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Characterization of microscopic deformation through two-point spatial correlation functions
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The molecular rearrangements of most fluids under flow and deformation do not directly follow the macroscopic
strain field. In this work, we describe a phenomenological method for characterizing such nonaffine deformation
via the anisotropic pair distribution function (PDF). We demonstrate how the microscopic strain can be calculated
in both simple shear and uniaxial extension, by perturbation expansion of anisotropic PDF in terms of real
spherical harmonics. Our results, given in the real as well as the reciprocal space, can be applied in spectrum
analysis of small-angle scattering experiments and nonequilibrium molecular dynamics simulations of soft matter
under flow.
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I. INTRODUCTION

Understanding the flow and deformation behavior of
complex fluids is an important subject in soft matter research.
When a macroscopic strain or stress is applied, the atoms
in a complex fluid are displaced from their equilibrium
positions. It has been widely recognized that such molecular
rearrangements are complicated in nature and generally do
not directly follow the macroscopic strain [1–23]. How to
characterize the microscopic deformation of a fluid in the
nonequilibrium state is, therefore, a central problem for
experimentalists and theorists alike.

As the pair distribution function (PDF) describes the local
structure of a liquid, it offers a natural starting point for address-
ing the aforementioned challenge. Following the perturbation
expansion strategy first outlined by Irving and Kirkwood
[24], the anisotropic pair distribution function g(r) under flow
and deformation has been expressed in terms of spherical
harmonics by a number of researchers [1–13,19–23,25–28].
In particular, it has been shown that for weak shear flow
[4,8,11,20],

g(r) − g(r) ∝ Wi · Y−2
2 (θ,φ)r

dg(r)

dr
, (1)

where g(r) is the isotropic PDF (radial distribution func-
tion) in the equilibrium state, Y−2

2 (θ,φ) is the real spherical
harmonic function for l = 2 and m = −2, and Wi, the so-
called Weissenberg number, is the product of shear rate γ̇

and some characteristic relaxation time τ . This formula in
principle allows one to determine the microscopic deformation
by analyzing the anisotropic component of g(r), from either
scattering experiments (via Fourier transform) or computer
simulation [1–13,18–23].

However, recent experimental and computational studies
have demonstrated that the microscopic strain in complex
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fluids undergoing shear flow is generally not only nonaffine, but
also dependent on the molecular separation [14–23]. In other
words, Eq. (1), which assumes a radially uniform strain, does
not apply to real fluids. In this work, we seek to generalize
Eq. (1) by considering radially varying strain. The resulting
formulas, given in both real and reciprocal spaces, serve as a
useful tool for extracting microscopic deformation from small-
angle scattering experiments and nonequilibrium molecular
dynamics simulations of flowing soft matter.

This paper is organized as follows: First, we demonstrate,
with the case of shear flow, how to incorporate radially
nonuniform strain in the Irving-Kirkwood perturbation
expansion of the pair distribution function. We then proceed to
the case of uniaxial extension, which is another common flow
geometry. Lastly, we test the validity of the derived formulas
by examining the affine deformation model of Gaussian
chains and nonequilibrium molecular dynamics simulations
of interacting particles.

II. PERTURBATION EXPANSION FOR SHEAR FLOW

A. Perturbation expansion with radially varying strain

The pair distribution function g(r) is generally defined as

ρg(r) = 1

N

∑
i �=j

〈δ(r − r ij )〉, (2)

where ρ is the mean particle density, N is the total num-
ber of particles, r ij = Rj − Ri with Ri and Rj being the
position vectors of the ith and j th particles, respectively, δ

is the Dirac delta function, and 〈· · · 〉 in our current context
stands for averaging in the configuration space. Following the
perturbation expansion approach by Irving and Kirkwood [24],
we seek to derive the anisotropic PDF g(r) from the isotropic
PDF g(r) in the quiescent state. Since we are interested
in the microscopic deformation, we will explicitly use the
equivalent strain γ to describe the average relative molecular
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displacements, instead of the Weissenberg number Wi, which
is the traditional language Hanley, Evans, Hess, and coworkers
adopted when considering nonequilibrium fluids [4–12]. The
main idea here is to use a “solid-like” treatment to express
“equivalent” deviations from the equilibrium structure for
a liquid. Moreover, we allow the microscopic strain to be
dependent on the molecular separation and further assume that
it is a function of only the interparticle distance rij = |r ij |. We
can thus define a local deformation gradient tensor E for each

pair of particles i and j ,

E =
⎛
⎝1 γ (rij ) 0

0 1 0
0 0 1

⎞
⎠, (3)

which describes the transformation of r ij under flow: r ′
ij =

E · r ij . Hence, the anisotropic PDF in the nonequilibrium state
can be expressed as [24,29]

ρg(r) = 1

N

∑
i �=j

〈δ(r − r ′
ij )〉 = 1

N

∑
i �=j

〈δ(r − r ij − (E − I) · r ij )〉, (4)

where I is the isotropic tensor. Perturbation expansion of δ(r − r ij − (E − I) · r ij ) gives

δ(r − r ′
ij ) − δ(r − r ij ) = {−[(E − I) · r ij ] · ∇r}δ(r − r ij ) + 1

2 {−[(E − I) · r ij ] · ∇r}2δ(r − r ij ) + · · ·

+ 1

n!
{−[(E − I) · r ij ] · ∇r}nδ(r − r ij ) + · · · . (5)

Equation (5) is a general Taylor expansion of the difference between two delta functions, which follows the original derivation
of Irving and Kirkwood [24]. In the case of shear, when E does not depend on the molecular separation, i.e., γ (rij ) is a constant,
Eq. (5) leads to an elegant formula that links the nonequilibrium PDF g(r) to the PDF g(r) in the quiescent state:

g(r) − g(r) = {−[(E − I) · r] · ∇r}g(r) + 1

2
{−[(E − I) · r ij ] · ∇r}2g(r) + · · · + 1

n!
{−[(E − I) · r] · ∇r}ng(r) + · · · . (6)

However, when the molecular strain is radially dependent, Eq. (6) is no longer valid. We need to reexamine the derivation
leading up to Eq. (6). Starting from Eqs. (4) and (5), we see that

g(r) − g(r) = 1

ρN

∑
i �=j

∫
d R1

∫
d R2 . . .

∫
d RNψ(R1,R2, . . . ,RN )

∞∑
n=1

1

n!
{−[(E − I) · r ij ] · ∇r}nδ(r − r ij ), (7)

where we explicitly write out the configuration space averaging as the integral with the distribution function ψ(R1,R2, . . . ,RN ).
Using the following identities for the Dirac delta function [24]:

∂n

∂xn
δ(x − xij ) = (−1)n

∂n

∂xn
ij

δ(x − xij ), (8)∫ [
∂n

∂xn
δ(x)

]
f (x)dx = (−1)n

∫
δ(x)

[
∂n

∂xn
f (x)

]
dx, (9)

we can show that for each integral in Eq. (7)∫
d R1

∫
d R2 . . .

∫
d RNψ(R1,R2, . . . ,RN )

1

n!
{−[(E − I) · r ij ] · ∇r}nδ(r − r ij )

= 1

n!
(−1)n

∫
d R1

∫
d R2 . . .

∫
d RNψ(R1,R2, . . . ,RN )

[
γ (rij )yij

∂

∂x

]n

δ(r − r ij )

= 1

n!

∫
d R1

∫
d R2 . . .

∫
d RNψ(R1,R2, . . . ,RN )

[
γ (rij )yij

∂

∂xij

]n

δ(r − r ij )

= 1

n!
(−1)n

∫
d R1

∫
d R2 . . .

∫
d RNδ(r − r ij )

(
yij

∂

∂xij

)n

[γ n(rij )ψ(R1,R2, . . . ,RN )]

= 1

n!
(−1)nyn ∂n

∂xn
[γ n(r)ψij (r)], (10)

where ψij (r) is the distribution function of ith and j th particles in the quiescent state, defined as

ψij (r) ≡
∫

d R1

∫
d R2 . . .

∫
d RNδ(r − r ij )ψ(R1,R2, . . . ,RN ) = ρg(r). (11)

Therefore, the final general expression for g(r) − g(r) in shear flow is

g(r) − g(r) =
∞∑

n=1

1

n!
(−1)nyn ∂n

∂xn
[γ n(r)g(r)]. (12)
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Notice that when γ (r) is a constant, Eq. (12) reduces to the
classical Irving-Kirkwood formula [Eq. (6)]. Mathematically,
it is convenient to set the following change of variables: γ (r) =
λu(r), where the constant λ is the largest microscopic strain of
the system. Equation (12) can thus be rewritten as

g(r) = g(r) +
∞∑

n=1

1

n!
(−1)nλnyn ∂n

∂xn
[un(r)g(r)]. (13)

The equation expresses the anisotropic PDF in terms of a power
series of λ and derivatives of g(r), with the zeroth-order term
being the quiescent g(r).

B. First-order expansion

In order to apply Eq. (12) [or equivalently Eq. (13)] to
extract the radially dependent strain γ (r) from small-angle
scattering experiments or nonequilibrium molecular dynamics
simulations, it is helpful to expand the anisotropic PDF g(r)
and structure factor S( Q) as a linear combination of real
spherical harmonics Ym

l (θ,φ):

g(r) =
∑
l,m

gm
l (r)Ym

l (θ,φ), (14)

S( Q) =
∑
l,m

Sm
l (Q)Ym

l (θ,φ). (15)

The real and reciprocal space expansion coefficients are related
through the spherical Bessel transformation:

gm
l (r) = il

2π2ρ

∫
Sm

l (Q)jl(Qr)Q2dQ, (16)

Sm
l (Q) = 4πilρ

∫
gm

l (r)jl(Qr)r2dr, (17)

where jl(x) is the spherical Bessel function of the first kind.
Using the real spherical harmonic expansion approach, we

avoid dealing directly with the vector-variable functions g(r)
and S( Q). Instead, all the analyses center around the expansion
coefficients gm

l (r) and Sm
l (Q). In a computer simulation, where

the information about positions of all particles is readily avail-
able, gm

l (r) and Sm
l (Q) can be straightforwardly computed:

gm
l (r) = 1

4π

∫ π

0
dθ

∫ 2π

0
dφg(r,θ,φ)Ym

l (θ,φ) sin θ, (18)

Sm
l (Q) = 1

4π

∫ π

0
dθ

∫ 2π

0
dφS(Q,θ,φ)Ym

l (θ,φ) sin θ. (19)

In the case of small-angle scattering experiments, one probes
the cross sections of S( Q) on certain planes. The method for
obtaining Sm

l (Q) from the two-dimensional anisotropic spectra
has been discussed in detail elsewhere [30].

With the expansion coefficients gm
l (r) and Sm

l (Q) in hand,
we can then proceed to the analysis of the microscopic
deformation by using Eq. (13). The first-order term in Eq. (13)
is

−λy
∂

∂x
[u(r)g(r)] = −sin2θ cos φ sin φr

d

dr
[γ (r)g(r)]

= − 1√
15

Y−2
2 (θ,φ)r

d

dr
[γ (r)g(r)]. (20)

Therefore, it is easy to see from Eq. (18) that

g−2
2 (r) = − 1√

15
r

d

dr
[γ (r)g(r)]. (21)

Solving Eq. (21) yields

γ (r) = γ (D0)
g(D0)

g(r)
−

√
15

g(r)

∫ r

D0

g−2
2 (r ′)
r ′ dr ′, (22)

where D0 is the diameter of the particle. Equations (21) and
(22) can be used as the working formulas for characterizing
the radially dependent microscopic strain γ (r), particularly for
computer simulations. For small-angle scattering experiments,
it is more convenient to perform analysis in the reciprocal
space. From Eqs. (17) and (21), one finds that

S−2
2 (Q) = 4πρ√

15

∫ ∞

0
j2(Qr)r3 d

dr
[γ (r)g(r)]dr

= 4πρ√
15

∫ ∞

0
γ (r)g(r)r

[
r cos(Qr) − sin(Qr)

Q

]
dr.

(23)

In principle, one can experimentally determine the isotropic
PDF g(r) by Fourier transform of the structure factor S(Q) in
the quiescent state. S−2

2 (Q) can be obtained from analyzing the
anisotropic two-dimensional spectra of the velocity-velocity
gradient and velocity-vorticity planes, i.e., the so-called 1-2
and 1-3 planes [22,30]. Therefore, γ (r) can be found by fitting
the integral equation [Eq. (23)].

C. Second-order expansion

Now let us consider the second-order term in Eq. (13):

1

2
λ2y2 ∂2

∂x2
[u2(r)g(r)] = 1

2
sin2θsin2φ

{(
1 − sin2θcos2φ

)
r

d

dr
[γ 2(r)g(r)] + sin2θcos2φr2 d2

dr2
[γ 2(r)g(r)]

}
. (24)

Combining this result with the analysis in Secs. II A and II B, it can be shown [by using Eqs. (13) and (18)] that the expansion up
to the second order in λ involves only the following real spherical harmonics: Y 0

0 , Y−2
2 , Y 0

2 , Y 0
4 , and Y 4

4 , with

g0
0(r) − g(r) = 2

15
r

d

dr
[γ 2(r)g(r)] + 1

30
r2 d2

dr2
[γ 2(r)g(r)], (25)

g0
2(r) = −

√
5

42
r

d

dr
[γ 2(r)g(r)] − 1

21
√

5
r2 d2

dr2
[γ 2(r)g(r)], (26)
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g0
4(r) = − 1

210
r

d

dr
[γ 2(r)g(r)] + 1

210
r2 d2

dr2
[γ 2(r)g(r)], (27)

g4
4(r) = 1

6
√

35
r

d

dr
[γ 2(r)g(r)] − 1

6
√

35
r2 d2

dr2
[γ 2(r)g(r)]. (28)

Note that the expression for g−2
2 (r) is already given by Eq. (21), as the second-order term in λ does not contribute to this symmetry.

Equations (25) through (28) can also be used, in addition to Eq. (21), for analysis of γ (r) for the expansion to the second order.
Focusing on g0

0(r) and defining H (r) ≡ γ 2(r)g(r), we have

r4 d2H (r)

dr2
+ 4r3 dH (r)

dr
= 30r2

[
g0

0(r) − g(r)
]
,

d

dr

[
r4 dH (r)

dr

]
= 30r2

[
g0

0(r) − g(r)
]
, (29)

dH (r)

dr
= c

r4
+ 30

r4

∫ r

D0

r ′2[g0
0(r ′) − g(r ′)

]
dr ′,

where c = D4
0

dH (r)
dr

|r=D0 . Carrying through the integration, we obtain the expression for γ 2(r):

γ 2(r) = 3γ 2(D0)D3
0g(D0) + c

3D3
0g(r)

− c

3r3g(r)
+ 30

g(r)

∫ r

D0

1

t4
dt

∫ t

D0

r ′2[g0
0(r ′) − g(r ′)

]
dr ′. (30)

Similarly, applying Eq. (17) to Eq. (25), we have

S0
0 (Q) − S(Q) = 4πρ

∫ [
g0

0(r) − g(r)
]
j0(Qr)r2dr

= 2πρ

15

∫ ∞

0

d

dr

[
r4 dH (r)

dr

]
j0(Qr)dr = 2πρ

15
Q

∫ ∞

0
r4j1(Qr)

d

dr
[γ 2(r)g(r)]dr

= 2πρ

15
Q

∫ ∞

0
γ 2(r)g(r)

[
2r2

Q
cos(Qr) −

(
2r

Q2
+ r3

)
sin(Qr)

]
dr. (31)

As in the case of Eq. (23), Eq. (31) can be used to determine γ 2(r) from small-angle scattering experiments as well as computer
simulations.

D. A few remarks

At this point, it is helpful to make a few remarks about our
derivations so far. First, when the microscopic strain is radially
uniform, i.e., γ (r) is a constant, Eqs. (21), (23), (25), and (31)
can be simplified, yielding elegant expressions for γ in both
real and reciprocal spaces:

γ = −
√

15g−2
2 (r)

r
dg(r)
dr

, (32)

γ =
√

15S−2
2 (Q)

QdS(Q)
dQ

, (33)

γ 2 = 30
[
g0

0(r) − g(r)
]

r2 d2g(r)
dr2 + 4r

dg(r)
dr

, (34)

γ 2 = 30
[
S0

0 (Q) − S(Q)
]

Q2 d2S(Q)
dQ2 + 4QdS(Q)

dQ

. (35)

In particular, Eqs. (32) and (33) have been found by the
previous studies [4,8,11,20].

Second, as revealed by Eq. (25), the approximation g0
0(r) =

g(r) is valid up to the first-order expansion in λ. Additionally,
with the condition

dγ (r)

dr
g(r) � γ (r)

dg(r)

dr
⇒ d ln γ (r)

dr
� d ln g(r)

dr
,

(36)

Equation (21) can be rewritten as

γ (r)= −
√

15g−2
2 (r)

r
dg(r)
dr

≈ −
√

15g−2
2 (r)

r
dg0

0 (r)
dr

, (37)

which is the formula used to fit radially dependent strain in a
previous study [20]. However, Eq. (21) in general should work
better than Eq. (37), as it does not require these additional
conditions.
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III. PERTURBATION EXPANSION FOR UNIAXIAL EXTENSIONAL FLOW

A. Perturbation expansion with radially varying strain

Having made the analysis with simple shear, we now turn our attention to uniaxial extension, which is another important flow
geometry in rheology. Once again, we will apply the Irving-Kirkwood perturbation expansion technique, with the consideration
of radially varying microscopic strain. Denoting the microscopic stretching ratio and engineering strain by λ(rij ) and ε(rij ),
respectively, we have

r ′
ij = E · r ij =

⎛
⎜⎝

1√
λ(rij )

0 0

0 1√
λ(rij )

0

0 0 λ(rij )

⎞
⎟⎠ · r ij ≈

⎛
⎜⎝

1 − ε(rij )
2 0 0

0 1 − ε(rij )
2 0

0 0 1 + ε(rij )

⎞
⎟⎠ · r ij . (38)

Similarly, the starting point for the derivation is Eq. (7). For each integral in the summation,∫
d R1

∫
d R2 . . .

∫
d RNψ(R1,R2, . . . ,RN )

1

n!

{−[
(E − I) · r ij

] · ∇r

}n
δ(r − r ij )

= 1

n!
(−1)n

∫
d R1

∫
d R2 . . .

∫
d RNψ(R1,R2, . . . ,RN )

[
ε(rij )

(
−1

2
xij

∂

∂x
− 1

2
yij

∂

∂y
+ zij

∂

∂z

)]n

δ(r − r ij )

= 1

n!

∫
d R1

∫
d R2 . . .

∫
d RNψ(R1,R2, . . . ,RN )

[
ε(rij )

(
−1

2
xij

∂

∂xij

− 1

2
yij

∂

∂yij

+ zij

∂

∂zij

)]n

δ(r − r ij )

= 1

n!
(−1)n−1

(
1

2

)n ∫
d R1

∫
d R2 . . .

∫
d RNδ(r − r ij )

∑
α+β+γ=n

n!

α!β!γ !

∂n

∂xα
ij ∂y

β

ij ∂z
γ

ij

× [xα
ij y

β

ij (−2zij )γ εn(rij )ψ(R1,R2, . . . ,RN )]

= 1

n!
(−1)n−1

(
1

2

)n ∑
α+β+γ=n

n!

α!β!γ !

∂n

∂xα∂yβ∂zγ
[xαyβ (−2z)γ εn(r)ψij (r)], (39)

where 0 � α,β,γ � n. Therefore, the final expression for perturbation expansion in the case of uniaxial extension is

g(r) = g(r) +
∞∑

n=1

1

n!
(−1)n−1

(
λ

2

)n ∑
α+β+γ=n

n!

α!β!γ !

∂n

∂xα∂yβ∂zγ
[xαyβ(−2z)γ un(r)g(r)], (40)

where ε(r) = λu(r).

B. First- and second-order expansions

We now proceed to the analysis of the first- and second-order expansion terms using the derived general expression [Eq. (40)].
For the n = 1 term, we have

λ

2

(
x

∂

∂x
+ y

∂

∂y
− 2z

∂

∂z

)
[u(r)g(r)] = 1

2

[(
1 − 3cos2θ

)
r

∂

∂r
+ 3 sin θ cos θ

∂

∂θ

]
[ε(r)g(r)] = − 1√

5
r

d

dr
[ε(r)g(r)]Y 0

2 (θ,φ). (41)

Therefore,

g0
2(r) = − 1√

5
r

d

dr
[ε(r)g(r)], (42)

ε(r) = ε(D0)
g(D0)

g(r)
−

√
5

g(r)

∫ r

D0

g0
2(r ′)
r ′ dr ′. (43)

In the reciprocal space,

S0
2 (Q) = 4πρ√

5

∫ ∞

0
j2(Qr)r3 d

dr
[ε(r)g(r)]dr =4πρ√

5

∫ ∞

0
ε(r)g(r)r

[
r cos(Qr) − sin(Qr)

Q

]
dr. (44)

As in the case of shear flow, Eqs. (43) and (44) can be used to analyze the microscopic strain in the real and reciprocal spaces,
respectively.

For the n = 2 term, the effective differential operator on u2(r)g(r) is

∂2

∂x2
x2 + ∂2

∂y2
y2 + 4

∂2

∂z2
z2 + 2

∂2

∂x∂y
xy − 4

∂2

∂x∂z
xz − 4

∂2

∂y∂z
yz = (3cos2θ − 1)2r2 d2

dr2
+ (2 + 15cos2θ − 9cos4θ )r

d

dr
+ 6.

(45)
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Here, the differential operators associated with θ and φ are omitted, as ε2(r)g(r) depends only on r . Thus, the n = 2 term is

1

8

[(
3cos2θ − 1

)2
r2 d2

dr2
+ (

2 + 15cos2θ − 9cos4θ
)
r

d

dr
+ 6

]
[ε2(r)g(r)]. (46)

Combining this result with the first-order term, one can show that the expansion up to the second order in λ involves only three
real spherical harmonics: Y 0

0 , Y 0
2 , and Y 0

4 , with

g0
0(r) − g(r) =

(
1

10
r2 d2

dr2
+ 13

20
r

d

dr
+ 3

4

)
[ε2(r)g(r)], (47)

g0
2(r) =

(
1

7
√

5
r2 d2

dr2
+ 17

28
√

5
r

d

dr

)
[ε2(r)g(r)] − 1√

5
r

d

dr
[ε(r)g(r)], (48)

g0
4(r) =

(
3

35
r2 d2

dr2
− 3

35
r

d

dr

)
[ε2(r)g(r)]. (49)

As in the case of shear flow, we can focus on g0
0(r) and integrate Eq. (47) to obtain an explicit expression for the microscopic

strain:

ε2(r) = c1

r5g(r)
+ c2

r3/2g(r)
− 1

r5g(r)

∫ r

D0

t4f (t)dt + 1

r3/2g(r)

∫ r

D0

√
tf (t)dt, (50)

where c1 and c2 are some constants and f (t) = 20
7 [g0

0(t) − g(t)]. In the reciprocal space, we have

S0
0 (Q) − S(Q) = πρ

5

∫ ∞

0
j0(Qr)r2

(
2r2 d2

dr2
+ 13r

d

dr
+ 15

)
[ε2(r)g(r)]dr. (51)

Similarly, when ε(r) is a constant, Eqs. (42), (44), (47), and (51) can be simplified:

ε = −
√

5g0
2(r)

r
dg(r)
dr

, (52)

ε =
√

5S0
2 (Q)

QdS(Q)
dQ

, (53)

ε2 = 20
[
g0

0(r) − g(r)
]

2r2 d2g(r)
dr2 + 13r

dg(r)
dr

+ 15g(r)
, (54)

ε2 = 20
[
S0

0 (Q) − S(Q)
]

2Q2 d2S(Q)
dQ2 + 3QdS(Q)

dQ

, (55)

where Eqs. (52) and (53) are the formulas used in previous studies [3,19].

IV. TESTS OF FORMULAS

A. Justification of perturbation expansion approach

In this section, we test the formulas developed in the
preceding discussions. First, we would like to verify that it is
indeed feasible to apply the perturbation expansion approach to
analyze the anisotropic PDF or structure factor; i.e., higher or-
der terms can be neglected when the deformation is small. For
this purpose, we numerically study the single-chain structure
factor of a Gaussian chain. Under affine shear deformation, the
anisotropic S( Q) is

S( Q) = 2

x2
(e−x + x − 1), (56)

where x = Q2R2
g(1 + γ sin2θ sin 2φ + γ 2sin2θcos2φ), with

Rg being the equilibrium radius of gyration. In the isotropic
case, i.e., γ = 0, Eq. (56) reduces to the well-known
Debye function. The spherical harmonic expansion

coefficients Sm
l (Q) can be straightforwardly computed by

carrying out weighing integrals with Eq. (19). The maximum
relative errors of strain estimated from Eqs. (33) and (35) are
defined as

�γ −2
2 = max

(∣∣γ − γ −2
2

∣∣/γ
)
, (57)

�γ 0
0 = max

(∣∣γ − γ 0
0

∣∣/γ
)
, (58)

where γ −2
2 and γ 0

0 are

γ −2
2 =

√
15S−2

2 (Q)/

[
Q

dS(Q)

dQ

]
, (59)

γ 0
0 =

√
30

[
S0

0 (Q) − S(Q)
]
/

[
Q2

d2S(Q)

dQ2
+ 4Q

dS(Q)

dQ

]
.

(60)
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TABLE I. Relative errors from perturbation expansion.

γ = 0.1 γ = 0.2 γ = 0.3

�γ −2
2 3.4 × 10−3 1.4 × 10−2 3 × 10−2

�γ 0
0 9.6 × 10−4 3.8 × 10−3 8.5 × 10−3

Additionally, the differences between the analytical model
result and the perturbation expansion up to the second order in
λ for S−2

2 (Q) and S0
0 (Q) are

�S−2
2 (Q) = S−2

2 (Q) − γ√
15

Q
dS(Q)

dQ
, (61)

�S0
0 (Q) = S0

0 (Q) − S(Q)

− γ 2

30

[
Q2 d2S(Q)

dQ2
+ 4Q

dS(Q)

dQ

]
, (62)

where S−2
2 (Q) and S0

0 (Q) are the exact values computed from
Eq. (56).

Table I presents the relative errors of strain estimated by
Eqs. (57) and (58), whereas Figs. 1(a) and 1(b) show how the
difference between the analytical calculation and perturbation
expansion varies with Q. It is evident that as expected the
second-order formula has higher accuracy than the first-order
one. For the strains investigated here, the relative error from the
second-order equation is smaller than that from the first-order
equation by approximately an order of magnitude. These
results support the validity of our perturbation expansion
approach, in which the high order terms can be neglected.

B. Evaluation of microscopic strain

To test the formulas for radially varying strain, we have
performed nonequilibrium molecular dynamics simulations
of interacting particles under shear, using the LAMMPS
software [31]. Our simulation box contains 16 000 particles at

a fixed density of ρ = 0.07843 Å
−3

. The pairwise interaction
is described by the modified Johnson potential [32], which
was developed for liquid iron. The SLLOD algorithm coupled
with a Nosé-Hoover thermostat is applied to the system to
simulate continuous shear [33]. Each time step is set to be 1 fs.

FIG. 1. The variation between the analytical formula [Eq. (56)]
and the formulas of perturbation expansion [Eqs. (33), (35)] as a
function of QRg for (a) �S−2

2 (Q) and (b) �S0
0 (Q) with different

shear strains.

FIG. 2. The (a) g(r) and (b) g−2
2 (r) from molecular dynamics sim-

ulation using the LAMMPS software and SLLOD algorithm, where

N = 16 000, ρ = 0.07843 Å
−3

, shear rate 1.3143 × 1011 sec−1, tem-
perature 1500 K, time step 1 fs, and modified Johnson potential were
used.

For the equilibrium PDF g(r) and expansion coefficient g−2
2 (r)

shown in Fig. 2, the temperature is 1500 K and the shear rate is
1.3143 × 1011 sec−1. These data were fitted within r ± 1.3 Å
using Eqs. (22) and Eq. (37) to extract the microscopic strain
γ (r). The result in Fig. 3 is consistent with our assumption
that Eq. (22) will reduce to Eq. (37) when the mechanical
perturbation is small.

V. DISCUSSION AND CONCLUSIONS

In conclusion, equations for extracting microscopic strain
in shear and uniaxial extension have been derived through the
perturbation expansion of the anisotropic PDF in terms of real
spherical harmonics. The resulting formulas, presented in both
real and reciprocal spaces, connect the anisotropic PDF and
structure factor in the nonequilibrium state to the correspond-
ing isotropic ones in the quiescent state. This phenomenolog-
ical approach is independent of potential form, and can be

FIG. 3. The nonaffine strain distribution as a function of r pre-
dicted by Eq. (22) and Eq. (37), where the data points were obtained
from molecular dynamics simulation using LAMMPS software and
SLLOD algorithm.
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applied to analysis of small-angle scattering experiments and
computer simulations of materials under flow and deformation.
Additionally, our formulas reduce to the affine ones as derived
in Refs. [3,4,8,11,19,20], and are equivalent to the nonaffine
strain equation found in Refs. [19,20] with the condition
d ln γ (r)/dr � d ln g(r)/dr . We further demonstrate that the
high order terms of real spherical harmonics cannot be ignored
when the mechanical perturbation rises to a certain value.
Unlike the situation for the zeroth- and first-order expansion,
the isotropic terms dg(r)/dr �= dg0

0(r)/dr and dS(Q)/dQ �=
dS0

0 (Q)/dQ for the second expansion.
In the past, significant research effort has been devoted to the

derivation of the anisotropic PDF under flow and deformation,
by assuming radially homogeneous strain [1–13]. In some
other studies [19,20,22,23], expressions for the microscopic
strain are defined by phenomenologically extending the affine
equations [Eqs. (32) and (52)]:

γ (r) ≡ −
√

15g−2
2 (r)

r
dg0

0 (r)
dr

,

ε(r) ≡ −
√

5g0
2(r)

r
dg0

0 (r)
dr

.

These equations were subsequently used to fit the experimental
g−2

2 (r) or g0
2(r) data to connect the nonaffine strain to the

anisotropic PDF and interparticle structure factor. However,
such an approach lacks a rigorous mathematical foundation.
In this work, by starting from the transformation of molecu-
lar displacement, we derive formulas for microscopic strain
through the Irving-Kirkwood perturbation expansion method.
Our method can be applied to analysis in both the real and the
reciprocal spaces. For example, the strain distribution could
be a key to distinguish the shear transformation zone and
dynamical correlated region in the systems of metallic glasses
and colloids [22,23].

We note that the traditional methods for extracting the
microscopic strain rely on the derivative of g(r) or S(Q).
This sometimes can be challenging, as good data statistics
is required. Consequently, Eqs. (23) and (44) might be a
better choice for the data analysis. Furthermore, Eqs. (31) and
(51) permit characterization of the microscopic strain through
S0

0 (Q), instead of S−2
2 (Q) (in the case of shear) or S0

2 (Q) (in the
case of uniaxial extension). As demonstrated by the numerical
study of the affine model of Gaussian chains (Table I), the
strain estimation from S0

0 (Q) has higher accuracy than the
ones extracted from S−2

2 (Q) or S0
2 (Q). In the case of nonaffine

deformation, we also find that the data quality of γ (r) evaluated
by g(r) is better than the one by g0

0(r). This stems from the fact
that dg0

0(r)/dr [dS0
0 (Q)/dQ] is actually not equal to dg(r)/dr

[dS(Q)/dQ] for high order expansion even when the structural
difference is small (Fig. 1).
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