on a tagged particle dependent on the relative position (r,θ ) of a second particle as obtained from
our BD simulations with a number density ρ̄ = 0.3. Data are shown for (a) propulsion speed v0/deff = 5 and (b)–(d) speeds 5, 15, 25, and 35.
As indicated in (a), the data of (b)–(d) are shown along the cutting lines (b) along the positive x axis (in the direction of propulsion), (c) along
the positive y axis (equal to the negative y axis), and (d) along the negative x axis.

This third particle would block the self-propelled particle 1 and
create a strong force slowing down the movement of particle 1.
A similar but less pronounced reaction would also be expected
at around r ≈ 3 in situations of four particles in a row. Indeed,
we have found such settings in our simulations as shown in
Fig. 1(c). Note that the dip at r � 2 and those expected at higher
locations are not described by our simplified theory because
we have neglected an additional structure between particles 2
and 3 in our assumption from Eq. (30).

We mention that the force term �F1 overall seems to depend
on the propulsion speed linearly, as we see from the collapse of
the curves in Figs. 4(b)–4(d). We observe the largest deviations
from this linear dependence in the front of the tagged particle
[at θ = 0, stars in Fig. 4(b)] and at small propulsion speeds.

B. Test of the theoretical predictions

As a next step, we test our theoretical predictions from Sec.
II G by comparing them to our BD simulations. In particular,
we are interested in the collapse of data that we have observed
in the preceding section in Fig. 4. We follow two routes for
our comparison. First, we extract the parameters ζi from the
pair-distribution functions in our simulations and discuss them
in the context of our theory. Second, we compare the theoretical
form of the projection ê1 · �F1 in Eq. (37) to the projected force
measured in our simulations and shown in Fig. 3. Note that
along the second route we also extract the parameters gi(1)
that are contained in the prefactors fa, fb, and fc of Eq. (37).
For hard disks we found the relations from Eqs. (43) and (44)
between the ζi and the gi(1).

First, we use Eqs. (41) and (42) to extract the parameters
ζ0 and ζ1 from our simulation results that we have shown in
Fig. 3. We find ζ0 ≈ 16.9 and ζ1 ≈ 5.0. To allow a comparison
to our theory, we average the data shown in Fig. 3 over the
orientation ê2 of the second particle, because this parameter
has been averaged out in our theory too. The averaged data
are presented in Fig. 5. In Fig. 5(a) we show the resulting
pair-distribution functionsg(r,θ ) from Figs. 3(a), 3(d), and 3(g)

together with the predicted function

g(1,θ ) = ζ0

2π
+ ζ1

π
cos(θ ) (47)

at contact that follows from the extracted ζ0 and ζ1 via
the first terms of the expansion in Eq. (34). We observe

FIG. 5. (a) Pair distribution 〈g(r,θ,ϕ2)〉ϕ2 and (b) and (c) projected
conditional force �F1(r,θ,ϕ2) as shown in Fig. 3 (v0/deff = 5 and ρ̄ =
0.3), but averaged over the angle ϕ2 of the relative orientation of the
second particle. The plots show the averaged simulation data from
Fig. 3 (symbols), least-squares fits to the data in (b) and (c) as noted
in the respective legend (dotted lines), and theoretical predictions
(solid lines) from (a) Eq. (34), (b) Eq. (35), and (c) Eq. (37). For the
theoretical predictions we use the parameters ζ0 = 2πg0(1) and ζ1 =
πg1(1), which we have calculated from our simulations via Eqs. (41)
and (42).
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FIG. 6. Coefficients (a) and (b) faπ/ζ1, (c) and (d) fb2π/ζ0, and (e) and (f) fcπ/ζ1 from theory and simulations as defined in Eq. (37).
Theoretical curves are given by Eqs. (38)–(40) and simulation results follow from least-squares fits as shown in Fig. 5. Coefficients are shown
at (a), (c), and (e) constant propulsion speed v0 dependent on the number density ρ̄ and (b), (d), and (f) constant number density dependent on
the propulsion speed.

minor deviations between the simulation data at r = 1.016
and the theoretical prediction using ζ0 and ζ1, because the
ζi correspond to the gi(1) of hard disks (see also Sec. III C).
Overall, the expansion of the pair-distribution function with
only two modes captures the simulation data very well at r ≈ 1
and at large r , but it cannot capture the additional modes that
occur at intermediate separations r ≈ 1.5, which we can see
in the inset of Fig. 5(a).

In accord with this finding on the pair-distribution func-
tion, we also observe the strongest deviations at intermediate
separations r ≈ 1.5 between the theoretical predictions and
simulation data in Figs. 5(b) and 5(c), where we show the
ϕ2-averaged data of the second and third columns of Fig. 3
together with theoretical results from Eqs. (35) and (37) using
g0(1) = ζ0

2π
and g1(1) = ζ1

π
. In both Figs. 5(b) and 5(c), we

additionally show least-squares fits to the simulation data in
accord with the respective special form of the theoretical ex-
pressions in Eqs. (35) and (37), i.e., fa + fb cos(θ ) in Fig. 5(b)
and fa + fb cos(θ ) + fc cos(2θ ) in Fig. 5(c). Interestingly,
these fits show much better agreement with the simulations
than the theoretical predictions based on the ζi . This finding
might hint at problems in identifying the gi(1) with the ζi ,
which we did for the theoretical predictions in Fig. 5, although
the pair interaction in the simulations is not completely steep.
However, the observation confirms the general θ dependence
of the projected conditional force just up to the second order.
Note that the data shown in Fig. 5(c) are also shown in Fig. 4(a)
along spherical cuts around the tagged particle.

According to the previously confirmed θ dependence of the
conditional force, now we study the fitting of our simulation
data with Eq. (37) in more detail. At the same time, we study
the previously mentioned collapse of data onto uniform curves
in Figs. 4(b)–4(d). For this purpose, we determine the fitting

parameters fa, fb, and fc from least-squares fits of Eq. (37)
to the simulation data. We show the resulting parameters for
certain combinations of propulsion speed v0 and density ρ̄ in
Fig. 6 and for passive disks with v0 = 0 in Fig. 7. As discussed
previously, we replace the parameters gi(1) within our theory in
Eqs. (38)–(40) by the parameters ζi via the relations in Eqs. (43)
and (44), because the ζi are more natural for our simulations of
not completely hard disks. The resulting theoretical predictions

FIG. 7. Coefficient fb from theory and simulations as defined in
Eq. (37) for a system of passive disks. Similar to Fig. 6(c), we show
the coefficient fb dependent on the number density ρ̄. Note that data
are shifted to enhance readability. The dashed lines mark zero for each
number density ρ̄.
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of the coefficients are also shown in Figs. 6 and 7 and they
read

fa(r) =
⎧⎨
⎩

ζ1

π

[
arccos

(
r

2

)
− π

]
, r � 2

−ζ1, r > 2,

(48)

fb(r) =
{

ζ0

2π

√
4 − r2, r � 2

0, r > 2,
(49)

fc(r) =
{

ζ1

π

√
4 − r2

r

4
, r � 2

0, r > 2.
(50)

Note that in Fig. 6 we have removed the linear dependence of
the coefficients fa and fc on ζ1 and of fb on ζ0 by plotting
fa(r)π/ζ1, fb(r)2π/ζ0, and fc(r)π/ζ1. In these cases, our the-
ory in Eqs. (48)–(50) predicts a collapse of the data at different
number densities ρ̄ and propulsion speeds v0 to unique and
solely r-dependent curves, because the dependences on density
and propulsion speed are only contained in the parameters ζi .

In accord with this prediction, we find the simulation data
in Fig. 6 to be rather independent of the number density in
Figs. 6(a), 6(c), and 6(e). However, for different propulsion
speeds the data in Figs. 6(b), 6(d), and 6(f) show deviations
from a collapse, especially at small propulsion speeds and
small separation r . Also in contrast to our theory, the simulation
data show detailed radial structure with a pronounced negative
peak at r ≈ 2. This peak matches with our observation of a dip
in the data shown in Fig. 4, which we explained by an inter-
action between the tagged first particle and a second particle
via intermediate third particles. The dip is not described in our
theory because we closed the Smoluchowski equation using the
assumption from Eq. (30) that neglects higher-order structure
between the second particle and third particles and we did not
consider situations where two particles interact via more than
one intermediate particle at all. For instance, we have shown a
snapshot from our simulations in Fig. 1(c), where two particles
1 and 2 interact via two additional particles 3 and 4.

We have seen that at large separations r the conditional
force �F1 takes the constant value −ρ̄ζ1ê1. Accordingly, theory
and simulation show a value of −π (thin line) in Figs. 6(a)
and 6(b). This negative value of the coefficient fa describes a
θ -averaged effective slow down of the tagged first particle due
to third particles, which scales with the propulsion speed v0

via the parameter ζ1. The nonuniform shape of the projected
force ê1 · �F1 with respect to the location θ of the second
particle is captured in the higher-mode coefficients fb and
fc. Of course, the relative location of the second particle
becomes irrelevant at large r , where both coefficients vanish as
shown in Figs. 6(c)–6(f). At r ≈ 1, the coefficient fb reaches
a maximum, which is related to an acceleration of the tagged
particle if the second particle is ahead and to a slowdown if it is
behind. We argued that the second particle blocks contributions
from third particles from the respective direction. Interestingly,
we find a change in sign for fb at r ≈ 2 in Figs. 6(c) and 6(d).
Accordingly, the tagged particle now is effectively accelerated
by the third particles if the second particle is located behind
and it is slowed down if the second particle is ahead. At small

separations r ≈ 1, the simulation data in Fig. 6(b) show a
strong deviation from the theoretical prediction that increases
with increasing propulsion speed. The simulation shows a
much stronger average deceleration of the tagged particle than
predicted by the theory. At the same time, we also find a
stronger anisotropy in Fig. 6(d) at high propulsion speeds
v0 than predicted by our theory. In this situation of particle
contact, third particles are more likely located in simultaneous
contact with both tagged particles 1 and 2 than elsewhere,
which follows from the Kirkwood closure in Eq. (20) together
with the fact that pair distributions of (at least passive) hard
disks have maxima at particle contact. Again, this situation
is underestimated in our theory due to the assumption from
Eq. (30) such that third particles are less likely located in con-
tact with both tagged particles in comparison to simulations. As
a result, the tagged particle is predicted to be slowed down less
by third particles in our theory if the second particle is located
ahead at (r,θ ) = (1,0), which we can observe in Figs. 6(b),
6(d), and 6(f). Note that for the total slowdown of a particle, we
have to sum up the contributions from all coefficients. The fact
that even Fig. 6(f) shows strong deviations from the theoretical
curve might hint at a problem with cutting the expansion of
g(r,θ ) after the first mode in Sec. II G.

The deviations between simulations and theory might fur-
ther hint at problems that arise when the Kirkwood closure is
applied to systems of active particles. For a comparison with
the active systems, we plot the coefficient fb for passive disks
without self-propulsion in Fig. 7. The other coefficients fa and
fc vanish for passive disks. Note that, in comparison to Fig. 6,
we do not divide fb by ζ0 and, accordingly, the theoretical
curves do not collapse to one unique curve. We furthermore
have to use the ζ0 as an input for our theoretical curves,
because we do not independently achieve the parameters from
our theory. To improve visibility, we have shifted the data
and marked the original zero by horizontal lines, respectively,
for each number density. In the limit r = 1, we now observe
good agreement between theory and simulation for all shown
number densities. For increasing density, however, still a dip
at r ≈ 2 develops, but it is less pronounced in comparison to
the one observed for self-propelled disks at higher propulsion
speed. Of course, deviations between Figs. 7 and 6(d) at r ≈ 1
could also appear due to the fact that in Fig. 6(d) the coefficient
fb is divided by the parameter ζ0, but such deviations should
appear at all values of r , especially at higher ones where the
simulation confirms the theory.

In conclusion, we could identify mainly two effects that lead
to the observed behavior of the coefficients fa, fb, and fc at the
positions r ≈ 1 and r ≈ 2, i.e., at particle contact and at the
position of the discussed dip. The dip mainly originates from
the three-body structure between both tagged particles 1 and 2
and a third particle. It does not appear in our theory, because
we neglect the secondary structure beyond volume exclusion
between particles 2 and 3 by our approximation from Eq. (30).
The behavior at r ≈ 1 is described well for passive disks within
our theory. For self-propelled disks the deviations from the
theory originate, next to the missing contribution of structure
between particles 2 and 3, from stopping the expansion of
g(r,θ ) in Sec. II G at a certain order and from applying the
Kirkwood closure in active systems.
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C. Pair-distribution function

In our simulations we have full access to the pair-
distribution function g(r,θ ) and, using Eqs. (41) and (42), to the
parameters ζi of its expansion in Eq. (34). In the preceding sec-
tion we used these parameters from our simulations to test our
analytic theory. The theory is derived from the Smoluchowski
equation (26), which can also be solved numerically without
applying the simplified closure discussed in Sec. II F, which
we applied to obtain analytical results. When we use Eq. (26)
in order to obtain data for g(r,θ ), the conditional forces �Fi that
enter Eq. (26) are given in Eqs. (24) and (25) for our system
of self-propelled hard disks.

We solve Eq. (26) using a forward-time and center-space
scheme [66] on a numerical grid with (ri,θij ) ∈ [1,R] ×
[0,2π ]. For the radial r component we use Nr = 600 equidis-
tant grid points and set R = 6. For the angular θ component
we use equally distributed Nθ,i grid points at each radial index
i, respectively, such that the spacing ri(θi,j+1 − θi,j ) between
two points of indices j and j + 1 is smaller than or equal
to num = 0.1, i.e., we set Nθ,i = �2πri/num�. Here �a�
denotes the rounded up integer of a. Since the number of grid
points Nθ,i in the angular direction depends on the radial index
i, we use linear interpolation along the angular θ coordinate to

perform the center-space scheme in the radial direction. At the
boundaries with r = 1 and r = R, we use Neumann boundary
conditions, i.e., we apply the no-flux condition which is given
in Eq. (27) for r = 1. Outside the grid, we assume g(r,θ ; t) =
0 when r < 1 and g(r,θ ; t) = 1 when r > R. As an initial
configuration at time t0, we have chosen g(ri,θj ; t0) = 1 for
r � 1. We then run Nt = 3 × 105 time steps of size dt = 10−5

to achieve a final variation of ‖∂tg(ri,θj ; tNt
)‖ � 0.02, where

‖aij‖ denotes the maximum norm of aij . We call this final state
the steady-state solution of Eq. (26).

We show our numerical results in comparison to results
from our BD simulations in Fig. 8 for three propulsion speeds
v0 = 0 [Figs. 8(a)–8(c)], v0 = 5 [Figs. 8(d)–8(f)], and v0 = 20
[Figs. 8(g)–8(i)]. Again, we chose the same density ρ̄ = 0.3 as
studied previously in Fig. 6. The steady-state pair-distribution
function g(r,θ ) is symmetric in the angle θ and for this reason
we draw half planes only for our BD data (left) and numerical
data (right) in Figs. 8(a), 8(d), and 8(g). The plots in these
panels are parametrized by (x,y) = (r cos θ,r sin θ ), where the
respective length unit is the (effective) particle diameter deff

for the BD data and σ for the numerical data. Furthermore, we
show data at particle contact in Figs. 8(b), 8(e), and 8(h), i.e.,
along the line with r = 1 in Figs. 8(a), 8(d), and 8(g), and in

FIG. 8. Pair-distribution functions g(r,θ ) around a self-propelled particle that is located at (0,0) and swims in the positive x direction. We
show data at number density ρ̄ = 0.3 and at propulsion speeds (a)–(c) v0 = 0, (d)–(f) v0 = 5, and (g)–(i) v0 = 20. The full function is shown in
(a), (d), and (g) and has the symmetry g(r,θ ) = g(r, − θ ). Accordingly, we show data obtained from our BD simulations (BD) on the left half
of the plot and numerical results from our theory (NUM) on the right half of the same plot. (b), (e), and (f) Values at particle contact, where
we use the effective diameter as the particle-particle separation in our simulations. In addition, we show the theoretical predictions according
to the parameters ζ0 and ζ1, which we have calculated from the respective data. Values are presented in Table I. (c), (f), and (i) Function g(x,0)
along the positive x axis in front of the tagged particle.
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TABLE I. Values for ζ0 and ζ1, extracted from our BD simulations
and from our numerical solutions of Eq. (26) as shown in Fig. 8. Values
are rounded to two digits after the decimal.

ρ̄ v0 ζ0 ζ1

BD simulations
0.3 0 9.60

5 16.08 4.55
20 42.88 17.46

Numerical solutions
0.3 0 9.38

5 15.54 3.37
20 29.08 15.08

front of the particle in Figs. 8(c), 8(f), and 8(i), i.e., along the
positive x axis in Figs. 8(a), 8(d), and 8(g). At finite propulsion
speed, the data, especially at particle contact, show a peak
in the pair-distribution function ahead of the tagged particle
and a depletion behind it. While the numerical solutions for
g(r,θ ) are overall converged, the exact depth of the minimum
at g(1,π ) in this depletion area is still sensitive with respect
to the grid discretization. For the employed grid, the solutions
fit well with the results from the numerical simulations. Small
deviations between both solutions from theory and simulations
are visible for the finite propulsion speeds v0 = 5 and v0 = 20
in Figs. 8(d)–8(i), especially behind the tagged particle.

Having at hand data for the full pair-distribution function
g(r,θ ), we can calculate the corresponding parameters ζ0 and
ζ1 using Eqs. (41) and (42). For our BD and numerical results
from Fig. 8 we present these parameters in Table I. We observe
that the numerical results from our theory underestimate both
the mean-value parameter ζ0 and the anisotropy parameter ζ1.
The gap between the BD and numerical data increases with
increasing propulsion speed v0. Furthermore, we can use the
expansion from Eq. (34) to determine the pair-distribution
function g(r = 1,θ ) at particle contact from the parameters
ζ0 and ζ1 via the relations ζ0 = 2πg0(1) and ζ1 = πg1(1) for
hard disks from Eqs. (43) and (44). We show these theoretical
curves for parameters ζi obtained from the BD and numerical
data in Figs. 8(b), 8(e), and 8(f) by dashed lines. While we
observe only minor deviations in Figs. 8(b) and 8(e) between
the theoretical lines and the corresponding simulation and
numerical data, respectively, we find strong deviations in
Fig. 8(h). Here the theoretical curve fed by the parameters
from BD predicts much higher values in front of the tagged
particle than BD itself. Even the average value that is related
to ζ0 is higher than that found in the simulation data. This
finding originates from the not completely hard pair potential in
Eq. (46) that we used in our simulations, for which the relations
between the ζi and the gi(1) do not hold strictly such that the
relation becomes inaccurate at high propulsion speed. Indeed,
the resulting parameters gi(1) describe the effective hard pair
distribution at contact, which is higher than the smeared-out
distribution of the “softer” interaction in our simulations. Of
course, the identities hold for hard disks and, accordingly, the
theoretical curve fed by the parameters from the numerical
data is obeyed on average. However, the predicted values at
θ = π behind the tagged particle take slightly negative values,
because the shape of the line at particle contact cannot be

captured completely by the first two modes of the expansion
of the pair-distribution function. The latter shows a very wide
minimum for the numerical data in Fig. 8(h) in comparison to
the BD data. Apart from the deviations between the numerical
and BD results behind the tagged particle, both agree well
for the distribution of second particles ahead of the tagged
particle, as shown in Figs. 8(c), 8(f), and 8(i). In agreement with
our simulations, the numerically obtained pair-distribution
function even shows maxima at positions ahead of the self-
propelled particle with r ≈ 2, r ≈ 3, r ≈ 4, and so on (only
the first is shown in Fig. 8), as we expect from the discussion of
the structure of the conditional force �F1 along with Fig. 4 and in
Sec. III B. At high propulsion speeds, these maxima are located
slightly farther away from the tagged particle in the numerical
results when compared to the BD results, as we find in Fig. 8(c).

IV. DISCUSSION

In the previous sections we have derived an analytical theory
for the microscopic structure of active Brownian particles that
interact via hard pair potentials. We have analyzed this theory
by testing its predictions using BD simulations and by solving
the underlying Smoluchowski equation (26) numerically. In
this context, we have studied pair-distribution functions and
conditional three-body forces between the active particles.
In Sec. II F we have identified two main contributions to
the averaged conditional force �F1 that acts on a tagged first
particle in the presence of a second tagged particle from all
remaining particles. The corresponding two main directions of
the conditional force �F1 are the direction of the (normalized)
separation vector êr = �r/|�r | between both tagged particles
and the direction of self-propulsion ê1 of the first particle.
We discussed that these directions originate from the excluded
volume due to the presence of the second particle and from the
directed motion of the first particle and the resulting collisions
with surrounding particles. From another perspective, both
directions further correspond to the splitting of the total force
that acts on a tagged particle into the conditional force �F1 and
the contribution �F12 from the second particle. In our study
we found the dependence of �F12 on the angular position θ at
small propulsion speeds of the same order as that of �F1, but
we found the force �F12 and its anisotropy almost independent
of the propulsion speed v0. In contrast, we observed a strong
dependence on the propulsion speed for the anisotropy of
êr · �F1. This might lead to situations where, at sufficiently high
propulsion speeds, the free energy can be reduced by clustering
of particles with a second particle ahead.

Indeed, anisotropic correlations due to the self-propulsion
of the particles are a key ingredient for the motility-induced
phase separation. However, the system of ABPs still is de-
scribed solely by the scalar fields number density and propul-
sion speed. For this reason, the system is still classified as scalar
active matter [46], as pointed out in the Introduction.

In our analysis of simulation results in Sec. III A, we found
the orientation of the second tagged particle to be rather
unimportant. If it is taken into account, the dependence on this
orientation is strongest for the collision term of the conditional
force �F1 along the propulsion direction ê1 at particle-particle
contact (r ≈ 1) and for the excluded-volume term along �r
at intermediate particle separations of r ≈ 1.5. However, the
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relative position of the second tagged particle in comparison
to the first one is very important, i.e., the angle θ at which the
second particle is located around the first one and the separation
r . While the anisotropic angular shape of the conditional force
�F1 at a given separation r overall is described well by only

two or three modes within our theory at small and large
separations, the theory does not describe additional modes
that appear at intermediate separations of r ≈ 1.5. Thus, it
might be necessary to also take higher modes into account
when intermediate particle separations dominate.

The radial dependence of the conditional force �F1 on the
separation r is most interesting ahead of the tagged first particle
in its direction of self-propulsion. In Fig. 4 we have shown
that this force has a dip that develops at r � 2 when the
propulsion speed v0 of the particles is increased. Our theory
does not predict this dip, as we have shown in Figs. 6 and 7.
As discussed previously, the dip develops at a separation r � 2
of the first and the second particle, where a third particle fits
in between them. This intermediate particle leads to a strong
repulsive force between the two tagged particles. The latter
is not described by our theory, because we neglect structural
correlations between second and third particles beyond volume
exclusion for the calculation of the conditional forces �Fi by
applying the approximation in Eq. (30). For example, Fig. 7
shows the coefficient fb in a system of passive disks that,
according to Eqs. (35) and (39), corresponds to the negative
strength of the conditional force onto the first particle. When
the second particle is located close to the first particle, it blocks
third particles from interacting with the first particle in a certain
area, as shown in Fig. 2. The amount of surface that is blocked
for third particles is described by the angle θ∗. This angle
decreases when the separation r increases until the separation
between the first and second particles becomes r � 2. Our
theory does not assume a higher probability of finding third
particles in the vicinity of the second particle due to our
assumption made in Eq. (30) such that the conditional force
�F1 vanishes for all r � 2. In the simulations, the probability

of finding third particles in the vicinity of the second particle
is higher than average and for this reason the simulation data
show a pronounced dip around r = 2 in Figs. 6 and 7. Note
that problems also arise when the assumption from Eq. (30) is
used to solve Eq. (26) self-consistently, because the angle θ∗
that enters the theory is not continuously differentiable.

Our theory is based on the two-body Smoluchowski equa-
tion, which we closed on the three-body level using Kirk-
wood’s approximation. We tested this theoretical framework
by calculating its steady-state solutions numerically without
applying the assumption from Eq. (30). The numerical solution
of our theory does predict the anisotropic structure in the
pair-distribution function at moderate propulsion speed that
originates from the dip in the conditional forces, as we have
shown in Sec. III C and in Fig. 8. At higher propulsion
speeds the agreement between our theoretical approach and
our simulation results becomes poorer as we observed in
Table I for the ζi and in Fig. 8. Furthermore, our theoretical
approach cannot capture situations where two particles interact
via more than one intermediate particle, because the approach
is based on a three-body closure. It has been shown that
such multiparticle interactions are relevant for active systems
[67,68] such that it might be necessary to extend our theory

to the four-body level. In our simulations we have observed
situations where at least four particles interact, as exemplified
in the snapshot in Fig. 1(c).

Our theory in Eqs. (48)–(50) successfully predicts a collapse
of the data at different number densities ρ̄ and sufficiently
high propulsion speeds v0 onto unique and solely r-dependent
curves. The data of all involved coefficients fa/ζ1, fb/ζ0,
and fc/ζ1 collapse onto a unique curve, respectively, because
the dependences on density and propulsion speed are only
contained in the parameters ζi . The observed collapse in the
simulation data in Figs. 6 and 7 confirms this dependence of
the ζi on the propulsion speed and the number density and
thus indicates the role of the ζi as order parameters in systems
of ABPs. In Fig. 6 we found the strongest deviations from
the collapse to a unique curve at small propulsion speeds
and particle separations r . Via a comparison between active
and passive disks, we argued that these deviations arise from
problems with the applied Kirkwood closure in combination
with the activity of the ABPs.

We have seen that our theory predicts the general shape
of the anisotropic conditional force and of the two-body
distribution function. Its analytic form is based on the expan-
sion of the pair-distribution function in Eq. (34) and on the
involved parameters gi(r). For the hard-disk potential from
Eq. (23), we found the equalities in Eqs. (43) and (44) between
the contact values gi(1) of the expansion coefficients and
the parameters ζi , which are defined in Eqs. (41) and (42).
The latter can also be obtained directly from not perfectly
hard potentials like the WCA potential in Eq. (46), which we
have used in our BD simulations with a very strong coefficient
ε = 100kBT to simulate a system of effectively hard disks.
Note that for almost hard interactions gradients become steep
and the numerical resolution must be chosen appropriately. In
Sec. III C we have seen for our simulations of not completely
hard disks that the equalities between the parameters ζi and
values of g(r) at contact do not hold, because contact is not
well defined for soft potentials. Indeed, the ζi are defined
as pair distributions weighted with the derivative of the pair
potential and for this reason they represent effective hard-disk
coefficients that correspond to the coefficients in the expansion
of g(r) at contact for hard disks. In our theory we neglected all
higher modes in the expansion in Eq. (34) such that all ζi for
i > 1 vanish. In fact, we have shown that the first two modes ζ0

and ζ1 in a system of ABPs already predict the main directions
of the acting forces, describe the general anisotropic shape
of the conditional forces, and explain the effective swimming
speed. The linear relation between the parameter ζ1 and the
propulsion speed v0 can be seen either from the projection of
the conditional force ê1 · �F1, in Figs. 4(b)–4(d), where all data
collapse when it is divided by the propulsion speed v0, or from
the fact that the projected conditional force approaches −ρ̄ζ1

at large separations r > 2. This finding further agrees with
previous work [40,69], where ζ1 is discussed to be proportional
to v0 with a proportionality factor of approximately one.

Our analytic theory does not independently predict the
parameters ζi . However, we have shown that our analytic
theory is predictive for given ζi and that results are in good
agreement with our simulations. We further found that numer-
ical solutions of Eq. (26) together with the conditional forces
from Eqs. (24) and (25) agree well with our simulation data.
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The corresponding parameters ζ0 and ζ1 fit those obtained from
our simulations up to moderate propulsion speeds of v0 ≈ 5,
but we find strong deviations at larger v0 ≈ 20. As possible
reasons we discussed closing the Smoluchowski equation on
the three-body level, the Kirkwood approximation, neglecting
additional structure between second and third particles, and
stopping the expansion of g(r) after the second-order term.
In any case, obtaining the parameters ζi from our numerical
solutions would make the theory independent such that it could
be used to predict MIPS or the pressure in active systems
from the combined knowledge of the pair interactions, the free
propulsion speed, and the density without any additional input.

V. CONCLUSION

In this work we have studied two-body and especially three-
body correlations and conditional forces in systems of active
Brownian particles. Based on the many-body Smoluchowski
equation, we have developed a theoretical framework that
we closed on the three-body level. Applied to the special
case of hard-particle interactions, we have derived analytical
expressions for conditional three-body forces and identified
preferred directions of these forces with respect to the direction
of propulsion of tagged particles. We have verified our theory
in a detailed comparison with Brownian dynamics computer
simulations, for which we have reported three-body forces.
In this context we also have discussed discrepancies between
the modeling of active particles with hard pair-interaction
potentials and soft or almost hard potentials. As a consequence,
theoretical models for active systems that are based on hard
interaction potentials must be handled carefully when they are
applied to systems of not completely hard particles. For future
work it might be interesting to also study effective interaction
potentials within our theory as performed in recent work [70].

We further have identified the range of validity and lim-
itations of our theory. While we have found generally good
agreement between theory and simulations at sufficient small
propulsion speeds, we have observed qualitative and quantita-
tive deviations that increase with the strength of the propulsion
speed. We have discussed these deviations to be caused most
probably by (i) the Kirkwood closure which we have applied
in our theory, (ii) neglecting higher modes in an expansion of
the pair-distribution function, and (iii) an assumption where
we effectively neglect correlations beyond volume exclusion
between a second particle and its surrounding ones. For this
reason, future work should study how to improve closures and
test the influence of higher modes. Note that improving on
closures could also mean closing the Smoluchowski equation
on an even higher level than we have done.

We have shown that our theory captures many effects that
occur in systems of Brownian swimmers. Based on only
the first two modes ζ0 and ζ1 in the expansion of the pair-
distribution function, our analytic theory already successfully
predicts the main directions of the conditional three-body
forces, their linear dependence on the propulsion speed, and
the effective swimming speed. These findings are in agreement
with previous work. However, our approach does not yield
independent expressions for ζ0 and ζ1. Such expressions would
be necessary to obtain a priori theoretical predictions without
further input of correlations. In any way, our theory has at least

two levels of approximation. The first level is more general and
is reached after closing our theory in Sec. II D and applying
it to the special case of hard disks in Sec. II E. The second
level is reached by applying the additional approximation from
Eq. (30) in Sec. II F, which allows us to derive analytical
expressions for the conditional three-body forces. We have
shown that a numerical solution of our theory already on the
first level is in very good agreement with our simulations such
that the necessary parameters ζi in general could be obtained
from numerical calculations.

In a next step, the parameters ζi could be used to pre-
dict physical quantities, for instance, phase separations like
MIPS [9,23] and the pressure in active Brownian systems
[25,26,71]. Another step could be the transfer of our findings
to self-propelled Brownian swimmers in three dimensions. In
conclusion, our detailed study of correlations in suspensions of
active repulsive disks is a step towards an emerging liquid-state
theory of scalar active matter.
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APPENDIX: MODE EXPANSION

In Eq. (34) we expand the pair-distribution function
g(r,θ ) from Eq. (15) in Fourier modes. Accordingly, we find
〈g(r,θ )〉θ = g0(r) and the projections of the conditional force
�F1 from Eq. (31) onto the directions êr and êθ become

êr · �F1(r,θ ) = − ρ̄

∞∑
k=0

gk(σ )Ac
k(r) cos(kθ ), (A1)

êθ · �F1(r,θ ) = − ρ̄

∞∑
k=0

gk(σ )As
k(r) sin(kθ ). (A2)

The mode-expansion coefficients Ac
k and As

k are defined using
the r-dependent angle θ∗ from Eq. (33) by

Ac
k(r) cos(kθ ) =

∫ 2π−θ∗

θ∗
dϕ cos(ϕ) cos[k(ϕ + θ )], (A3)

As
k(r) sin(kθ ) =

∫ 2π−θ∗

θ∗
dϕ sin(ϕ) cos[k(ϕ + θ )]. (A4)

The integrals in Eqs. (A3) and (A4) can be performed analyti-
cally and, for k ∈ {0,1} and 1 � r � 2, result in

Ac
0(r) = −2 sin(θ∗), (A5)

Ac
1(r) = [π − θ∗ − sin(θ∗) cos(θ∗)], (A6)

As
0(r) = 0, (A7)

As
1(r) = −[π − θ∗ + sin(θ∗) cos(θ∗)]. (A8)
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In general, for r > 2 all coefficients vanish except for Ac
1 = π and As

1 = −π . At particle-particle contact with r = 1 the first

coefficients are Ac
0(σ ) = −√

3, Ac
1(σ ) = 2π

3 −
√

3
4 , and As

1(σ ) = − 2π
3 −

√
3

4 .
When we insert the full expansion of the pair-distribution function g(r,θ ) from Eq. (34) into the no-flux condition from Eq. (27)

we achieve a set of equations, one for each occurring Fourier component cos(kθ ). Solving the equation for k = 0 with respect to
g1(1), we obtain

g1(1) = 1

Kρ̄

(
v0 ±

√
v2

0 + 8Kρ̄J
)
, (A9)

J = − ρ̄

4

∞∑
k=2

gk(1)gk(1)Ac
k +

√
3g0(1)g0(1)ρ̄ + g′

0(1), (A10)

where g′
0(1) = ∂

∂r
g0(r)|r=1 and K = (8π − 3

√
3)/6 ≈ 3.323. In the limit of vanishing propulsion speed v0 → 0 all gk for k > 0

must vanish. Accordingly, J must vanish and solely the plus sign in front of the square root in Eq. (A9) holds. A rearrangement
of Eq. (A9) and using ζ1 = πg1(1) with v0 > 0 leads to

v0

(
1 − ρ̄

ζ1

v0

K

π

)
= ∓

√
v2

0 + 8Kρ̄J . (A11)

The form of Eq. (A11) is interesting for the effective propulsion speed in the context of MIPS, as discussed by Bialké et al. [40]
and by Stenhammar et al. (above Fig. 2 in their work) [69].
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