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Memory effects in active particles with exponentially correlated propulsion
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The Ornstein-Uhlenbeck particle (OUP) model imagines a microscopic swimmer propelled by an active force
which is correlated with itself on a finite time scale. Here we investigate the influence of external potentials on an
ideal suspension of OUPs, in both one and two spatial dimensions, with particular attention paid to the pressure
exerted on “confining walls.” We employ a mathematical connection between the local density of OUPs and the
statistics of their propulsion force to demonstrate the existence of an equation of state in one dimension. In higher
dimensions we show that active particles generate a nonconservative force field in the surrounding medium. A
simplified far-from-equilibrium model is proposed to account for OUP behavior in the vicinity of potentials.
Building on this, we interpret simulations of OUPs in more complicated situations involving asymmetrical and
spatially curved potentials, and characterize the resulting inhomogeneous stresses in terms of competing active
length scales.
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I. INTRODUCTION

Active swimmers [1] are particles which have access to an
external or internal source of energy, and continually dissipate
that energy to perform persistent motion. This breaks detailed
balance, and gives rise to steady-state currents in phase space
and real space, as well as non-Gibbsian steady-state distri-
butions [2–4]. A range of other macroscopic nonequilibrium
phenomena has been investigated, including wall-dependent
pressures [5], jamming and phase separation for interacting
swimmers [4,6–9], and novel first-passage properties [10] for
noninteracting swimmers.

Two models of microscopic swimmer dynamics have re-
ceived the lion’s share of attention. Active Brownian parti-
cles (ABPs) and run-and-tumble particles (RTPs) both exert
a propulsion force of a constant magnitude and randomly
fluctuating direction. For ABPs the orientation vector un-
dergoes gradual rotational diffusion, while for RTPs it is
instantaneously randomized at Poissonian time intervals [7].
A third model, which will be the focus of this article, is
the Ornstein-Uhlenbeck particle (OUP). OUPs’ propulsion
force �η varies randomly in both magnitude and direction, with
each component being exponentially self-correlated on a time
scale τ . Although previous studies [10–17] have sought to
characterize the OUP model in a variety of situations, it remains
less thoroughly explored than the other two.

The variable propulsion force of the OUP model presents
mathematical challenges not encountered in the other models,
but it also gives rise to some interesting physics which we
explore below. Of particular interest to us in this regard is
the local pressure exerted by OUPs on confining walls. Else-
where [17] we have investigated nonequilibrium mechanical
phenomena which arise from the combination of OUPs’ spatial
correlations and their interactions with potentials; here we
present a complementary (and more thorough) discussion, and
note a number of new effects. As in our previous work, we
do not treat the correlated propulsion force �η as a nuisance
to be eliminated (as others have done–e.g., [13]); instead we

consider the full (�x,�η) phase space, which turns out to be highly
informative and helps us to develop physical insights. That
said, here we concentrate on somewhat complex geometries
and do not assume the system to be close to equilibrium, which
means that the range of analytical progress is often limited;
thus, many of our conclusions in the latter sections of the paper
will rely on numerical simulations.

The paper is organized as follows. In Sec. II we introduce the
OUP model and the notations which will be used throughout.
Since a general solution for the steady-state density is elusive,
we investigate moments of the distribution in Sec. IV and
connect them with the mechanical pressure. In Sec. V we
introduce a simplified model which gives qualitative insight
into how OUPs’ propulsion force is affected by the proximity
of potentials. We review in Sec. VI simulations of OUPs in
a simple symmetrical 1D potential, to build intuition before
considering asymmetrical potentials which develop net forces
forbidden in ideal equilibrium systems. A one-dimensional
potential is investigated in Sec. VII, while Secs. VIII and
IX concern 2D situations which permit the existence of ge-
ometrical curvature. We conclude in Sec. X. Several technical
developments are relegated to appendices.

II. SWIMMERS WITH CORRELATED PROPULSION

In one spatial dimension, the overdamped microscopic
dynamics for the OUP position x is driven by the stochastic
and self-correlated propulsion force η(t):

ζ ẋ = f (x) + η, (1a)

where the force f (x) is the derivative of an externally im-
posed potential U (x). In these dynamics, the friction term
ζ ẋ is instantaneous and memoryless, while the force η(t) is
correlated on time scale τ . Hence the fluctuation-dissipation
relation between the friction kernel and force correlation is
explicitly violated.
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To describe the fluctuations and dynamics of the propulsion
force, we imagine that it is itself driven by a hidden Gaussian
white noise ξ (t), such that

τ η̇ = −η + ξ (t), (1b)

where ξ (t) is a white noise force with 〈ξ (t)〉 = 0 and
〈ξ (t)ξ (t ′)〉 = 2ζT δ(t − t ′), with T denoting the temperature
in energy units (that is, where kB = 1). The coefficient 2ζT

controls the intensity of the white noise, and is chosen such that
the standard passive Brownian dynamics is recovered when
τ = 0.

Equation (1b) indicates that the dynamics of η(t) is in-
dependent of the particle’s position (which is also the case
for ABPs and RTPs). It also ensures that its correlation func-
tion is exponential: 〈η(t)η(t ′)〉 = (ζT /τ ) exp [−|t − t ′|/τ ]. In
Appendix A, we show that a more general situation, where
the self-correlation of η(t) is characterized by several distinct
time scales, can be treated by simply introducing a (possibly
infinite) number of hidden white noise variables. In this work,
however, we shall only concern ourselves with exponentially
self-correlated propulsion, and hence a single active time scale
τ .

Having introduced the white noise ξ (t) into Eq. (1b), we can
now consider the time evolution of a “coarse-grained” phase
space density ρ(x,η,t) [18]. This evolution is governed by the
Fokker-Planck equation (FPE):

∂tρ = − 1

ζ
∂x{[η + f (x)]ρ} + 1

τ
∂η[ηρ] + ζT

τ 2
∂2
η [ρ], (2)

where the first two terms on the right-hand side are advections
and the last term is diffusion in η space.

The FPE (2) was used in [19] to derive the stationary
distribution of a single OUP in linear and quadratic potentials.
A superficially equivalent description, favored by a number
of other authors (e.g., [8,20]), interprets η/ζ as the particle’s
swimming velocity, while we prefer to view η as propulsion
force, the difference being their time reversal signature [17].
The (x,η) phase space will be our main technical tool in this
article.

For simplicity, we may choose units which make the spatial
coordinate x and the propulsion force η dimensionless, so that
Eqs. (1) become

ẋ = f (x) + η, (3a)

αη̇ = −η + ξ (t), (3b)

where α is the dimensionless correlation time, 〈η(t)〉 = 0, and
〈η(t)η(t ′)〉 = (1/α) exp [−|t − t ′|/α]. The FPE corresponding
to Eq. (3) is

∂tρ = −∂x{[η + f (x)]ρ} + 1

α
∂η[ηρ] + 1

α2
∂2
η [ρ]. (4)

In this paper we shall frequently consider quadratic poten-
tials with spring constant k. The convenient units to recover
dimensionless equations (3) and (4) are then length = √

T/k,
force = √

T k, and time = ζ/k. In these units, the dimension-
less correlation time α ≡ τk/ζ . For clarity, we shall henceforth
work in units where all variables are dimensionless and the
distance from equilibrium is parametrized by α.

From the correlation function for η(t), we may infer a
characteristic propulsion force 1/

√
α, which in turn suggests

a characteristic length scale
√

α over which the propulsion of a
free OUP remains correlated. These scales will come in useful
for interpreting OUP behavior. For instance, at any point which
is many correlation lengths away from the nearest potential—
we call this “deep in the bulk”—the spatial derivative in Eq. (4)
disappears, and the dynamics is that of an Ornstein-Uhlenbeck
process with steady-state distribution

ρ
(deep

bulk ,η
) ∝ exp

[− 1
2αη2

]
. (5)

III. OUPs AND PASSIVE PARTICLES

In this section, we highlight two cases where the OUP
model can be linked to the dynamics of passive particles. First,
we discuss a superficial similarity between the OUP and a
Brownian particle in a shear flow. Second, we detail how the
limit of small correlation times gives rise to passive Brownian
dynamics.

A. Analogy with a passive particle in a shear flow

The OUP model with a quadratic external potential in
one spatial dimension bears some similarity to, as well as a
fundamental difference from, the two-dimensional dynamics
of an overdamped Brownian particle which is confined by a
harmonic potential and experiences linear shear. For instance,
we can imagine a Brownian particle attached by a spring (with
spring constant k) to the origin and subject to a shear flow with
velocity vx = γy, where γ is the shear rate. Such a system is
described by a pair of Langevin equations

ζ ẋ = −kx + γy + ξx(t), (6a)

ζ ẏ = −ky + ξy(t), (6b)

where ξx(t) and ξy(t) are two mutually independent white
noises: 〈ξa(t)〉 = 0 and 〈ξa(t)ξb(t ′)〉 = 2ζT δabδ(t − t ′). This
system exhibits some analogy with our system: in both cases,
the system arrives with time at the steady state with a two-
dimensional Gaussian density distribution [21]. Moreover, it
is easy to find shear rate γ at which elliptic level lines of the
two-dimensional density will have the same inclination.

Importantly, neither system comes to equilibrium, and their
respective steady states are characterized by loopy currents
(which in the case of the passive particle is simply tumbling).

But the analogy, however appealing, stops at this point. In
the shear flow case, the system does not come to equilibrium
because it is subject to a nonconservative (nonpotential) field
of forces (compare to [22]). By contrast, OUPs do not come to
equilibrium for a fundamentally different reason: because their
memoryless friction and correlated propulsion force violate
fluctuation-dissipation. Mathematically this is reflected in the
absence of white noise terms in the first of the two Langevin
equations, Eq. (3a).

B. OUP diffusion equation on long time scales
in a smooth potential

The Fokker-Planck equation (4) contains no diffusion in
the x direction. Yet on dimensionless time scales much longer
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than the correlation time α, the correlated noise η(t) should
act like white noise. It is methodically important to understand
how diffusion along x arises over long times, but this currently
appears to be missing from the OUP literature.

In d dimensions, Eq. (3a) governing the dynamics of the
OUP position �x reads

�̇x = �f (x) + �η(t). (7)

We can transform this into an advection equation for the time-
dependent density n(�x):

∂tn(�x,t) = −�∇ · {[ �f (�x) + �η(t)
]
n(�x,t)

}
. (8)

For any advection equation, translation in time is equivalent to
a translation in space along a characteristic. The solution must
therefore obey

n(�x,t + δt) = n

(
�x −

∫ t+δt

t

[ �f (�x) + �η(t ′)
]
dt ′,t

)
, (9)

provided the time scale of interest, δt , is small enough that �f (�x)
does not change substantially due to the particle’s motion (this
is discussed further below). If this condition is satisfied, we
can Taylor expand to second order:

n(�x,t + δt) 
 n(�x,t)

− �∇ ·
{∫ t+δt

t

[ �f (�x) + �η(t ′)]dt ′n(�x,t)

}

+ 1

2

∫ t+δt

t

[ �f (�x) + �η(t ′)]dt ′

×
∫ t+δt

t

[ �f (�x) + �η(t ′′)
]
dt ′′ · ∇2n(�x,t). (10)

As stated above, we are interested in situations where the
correlation time is small compared to the time scale of interest:
α � δt . Then �η(t) samples much of the available state space
in time δt , and we are justified in taking an average over the
random variable. The mean 〈�η(t)〉 = �0, while the correlator
〈�η(t ′) · �η(t ′′)〉 = (d/α) exp [−|t ′ − t ′′|/α]. The average of the
first integral of Eq. (10) is therefore easy, while the second
integral takes a couple of lines and equals α δt + O(α2).
Ignoring terms proportional to δt2, we obtain (in regular units)

∂tn(�x,t) 
 − 1

ζ
�∇ · [ �f (�x)n(�x,t)

] + D∇2n(�x,t), (11)

where the diffusivity D ≡ 2T d
ζ

. Thus we recover the advection-
diffusion equation for passive particles, provided the time scale
of interest is larger than the correlation time, and the potential
does not vary too quickly.

A more quantitative statement of this last condition will
depend on the particular potential under consideration. Gener-
ically, we want to ensure that in time δt the OUP does not
displace a significant distance compared to the smallest length
scale of the external potential. Since we consider the small
correlation time regime and �η(t) is statistically averaged, it
is fair to say that the relevant displacement length scale is
the particle’s root-mean-square displacement over time δt ,√
〈[�x(δt) − �x(0)]2〉.

IV. PRESSURE EXERTED BY A CONFINED OUP

While it is interesting to know how active OUPs behave like
passive particles in a smooth potential landscape over a long
time, it is more interesting when there are clear signatures of
activity. Following previous works, we shall now investigate
the behavior of OUPs which exert pressure on relatively
sharp potentials. Nomenclature-wise, we designate regions of
constant potential as the “bulk” and static potential barriers
as “walls.” In many cases, these walls grow to infinite height,
confining the OUP to a finite volume.

Consider a steady state in one spatial dimension. The
mechanical pressure exerted by OUPs can be defined as simply
the product of the spatial density at each point on the wall, n(x),
with the force the wall exerts on each particle at that point,
−f (x), integrated over all points:

P = −
∫ top of wall

foot of wall
n(x)f (x)dx. (12)

In higher dimensions, it is natural to generalize formula (12)
by performing the integration over a path C connecting the top
and bottom of the wall:

P = −
∫
C
n(�x) �f (�x) · d ��. (13)

In the special case that the “density of force” n(�x) �f (�x) can
be expressed as the gradient of a scalar field, this integral is
independent of the path C. It is instructive to see that this is
always the case in any equilibrium system, as we show below
in Sec. IV A. In Sec. IV B we demonstrate that it is also true
for OUPs in one dimension, and hence formula (13) allows us
to determine their pressure. In other cases, as we shall show in
Sec. IV D, the density of force may not be a potential field, and
formula (13) is not sufficient. In such cases, coarse-graining the
system over time scales larger than τ and over distances larger
than ητ/ζ (with η properly averaged) and properly averaging
formula (13) may warrant additional investigation (see also
[23,24]).

A. Pressure in an equilibrium system

To fully appreciate the peculiarities of active OUPs, it is
useful to understand how formula (13) works in the familiar
equilibrium scenario. In the presence of confining potential
u(�x), the equilibrium density n(�x) balances so as to maintain
constant total chemical potential, μ(n(�x)) + u(�x) = constant
(see, e.g., Ref. [25], Sec. 25). Taking the gradient of this
equation and remembering that �∇u = − �f (�x), we arrive at
∂μ

∂n
�∇n = �f (�x). Multiplying now both sides by n(�x) and using

the thermodynamic relation n
∂μ

∂n
= ∂p

∂n
, we finally discover that

n(�x) �f (�x) = �∇p. (14)

Thus, the vector field n(�x) �f (�x) is conservative, and the local
pressure p plays the role of its potential. If an equilibrium
system is confined by walls, then the material of these walls is
subject to the potential force field exerted by our system, and
this material itself can be in equilibrium.
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B. OUP pressure in one dimension

We now seek the pressure exerted by OUPs in one di-
mension, and start by finding the moments of the η distribu-
tion, defining the mth moment of η at each point in space,
〈ηm〉(x), as

〈ηm〉(x)n(x) ≡
∫ +∞

−∞
ηmρ(x,η)dη. (15)

Using the steady-state FPE (4) these moments are found to
obey the recurrence differential equation

0 = − ∂x[(〈ηm+1〉 + 〈ηm〉f )n] − 1

α
m〈ηm〉n

+ 1

α2
m(m − 1)〈ηm−2〉n, (16)

where α is the dimensionless correlation time scale as before,
and we have omitted all x dependence. For a confined system
in the steady state, the first moment is

〈η〉(x) = −f (x), (17)

meaning that for any x, the average propulsion force exerted
by a single particle is balanced by the potential force at that
point. The second moment obeys

0 = ∂x{[〈η2〉(x) − f (x)2]n(x)} − 1

α
f (x)n(x). (18)

Whereas Eq. (17) represents the balance of forces on a single
particle, Eq. (18) can be interpreted as the balance between the
propulsion force of an ensemble of particles, and the stresses
they impart to the surrounding medium. This will be shown
to generalize to higher dimensions in Eq. (22), and a more
elaborate “hydrodynamic” discussion can be found in [24]. As
was shown in [14], the moments of the FPE are independent
of the precise dynamics of the active force, and so essentially
the same equations were derived in [5,26] for the ABP model.

To find the total pressure on a confining (infinitely high)
wall, we substitute Eq. (18) into the definition of mechanical
pressure in Eq. (12), and integrate over x from somewhere in
the bulk (where f = 0) to x = ∞. Then

P = α〈η2〉(x)n(x)|bulk, (19)

where the right-hand side is evaluated in the bulk. This result,
reminiscent of Bernoulli’s principle and closely analogous to
the one derived in [26] for ABPs, relates the pressure exerted
on a wall to bulk properties—an equation of state for OUPs in
1D. Crucially, the right-hand side of Eq. (19) is independent of
precisely where in the bulk it is evaluated: this can be proved
by setting f = 0 in Eq. (18) to find

〈η2〉(x)n(x) = constant (in bulk). (20)

This is not a trivial statement, since active particles’ density
is strongly affected in the vicinity of walls even when no
force acts. But the prediction is well supported numerically,
as discussed below in Sec. VI.

Note that we consider pointlike like OUPs which experience
forces but no torques from the external potential. Active
particles which do feel torques generically do not obey an
equation of state, as was shown in [5,27] for ABPs and RTPs.
However, in this paper we shall stick with the simpler case of
pointlike particles.

C. Large bulk vs small bulk

Pressure in 1D is fully determined by bulk properties, and
in the limit of a large bulk, it is in fact determined by the
ideal gas law for passive particles (see also [17,26]). This
follows straightforwardly from formula (19): deep in the bulk,
far from boundaries, n(x)|bulk = n; and from Eq. (5), 〈η2〉(x) =
1/α. Together these yield P = n (or the familiar P = nT in
dimensionful units).

When the large-bulk limit is not satisfied, and walls do
influence each other, the pressure deviates from the passive
thermal value according to Eq. (19). Once again, the central
thrust of this paper is to investigate how the proximity of
walls influences the pressure, and our findings will allow us
to construct examples of arrangements of potentials which
experience net forces from the surrounding OUPs.

In order to develop the necessary intuition for how interac-
tion with external potentials affects the state of an OUP, and
in particular how it affects the constant defined in Eq. (20),
we shall consider in Sec. V a simplified model of an OUP
interacting with a single wall in 1D. First, however, it is
convenient to briefly discuss the pressure exerted by OUPs
in higher dimensions.

D. Pressure in higher dimensions

We shall show in this section that, in contrast to the 1D case
just discussed in Sec. IV B, pressure in higher dimensions is
generally not a function of bulk properties.

We start by writing the steady-state FPE in d dimensions as

0 = −∂i{[ηi + fi(�x)]ρ} + 1

α
∇i[ηiρ] + 1

α2
∇i∇i[ρ], (21)

where Roman indices denote vector components, repeated
indices are summed over, ∂ denotes a spatial derivative, and ∇
denotes a derivative with respect to propulsion force. Following
the same procedure as for 1D, we find 〈ηi〉(�x) = −fi(�x)
[analogous to Eq. (17)], and

0 = −∂i[(〈ηiηj 〉 − fifj )n] + 1

α
fjn (22)

[analogous to Eq. (18)].
Intriguingly, the first term of Eq. (22) has a nonzero curl;

thus it does not represent a potential vector field, and hence
it renders Eq. (13) insufficient to define pressure in general.
There are two major exceptions to this rule, when the curl of
the first term in Eq. (22) happens to be zero. First, in geometries
where �f (�x) varies only along one Cartesian dimension (which
trivially includes the case of d = 1), the offending term can
be expressed as the gradient of a potential field. The pressure
is therefore well defined—and moreover obeys an equation of
state. The second case where pressure is a meaningful quantity
is in radially symmetric geometries. This will be explored
further in Sec. IX for d = 2, where we show that there is no
equation of state.

Note that we started with a mechanical definition of pres-
sure; i.e., we consider the potential force required to support a
given distribution of particles. Others have examined the corre-
spondence between this formulation and statistical mechanical
definitions; see for instance the works [5,28] on ABPs and
RTPs, or [23,24] and especially [29] for the OUP model close
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to equilibrium (we shall make some further comments on the
approach of [29] in Sec. IX).

V. ZERO-DIFFUSION APPROXIMATION IN 1D

Returning to one spatial dimension, we now introduce a
simplified model in order to explore the influence of potentials
on OUP behavior. The qualitative insights thus obtained will
help us interpret phenomena observed in simulations of the full
model.

Consider an OUP with propulsion force η which brings it
to a confining wall, where the potential grows rapidly. From
Eq. (3a), we see that it will penetrate into the wall region
only until its η is balanced by the potential force—so if the
wall in question is very steep, the particle’s η must be very
large to substantially penetrate. In such circumstances, which
in dimensionless units correspond to α  1, the dynamics
of η within the wall region are dominated by drift rather
than diffusion, and so we may simplify the OUP problem by
neglecting the final diffusive term in the FPE (4).

The dynamics of this system in one spatial dimension
are characterized by the flow field in the (x,η) plane. The
components of the current are given by

�J (x,η) =
(

η + f (x)

− 1
α
η

)
ρ(x,η). (23)

In some cases, useful for illustration, we can solve the
trajectories exactly. Defining the velocity field �v(x,η) = �J/ρ,
particle trajectories are described by

dη

dx
= vη

vx

= − 1

α

η

η + f (x)
. (24)

Let us choose coordinates such that the confining potential
spans the region x > 0. If the potential is linear, we pick
units such that f (x � 0) = 1 and f (x < 0) = 0, and the

dimensionless correlation time α ≡ τf 2
0

ζT
(where f0 is the slope

of the potential). An OUP which enters the wall region at
(x = 0,η0) will follow the trajectory

x(η) = α

(
η0 − η + ln

[
η

η0

])
(linear potential). (25)

If the potential is instead quadratic, and α ≡ τk
ζ

as defined in
Sec. II, the trajectory is

x(η) = α

α − 1
η

[
1 −

(
η

η0

)α]
(quadratic potential) (26)

(remember we must have α  1 for this approximation to
apply). The trajectories (25) and (26) are plotted parametrically
in Fig. 1.

The insets in Fig. 1 show the phase-space density in the
wall region, which was found by invoking continuity of current
along a trajectory. To perform this calculation, we assumed that
OUPs entered the wall region with η drawn from the deep-bulk
Gaussian distribution (5)—a somewhat inconsistent choice in
the high-α regime where there is significant distortion of the η

distribution close to the wall. Nevertheless, there is qualitative
agreement with the density found by numerical simulations, to
be discussed in the following section.

(a)

(b)

FIG. 1. Trajectories in (x,η) for the diffusion-free approximation
in the wall region. Each line corresponds to a different η0. Insets
show the resulting phase space density (darker shading means
higher density). (a) Linear potential U = x. (b) Quadratic potential
U = 1

2 x2.

However, the main physical insight derived from this
diffusion-free model is evident from the trajectories in Fig. 1
and concerns the effect of walls on a particle’s η: OUPs ejected
from the wall region tend to have “depleted” 〈η2〉, meaning they
move slowly and contribute to a density peak in the vicinity of
the wall.

VI. AN OUP CONFINED IN A FINITE BULK

The next two sections present the results of single-OUP
simulations in one spatial dimension [though as discussed
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x

η
n

&
〈 η

2〉
n

FIG. 2. Contours: Density ρ(x,η) for an OUP confined by
quadratic walls with a finite bulk of zero force in between (this
region is demarcated by vertical lines). Vectors: Velocity field. Curves:
Projected spatial density n(x), which varies in the bulk, and the
quantity 〈η2〉(x)n(x) of Eq. (20), which is indeed constant in the bulk.

in Sec. IV D, the results apply equally well to quasi-one-
dimensional channels, where U (�x) = U (x)]. The simulation
consists of integrating the dimensionless stochastic equations
(3) until convergence to the steady state.

In Sec. IV B, we found that in 1D there is both a sensible
definition of pressure and an equation of state (19). But as we
shall see, there are still a number of interesting consequences
of the OUPs’ activity.

It has been shown previously that when an OUP is confined
in 1D a quadratic potential, its steady-state density in (x,η)
space is a bivariate Gaussian [17,19]. Let us now consider a
potential landscape where there is a finite bulk region (where
the external force is zero) between two piecewise-quadratic
confining walls. The simulated density and velocity field is
shown in Fig. 2.

Equation (20) predicts that the product 〈η2〉(x)n(x) is a
constant in the bulk, regardless of where it is evaluated. This
is verified by the red curve in Fig. 2, which remains flat all the
way up to the wall even though the density n(x) (blue curve)
is changing.

Since the quantity 〈η2〉(x) is related to the pressure through
Eq. (19), it is interesting to know how it might be influenced
by the size of the bulk region between the walls. The main
finding of the previous section, Sec. V, was that 〈η2〉 diminishes
in the vicinity of walls. Thus, we should expect that closely
spaced walls will diminish the OUP pressure. Furthermore,
it is reasonable to suppose that this effect will be at its
strongest when the width of the bulk is smaller than the
free-particle correlation length, L � √

α, such that the OUP
has insufficient time to recover its depleted propulsion force
between interactions with walls. (It bears pointing out that
such finite-size effects are routinely observed in systems of
interacting passive particles. But whereas these correlations
are induced by long-range forces, for OUPs they are a result of
the particle’s memory.) This was investigated further in [17].
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FIG. 3. Main figure: Pressure (circles, solid) and total probability
(triangles, dashed) on either side of the penetrable inner wall, plotted
against α ≡ kτ/ζ . The small bulk experiences larger pressure and
accumulates more particles. Upper inset: η distribution in the bulk of
the two regions. The small bulk has a narrower distribution. Lower
inset: A sketch of the potential.

VII. A PENETRABLE INTERIOR WALL

The far-reaching influence of potentials on the statistics of
OUP propulsion suggests that, even in the steady state, an
arrangement of identical walls separated by bulks of unequal
size will result in net forces—something which is forbidden for
passive particles in equilibrium (in the absence of long-range
interactions).

Active pressure imbalances have been investigated before,
for instance in [5], where the alignments of elliptical ABPs
were affected differently by potentials on either side of a
partition. This was shown to destroy the equation of state, and
resulted in translation of the partition.

However, in the situations to be investigated here, the
physics is fundamentally different. We consider pointlike
particles which experience no torques, so the equation of state
(19) is preserved. The net forces arise not from OUPs’ specific
interactions with walls, therefore, but from the dissipating
memory of spatial correlations that these interactions induce.
Put simply, we observe the influence of the gaps between the
walls, rather than the walls themselves.

More concretely, we performed simulations of an OUP
confined to a volume featuring a small, penetrable interior
wall placed asymmetrically between the confining walls (see
illustration in the lower inset of Fig. 3). The solid lines in
Fig. 3 plot the pressure on either side of the interior wall. For
α > 0, a pressure difference develops in the direction of the
larger bulk, such that if the interior wall were mobile, stable
mechanical equilibrium would be established only in the case
of spatial symmetry (and since the wall is penetrable, the total
OUP mass on either side would be equal, in contrast with the
ABP simulations in [5]).

That the pressure is higher on the side of the small bulk
seems to contradict the conclusions of Sec. VI, where it was
argued that the OUP pressure on confining walls grows with
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the size of the bulk. The solution of this conundrum is the
penetrability of the interior wall, which causes the smaller bulk
to act like a “particle trap” (see also Ref. [17]). In Sec. V, we
found that walls do indeed sap OUPs’ propulsion forces, which
diminishes their penetration, but in this context the outcome is
that particles in the small bulk are too feeble to overcome the
force barrier and escape. This is not the case for the neighboring
large bulk, which shoots high-propulsion particles over the
interior wall and into the small bulk. Hence, mass accumulates
disproportionately in the smaller bulk, and this outweighs the
effect of diminished propulsion and penetration.

Also of interest is the nonmonotonicity of both pressures
in Fig. 3, which can be understood as a competition between
decreasing penetration and force-controlled accumulation. We
can roughly divide the domain into three regions: α � 1, where
the pressure on both sides of the interior wall is lower than
the thermal value and falls with α; the region 1 � α � 5
where the pressure grows with α; and the region 5 � α where
the pressure once again falls with α. In the first region, we
are seeing the effects of diminished penetration, while in the
second, accumulation around the interior wall is the dominant
factor (since the wall is penetrable, the accumulation on one
side of the wall reinforces that on the other side). In the third
region, α is sufficiently high (and the penetration sufficiently
low) that the two wells become isolated, and the accumulation
on either side no longer reinforces. Then we are approaching
the situation from Sec. VI (times two) where the pressure on
two confining walls was equal and fell with α.

Taking all four walls into account (see Fig. 11 below), the
system experiences a net force in the direction of the larger
bulk, provided the potential is permeable to the medium. Since
only the OUPs are free to move, the entire system will then
translate in this direction. (This contrasts superficially with the
ABP setup considered in [5], for which the system translates
only until mechanical equilibrium is established.)

Further consequences of these phenomena are explored in
[17], which describes a repulsive interaction between walls in
a Casimir-type setup.

VIII. GEOMETRICAL CURVATURE

We have seen in the previous section that an asymmetrical
placement of walls may result in OUPs exerting unbalanced
forces even in 1D. The diversity of possible asymmetries
broadens in higher dimensions to include spatial curvature.
The nontrivial interactions of ABPs and RTPs with curved
hard walls has previously been investigated theoretically and
in simulations [30–33], as well as in experiments [34,35].

First we shall consider a potential analogous to the one in
[33], where a bulk region is flanked by sinusoidal equipoten-
tials (sketched in the inset of Fig. 4),

U (x,y) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1
2

[
x − R + A sin

(
2π

y

λ

)]2
,

for x > +R − A sin
(
2π

y

λ

)
,

1
2

[
x + R + A sin

(
2π

y

λ

)]2
,

for x < −R − A sin
(
2π

y

λ

)
,

0, elsewhere,

(27)
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FIG. 4. Main figure: Projected density n(x,y), with the bulk
region on the left and darker color corresponding to higher density.
Inset: Potential (periodic along y, with period λ), where darker color
corresponds to higher potential.

where R is the mean position of the wall, A is the amplitude
of the sinusoid, and λ is the period. For now we shall consider
wall separations R so large that the bulk is essentially infinite,
that is, R  √

α.
The simulated density n(x,y) is shown in Fig. 4. We can im-

mediately see that force-controlled accumulation along bound-
aries is still a dominant feature. Like ABPs and RTPs confined
by hard walls (see Supplemental Material of Ref. [33]), OUPs
concentrate at the concave apex (y = 0.75λ), and are depleted
in the surrounding bulk. Both these features are also evident in
Fig. 5.

These observations are intuitively reasonable, and are most
easily explained in the large-persistence limit, where the time
for a swimmer to travel the length of the wall boundary
is less than or comparable to the correlation time [30,31].
In the bulk of the concave region (i.e., y > 0.5λ and 3λ <

x < 4λ in Fig. 4) particles are likely to be “captured” by
the surrounding walls, depleting the density in this region.
Moreover, particles which approach the wall boundary with
�η pointing towards the concave apex (relative to the local wall
normal) will be channeled towards that apex until their �η is
matched by the opposing potential force �f , which happens
when �η is aligned with the wall normal. Having reached a
mechanical equilibrium, these particles linger and contribute
to the pressure until their �η changes substantially enough to
take them off the wall. If on the other hand particles approach
the wall boundary with �η pointing away from the concave apex,
their �η will never be balanced by �f and they eventually shoot
off the wall into the bulk.

Since OUPs exert a propulsion force of variable magnitude
on the soft walls, the density at a given point of the wall cannot
be simply related to its local curvature –as was the case in [31]–,
even in the high-persistence limit. An illustration of this fact is
visible in Fig. 5, where both the peak density and the density
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FIG. 5. Slices of density at fixed coordinate y, from the convex
apex (y = 0.5λ) to the concave apex (y = 0.75λ), where λ is the
period of the wall. Peaks move progressively to the right with
increasing y, as one would expect. The x position of the wall is
indicated by a dashed line of matching color.

for a given distance into the wall region is nonmonotonic along
the wall.

In Sec. IV D we showed that in multidimensional geome-
tries such as this one, the OUP pressure calculated according to
Eq. (13) is path-dependent, and therefore the terms “pressure”
(or “stress”) must be accompanied by the understanding that
we have invoked some provisional definition. Following [33],
we consider the following active stress on a soft wall in the x

direction:

Px(y) = −
∫ ∞

bottom of wall
f (x,y)n(x,y)dx. (28)

Figure 6 shows that between the two apices of the wall this
stress is monotonic, and broadly resembles the analogous
results for ABPs confined by hard walls [33].

It was furthermore shown in [33] that for ABPs, the stress
Px(y) integrated over a period of any periodic wall is equal to
the (uniform) pressure experienced by a flat wall. The same is
true for OUPs, as shown explicitly in Appendix C. Therefore,
on spatial scales larger than the periodicity λ an equation of
state is recovered once more.

IX. RADIALLY SYMMETRIC GEOMETRY

Geometrical curvature also exists perforce in radially sym-
metric geometries, where U (�r) = U (r). We consider a two-
dimensional arena where an annular bulk is immured on
both the inside and outside. This allows us to investigate
more methodically how the active pressure depends on the
magnitude and sign of the curvature.
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FIG. 6. Stress in the x direction as a function of y [defined
in Eq. (28)]. The α = 0 pressure is constant, and lines progress
monotonically with increasing α. Note logarithmic ordinate.

Transforming the FPE into polar coordinates, we may find
the recurrence relation for the steady-state density’s moments,
analogously to Eq. (16) in Sec. IV B (see Appendix D for
the radially symmetric expression). Let ψ denote the angle
between a particle’s position vector and its propulsion force
(�r · �η = rη cos ψ); then

〈η cos ψ〉(r) = −f (r), (29)

which, similarly to Eq. (18), means the radial component of
the propulsion force must be balanced on average by the radial
potential force. The second moment gives

0 = − ∂r [(〈η2 cos2 ψ〉 − f 2)n]

− 1

r
(〈η2 cos2 ψ〉 − 〈η2 sin2 ψ〉 − f 2)n

+ 1

α
f n, (30)

where all quantities are r-dependent. The Jacobian factor
on the second line of Eq. (30) cannot be written as a total
derivative with respect to r; thus there is no equation of state
(see Sec. IV). Nevertheless, since only the radial coordinate
appears in Eq. (30), the integral to find the pressure exerted
on a wall is insensitive to the path taken. It is natural to define
P = − ∫

f (r)n(r)dr , and consequently

P = α〈η2 cos2 ψ〉n|bottom of wall+

− α

∫ top of wall

bottom of wall

1

r ′ (〈η2 cos2 ψ〉+

− 〈η2 sin2 ψ〉− f 2)ndr ′, (31)

where “bottom of wall” could be anywhere in the bulk and “top
of wall” is at r = 0 for the inner wall, or r = ∞ for the outer
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FIG. 7. Spatial density n(r) for annular geometry, with U (r) =
1
2 (r − 5)2 and α = 5. The OUP density is more sharply peaked than
the passive particle density, and the average OUP position is offset
from the bulk in the +r direction, signaling a tendency for OUPs to
collect in geometrically concave wall regions.

wall. Here we see explicitly the dependence of the pressure on
statistical properties of particles in the wall region. However,
when the bulk is large compared to the correlation length

√
α,

the first term in Eq. (31) dominates, restoring an approximate
equation of state. Furthermore, when the bulk region extends
to R  1 the wall curvature is small and the density resembles
that for flat walls.

The discussion of curvature in the previous section suggests
that the pressure on the outer wall must be larger than that on the
inner wall [this can also be argued from the sign of the integral
in Eq. (31)]. This was verified numerically in [17], which
considered the simplest potential with both signs of curvature,
U (r) = 1

2 (r − R)2, and found the pressure difference followed
the difference in curvatures ∼R−1. An example of a radial
density profile is shown in Fig. 7.

Recent work, based on the unified colored noise approx-
imation, has developed specific predictions for the density
in radially symmetric geometries [16]. These nicely capture
some qualitative features we observe, such as the shift of the
maximum seen in Fig. 7. However, they also produce a number
of inconsistencies, for instance predicting negative densities
for radii r/R < α/(α + 1), and failing to capture accumulation
effects around walls in one or more dimensions.

We now consider another aspect of this annular geometry,
namely the role of persistence in OUPs’ pressure with curved
potentials. To this end, the pressure difference is plotted against
α in Fig. 8. A number of features stand out. First, when R = 0
and the potential is a simple quadratic, U = 1

2 r2, the pressure
on the outer wall is α-independent. This is a mathematically
trivial fact in two dimensions.

The nonmonotonicity in the pressure difference speaks to
two competing regimes for the curvature. At low α, the relevant
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FIG. 8. Pressure difference (Pout − Pin)/P passive
out plotted against α

for several bulk radii R. The potential is the radially symmetrical
U (r) = 1

2 (r − R)2, where the bulk has zero width. For a given α,
the pressure difference diminishes with R. Note that �P (α = 0) �= 0
when R is small enough that the inner wall is substantially penetrable.
Note also that �P continues to increase slowly with α for R � 10.

parameter is the persistence length times the curvature, since
only particles with sufficiently high persistence can tell the
geometry is curved. In the opposite limit, when α is large and
the penetration is correspondingly small, the pressure on either
wall and hence their difference must likewise become small.
For a given R, these two effects balance at an α∗ which can
be roughly estimated from �P |small α ∼

√
α

R
and �P |large α ∼

1√
α+1

which together imply the observed α∗ ∼ R.
When the inner and outer walls differ in both curvature

sign and magnitude, as in the case of annular geometry with a
finite bulk size, these phenomena become somewhat distorted.
Notation-wise, let the foot of the outer wall be at radial
coordinate R as before, and the foot of the inner wall be
at coordinate S, such that U (S � r � R) = 0. The pressure
difference between outer and inner walls for a bulk of size
1 (that is, R − S = 1) is presented in Fig. 9, and resembles
in several respects the R = S data from Fig. 8. However, we
observe two small differences.

The first difference is that, at high α, the existence of the
finite bulk will raise the pressure on each wall for a given α

and R. This is consistent with the findings of Sec. VI, where a
larger bulk allows 〈�η2〉 to recover from its wall-depleted value.
The outcome is to make the slope of P (α) shallower, as seen
by comparing Figs. 8 and 9.

The second effect, which manifests at low α, is more
interesting as it arises from the curvature difference. The inner
wall has higher curvature than the outer wall (1/S > 1/R),
and as α increases from zero (and the OUPs acquire finite
persistence length), its curvature will be felt first. Hence at low
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FIG. 9. Analogous to Fig. 8, but where the bulk has finite width.

α, the curves for a given S match better than the curves for
a given R. (This can be seen by comparing the R = 0 and 1
curves from Fig. 8 with the R = 1 and 2 curves of Fig. 9.) The
curvature of the outer wall only becomes relevant at higher α.

Taking both these effects together, we see in Fig. 9 that
the peaks marking the crossover between curvature-dominated
and flat wall behavior are broadened compared to the zero-bulk
case.

X. CONCLUSION

In this paper we sought to develop intuition for how
the active force which propels Ornstein-Uhlenbeck particles
(OUPs) becomes depleted through interaction with potentials,
and how this manifests at long range due to OUPs’ memory.
These findings were employed to design several situations
where obvious nonequilibrium effects would arise, the details
of which were explored through numerical simulation.

In one spatial dimension, an asymmetrical arrangement
of bulk regions (where there is zero external force) resulted
in a net active pressure. These results appear qualitatively
similar to previous studies of active Brownian particles (ABPs)
interacting with hard walls [5]; however, the physics of the
situation is somewhat different, as we demonstrate that neither
alignment interactions nor long-range interactions are neces-
sary for net active forces to develop. Thus the appearance
of nonequilibrium behavior is controlled not so much by the
specific interactions between particles and walls, but by the
regions where no interaction takes place.

In two dimensions, the role of spatial curvature on OUP
behavior was investigated numerically in two scenarios. First
we explored the development of inhomogeneities in density
along the contours of a soft wall, and connected them to an
ad hoc definition of pressure. While our results were broadly
in line with previous work for other swimmer models (most

notably [33]), we also observed differences such as a departure
from the density-curvature relationship predicted in the high-
persistence limit [31].

The second test of curvature considered a radially symmet-
ric geometry, building on the work of [17]. Having showed that
no general equation of state exists for this system, we argued
that competition between the active persistence length scale
and the curvature length scale leads to nonmonotonic pressure
differences between convex and concave walls.

As a further remark, the annular geometry just discussed is
somewhat reminiscent of a cylindrical rheometer. Our findings
about how OUPs’ stress responds to curvature indicate that care
will have to be taken to properly define the viscoelastic moduli
which are measured in experiments involving active matter. In
particular, shearing with the inner cylinder or the outer cylinder
will give different results.
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APPENDIX A: GENERAL CORRELATION FUNCTION

Consider an overdamped particle driven by a stochastic
propulsion force ��(t) of zero mean and an arbitrary self-
correlation function φ(t). Mathematically, we have

�̇x = �f (�x) + ��(t), (A1)

〈�i(t)〉 = 0,
〈
�i(t)�j (t ′)

〉 = δijφ(|t − t ′|), (A2)

where vector components are labeled by the indices i,j . This
propulsion force can be constructed from a weighted sum
of exponentially correlated stochastic forces �ηα , which have
dimensionless correlation time α, and whose components obey
the equation

αη̇α,i = −ηα,i + ξα
i (t), (A3)

where ξα
i (t) is a Gaussian white noise with 〈ξα

i (t)ξα′
j (t ′)〉 =

2δi,j δα,α′δ(t − t ′). Let the weights in the sum be called wα ,
such that

�i(t) =
∫ ∞

0
wαηα,i(t)dα. (A4)

The relationship between the weights wα and the correlation
function φ(t) is as follows. From Eq. (A4), we compute

〈
�i(t)�j (t ′)

〉 =
〈∫ ∞

0
dα

∫ ∞

0
dα′wαwα′ηα,i(t)ηα′,j (t ′)

〉
.

The correlator on the left is the known function φ(|t − t ′|),
while on the right the only random variables are the exponen-
tially correlated components of �ηα . Thus,

φ(t) =
∫ ∞

0
dα

∫ ∞

0
dα′ wαwα′δ(α − α′)

1

α
exp [−t/α]

=
∫ ∞

0
dα w2

α

1

α
exp[−t/α]. (A5)
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Recognizing Eq. (A5) as a Laplace transform between con-
jugate variables t and 1

α
, we can write the weights wα as the

inverse transform

wα =
√

αL−1[φ(t)](α). (A6)

Provided the inverse transform L−1[φ(t)](α) exists, an arbi-
trarily correlated noise ��(t) can therefore be constructed from
exponentially correlated noise �η(t).

APPENDIX B: INFLUENCE OF AN INTERIOR WALL ON
PROPULSION DISTRIBUTION AND NET FORCE

In Sec. VII, we considered a scenario with an OUP confined
in a volume which featured a small (that is, penetrable)
potential barrier. The distribution of η in the bulks on either
side of this barrier was already shown in the inset of Fig. 3. In
Fig. 10 we show another example for an even smaller interior
wall.

For very large bulks, the two distributions in Fig. 10 would
be Gaussian, but here we see two non-Gaussian features. The
first is for the small bulk around η = +0.5, where particles
from the large bulk are able to overcome the barrier (whose
maximum force is 0.5); the barrier is here acting as a kind of
filter for high-η particles. Since these particles will go on to
interact with the confining wall which diminishes their η, there
is no analogous limb around η = −0.5. The second, related
feature is the compensating distortion of the distribution in the
large bulk, which preferentially retains its small-positive-η and
large-negative-η particles.

Figure 11 shows the pressure on all four walls (that is, the
two sides of the interior wall and the two confining walls),
along with the net pressure which points in the −x direction,
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FIG. 11. Pressure on either side of a penetrable inner wall (as
in Fig. 3) along with the pressure on the confining walls (dashed
triangles). The net pressure in the −x direction is plotted in black
squares connected by dots. This is the same data as for Fig. 3 in the
main text.

and would translate the volume at a constant rate if it were free
to move.

APPENDIX C: PRESSURE ON A WALL WHICH IS
PERIODIC IN ONE CARTESIAN DIMENSION

Consider a potential which is periodic in one Cartesian
dimension. For the sake of simplicity and applicability to the
results presented in Sec. VIII, we restrict attention to two
dimensions, with U (x,y) = U (x,y + λ). (The procedure and
result works for higher dimensions, but the notation becomes
that bit more cumbersome.) Evaluating Eq. (22) in the bulk
(fi = 0) and expanding the sum,

0 = ∂x

[〈
η2

x

〉
(x,y)n(x,y)

] + ∂y[〈ηxηy〉(x,y)n(x,y)].

Integrating this over x within the bulk and dropping coordinate
dependencies,

〈
η2

x

〉
n|bulk = cx −

∫ bulk

∂y[〈ηxηy〉n]dx, (C1)

where |bulk means evaluated in the bulk, the integral is an
indefinite integral anywhere within the bulk, and cx is an
integration constant. If there is no variation in the y direction
(i.e., the wall is flat) we are back to the quasi-1D scenario
explored in Sec. IV B: the integral in Eq. (C1) is zero, and
using Eq. (19) we can identify cx = 1

α
Pflat.

To find the “local pressure” on a confining wall defined in
Eq. (28), we integrate the x component of the generally valid
Eq. (22) over x from somewhere in the bulk to ∞:

1

α
Px(y) = 〈

η2
x

〉
n|bulk − ∂y

[∫ ∞

bulk
(〈ηxηy〉 − fxfy)ndx

]
.
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FIG. 12. Coordinate system for the radially symmetric geometry.

Combining with Eq. (C1),

1

α
Px(y) =cx − ∂y

[∫ bulk

〈ηxηy〉ndx+

+
∫ ∞

bulk
(〈ηxηy〉 − fxfy)ndx

]
. (C2)

The total pressure (in the x direction) on a complete period of
the wall is denoted Px and is equal to

Px = 1

λ

∫ λ

0
Px(y)dy. (C3)

Substituting in Eq. (C2), and using the periodicity,

Px = Pflat. (C4)

When the wall is not symmetric in the y direction, there
will also be a net local pressure Py(x) [33]. However the total
pressure in the y direction for any y-periodic wall must be zero.

APPENDIX D: MOMENTS OF FOKKER-PLANCK
EQUATION IN A RADIALLY SYMMETRICAL POTENTIAL

The vector form of the steady-state FPE, where the density
ρ = ρ(�r,�η), is

0 = −�∇�r · {[�η + �f (�r)
]
ρ
} + 1

α
�∇�η · [�ηρ

] + 1

α2
�∇2

�η [ρ]. (D1)

Assuming that we are in a radially symmetric environment—
that is, the potential force �f (�r) = f (r)r̂—it is reasonable to
translate Eq. (D1) into polar coordinates (see Fig. 12 for the
coordinate system):

�r =
(

x

y

)
=

(
r cos χ

r sin χ

)
, �η =

(
ηx

ηy

)
=

(
η cos φ

η sin φ

)
.

And the angle

ψ ≡ φ − χ. (D2)

This represents the angle between �η and the radial direction to
the particle—that is, �η · �r = ηr cos ψ .

Translating the vector derivatives in Eq. (D1) into our
coordinate system,

0 = − ∂r [(η cos ψ + f )ρ] − 1

r
(η cos ψ + f )ρ+

− 1

r
∂χ [(η sin ψ)ρ] + 1

α
(∂η[ηρ] + ρ)+

+ 1

α2

(
∂2
η [ρ] + 1

η
∂η[ρ] + 1

η2
∂2
φ[ρ]

)
, (D3)

where the first three terms come from spatial advection;
the fourth term is the response of the random propulsion
magnitude, η, to its “restoring force”; and the remainder are
diffusive spreading of the random propulsion.

To capitalize on symmetry, we write Eq. (D3) in terms of
the angle ψ only:

0 = − ∂r [(η cos ψ + f )ρ] − 1

r
(η cos ψ + f )ρ+

+ 1

r
∂ψ [(η sin ψ)ρ] + 1

α
(∂η[ηρ] + ρ)+

+ 1

α2

(
∂2
η [ρ] + 1

η
∂η[ρ] + 1

η2
∂2
ψ [ρ]

)
. (D4)

Define the r-dependent moments as

〈ηn cosm ψ〉(r)n(r) =
∫ 2π

0

∫ ∞

0
ηn cosm ψ ρ(r,η,ψ) ηdηdψ ;

(D5)

we can integrate Eq. (D4) over angle ψ and noise magnitude η

to eventually arrive at an expression relating moments for any
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FIG. 13. Pressure on the outer (solid lines) and inner (dashed)
walls as a function of R for several values of α, in the annular geometry
with zero bulk (R = S). The pressure is not normalized.
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n and m:

0 = − ∂r [(〈ηn+1 cosm+1 ψ〉 + 〈ηn cosm ψ〉f )n]+

− 1

r
(〈ηn+1 cosm+1 ψ〉 + 〈ηn cosm ψ〉f )n+

+ 1

r
m(〈ηn+1 cosm−1 ψ〉 − 〈ηn+1 cosm+1 ψ〉)n+

− 1

α
n〈ηn cosm ψ〉n+

+ 1

α2
(n2 − m2)〈ηn−2 cosm ψ〉n+

+ 1

α2
m(m − 1)〈ηn−2 cosm−2 ψ〉n. (D6)

APPENDIX E: ANNULAR GEOMETRY:
PRESSURE ON EACH WALL

ABPs confined by hard ellipsoidal walls were found to exert
a pressure which fell as 1/R in the high-persistence limit [30].
The same relation is seen in Fig. 13 (solid lines) for OUPs
interacting with soft circular walls, and is due simply to the
dilution of density as the system grows.

The pressure exerted on the convex inner wall (dashed lines
of corresponding color) is more interesting, and starts to behave
like 1/S only when the curvature is very small.

APPENDIX F: DISK GEOMETRY

Consider a radially symmetric geometry where OUPs are
confined by an outer wall but there is no inner wall (so the
bulk is a disk rather than an annulus). For α = 0, we expect
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FIG. 14. Pressure as a function of R for several values of α, in a
disk geometry where there is no inner wall. The pressure is normalized
by the passive value, and is higher for higher α ≡ kτ/ζ (for a
fixed R).

the pressure to equal the passive pressure for obvious reasons.
When R = 0, and the bulk is just a point at r = 0, we also
expect the pressure to equal the passive pressure, in the present
case of a quadratic potential. Furthermore, Eq. (31) for the
pressure in a radial geometry tells us that when the bulk is very
large, the pressure will equal the passive pressure once more.
Thus we have P ≈ P passive for both low and high R, with some
nontrivial interpolation in between. This is shown in Fig. 14.
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FIG. 15. (a) Spatial density for an OUP confined in a piecewise
linear potential (sketched as dashed black lines). (b) Pressure as a
function of α for the linear potential pictured in the inset. Note that
the L → ∞ line coincides with the L = 0 line.
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APPENDIX G: LINEAR POTENTIAL

Though we mostly restricted attention to piecewise quad-
ratic potentials, the same qualitative behaviors are observed
with other potentials. Here we consider the example of a
piecewise linear potential in 1D. The upper panel (a) of

Fig. 15 shows the spatial density of an OUP confined in one
dimension with finite bulk (compare with the blue curve in
Fig. 2), while the lower panel (b) plots the pressure exerted
on the confining walls (compare with Fig. 2 in [17]). Note
that P (α; L = 0) = 1 for the same reason as the L = 0 line in
Fig. 8.
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