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Bacteria, while developing a multicellular colony or biofilm, can undergo pattern formation by diverse
intricate mechanisms. One such route is directional movement or chemotaxis toward or away from self-secreted
or externally employed chemicals. In some bacteria, the self-produced signaling chemicals or autoinducers
themselves act as chemoattractants or chemorepellents and thereby regulate the directional movements of the cells
in the colony. In addition, bacteria follow a certain growth kinetics which is integrated in the process of colony
development. Here, we study the interplay of bacterial growth dynamics, cell motility, and autochemotactic motion
with respect to the self-secreted diffusive signaling chemicals in spatial pattern formation. Using a continuum
model of motile bacteria, we show growth can act as a crucial tuning parameter in determining the spatiotemporal
dynamics of a colony. In action of growth dynamics, while chemoattraction toward autoinducers creates arrested
phase separation, pattern transitions and suppression can occur for a fixed chemorepulsive strength.
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I. INTRODUCTION

Pattern formation through self-aggregation of cells is a
common trait in the multicellular microbial community [1–5].
Various biochemical and mechanical processes such as cell
growth, death, movement, and secretion of extracellular poly-
meric substances, contribute in the process of self-organization
[6–10]. In addition, bacteria also secrete signaling molecules
or autoinducers for intricate chemical communications among
the cells [11,12]. The self-secreted extracellular substances by
bacteria can regulate the spatial patterning of a growing colony
by directing or trapping the motions of the cells in a growing
colony [12–15]. The underlying mechanisms of forming a
spatially patterned colony and the spatiotemporal organization
of cells inside it, are themselves very complex. Previous
studies have explored several mechanisms underlying pat-
tern formation in bacteria such as density-dependent motility
[15–18], temporal control of gene expression [19], quorum
sensing [11,20,21], and the widely studied phenomenon of
chemotaxis [22–27].

The process of chemotaxis involves detection of chemical
gradients by the bacterial cells and biasing their self-propulsive
direction according to the chemical gradient. Two types of
chemotactic mechanisms are possible. Bacteria can swim
toward the self-secreted or externally employed chemicals
such as food or nutrients [23,28,29], (chemoattraction) or
move away from it in the case of antibiotics or toxins [30]
(chemorepulsion). The formation of different patterns such as
spots, stripes, concentric rings and waves, etc., in the colonies
of Escherichia coli or Salmonella typhimurium stems from
chemotactic drift motion of the microbial cells [12,31,32].
Chemoattraction is broadly studied in the literature in different
contexts [22–27]. The classic model, which can describe
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chemoattractive instability, is called the Keller-Segel model
[22,33]. Recently, Liebchen et al. [34,35] have shown the
mechanism of clustering and pattern formation in the context
of autophoretic active colloids.

As mentioned earlier, many bacterial species can produce
and sense extracellular signaling molecules or autoinducers. In
shorter time scales, the chemotactic response toward autoin-
ducers helps to form heterogeneous structures during biofilm
formation [12,13]. However, the type of chemotactic response
is specific to the system. For example, in the case of Helicobac-
ter pylori, AI-2 autoinducer acts as a chemorepellant, but for
E. coli, AI-2 works as a chemoattractant [30]. In addition to
the chemotactic response, growth dynamics is an integral and
prominent feature of any microbial system. Growth can signif-
icantly influence the structure and the type of the emergent spa-
tial orders in bacteria. The time scale of growth kinetics (∼1 h)
is generally faster than the time scale of pattern formation
(∼1 day) [16] and thus gives an additional feature in governing
the spatiotemporal dynamics. In this regard, the questions that
still remain to be explored in detail are as follows: (i) What
happens when the self-secreted autoinducers by bacteria itself
act as chemoattractants or chemorepellants? (ii) How and to
what extent can the autochemotaxis coupled with the inherent
growth dynamics influence the spatiotemporal organization
in an active microbial colony? (iii) To what extent does the
orientation of bacterial cells regulate the pattern formation?

The object of the present work is to explore the interplay
of bacterial growth kinetics and chemotactic movement with
respect to self-secreted chemicals in a colony of motile bac-
teria. We use a continuum model as described in [34] with
an additional term which accounts for the logistic growth
of self-propelling bacteria. This kind of model can also be
derived from fundamental microscopic quantities as discussed
in [35,36]. We focus on the effect of bacterial growth kinetics
on the spatiotemporal organization of a colony, for both the
cases of chemoattraction and chemorepulsion. In what follows,
we show that in the case of chemoattraction, growth can arrest
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the continuous aggregation of bacteria locally, resulting in
a self-organized pattern of bacterial density of well-defined
wavelength. However, in the case of chemorepulsion, growth
can tune the parametric region of instability leading to the
transitions from oscillatory to stationary patterns either directly
or, more interestingly, via an intermediate homogeneous state.
Altogether, our results suggest that growth kinetics facilitates
the formation of stationary patterns in a developing microbial
colony.

The rest of the paper is organized as follows: In Sec. II, we
describe the model and method to investigate the spatiotempo-
ral dynamics. Section III demonstrates the results and includes
discussions for both cases of autochemotaxis. The paper is
concluded in Sec. IV.

II. MODEL AND METHOD

To investigate the spatiotemporal dynamics of a microbial
colony, we consider a spatially extended system of three
variables: the bacterial density ρ(�r,t), polarization �p(�r,t),
and the self-secreted chemical density c(�r,t) using the model
described in [34] with an additional term corresponding to
population growth. The reproduction and death of bacteria are
modeled by considering a classic logistic growth term in our
model. The model is represented by the following equations:

ρ̇ = −−→∇ · (ρv0 �p) + Dρ∇2ρ + αρ(1 − ρ/K),

�̇p = −γ �p + Dp∇2 �p + β
−→∇ c − γ2| �p 2| �p, (1)

ċ = Dc∇2c + (k0ρ − kdc) + ka

−→∇ · (ρ �p),

where v0 is the self-propulsion speed of the bacteria which
behaves as a constant. The time evolution of ρ depends on
three terms: drift, diffusion, and logistic growth. Here, Dρ

represents the diffusion constant, α is the growth rate, and
K stands for the carrying capacity of the bacteria. The local
average of the propulsive unit vectors per unit volume or
polarization ( �p) orients according to the gradient of chemical
density (c), where β measures the chemotactic strength. If
β is positive, bacteria orient themselves toward the chemical
gradient which is called chemoattraction. Similarly, negative
β represents chemorepulsion. γ is the decay rate of �p set by
rotational diffusion (1/γ represents orientational relaxation
time) [18] and Dp is the translational diffusion constant. The
last term with the parameter γ2 in the equation of polarization
ensures saturation of polarization at strong alignment [34,37].
The chemical substance is produced from bacteria at a local
rate k0 and naturally degraded at a rate kd . The term with ka

describes an anisotropic correction to the isotropic secretion
term k0ρ, whenever there is any asymmetry in the secretion
of signaling chemicals from the microbial cells as discussed
in [34,35] for Janus colloids. Although the production and
secretion of chemical signaling molecules from bacteria is
a complex process and very little is known at a subcellular
level, we can assume a point source −R0p away from cell
center with R0 as the radius of the cell, then the anisotropic
term follows as the lowest order correction to the isotropic
field, with ka ∼ k0R0. The secreted chemical field diffuses
with a diffusion constant Dc. Although our model represents

TABLE I. Parameters.

Dimensionless
Parameter Ranges (Refs.) parameters Simulations

α 1 h−1 [16] Dp 1
v0 10–100 μm s−1 [23] Dc 1
Dρ (2–4) × 10−6 cm2 s−1 [24,25] � 1
Dc 8.9 × 10−6 cm2 s−1 [24,25] k 0–1
Dp ≈Dρ [34] g 0–5
kd 10−4–10−2 s−1 [23] �2 10

the spatiotemporal dynamics of signaling bacteria, a similar
model can be applicable for other signaling microorganisms or
active eukaryotic cells which shows chemotactic movements.

Rewriting Eqs. (1) in dimensionless form by defin-
ing ρ∗ = ρ/K, �p∗ = (v0/

√
kdDρ) �p, c∗ = (kd/k0K)c, t∗ =

kdt , and �r∗ = �r√kd/Dρ , we get the following equations:

ρ̇ = −−→∇ · (ρ �p) + ∇2ρ + gρ(1 − ρ),

�̇p = −� �p + Dp∇2 �p + χ
−→∇ c − �2| �p 2| �p,

ċ = Dc∇2c + ρ − c + k
−→∇ · (ρ �p). (2)

We remove the asterisks from Eqs. (2) for simplicity. Out
of the seven dimensionless parameters, g = α/kd, � = γ /kd,

Dp = Dp/Dρ , χ = (βk0v0K)/(k2
dDρ), �2 = γ2Dρ/v

2
0, Dc =

Dc/Dρ , and k = (kakd )/(k0v0), we will mainly focus on the
role of growth rate g, chemotactic strength χ , and anisotropic
production rate k. Here, positive χ represents chemoattraction
and negative χ represents chemorepulsion.

The values of the above-mentioned parameters depend on
the particular bacterial species and external conditions such
as the growth medium, food, surface, etc. From the existing
literature, we can get the typical range of the values of several of
these parameters (see Table I). In our present study, we choose
the values of our dimensionless parameters as given in Table I.
For the asymmetric production of chemicals, we assume the
value of k varies from 0 to 1 (our numerical scheme is not stable
for higher values of k, although chemoattraction sets an upper
limit of k at fixed g; for details, see the Appendix). We choose
� = 1 for most of the cases (a higher value of � is allowed
since α is relatively lower than γ in bacteria [17]). We allow
the chemotactic strength, χ , to vary from 0 to higher values as
a free parameter.

The uniform states of the system obtained from Eqs. (2)
are (ρ, �p,c) = (0,�0,0) and (1,�0,1). The state (0,�0,0) is always
unstable with respect to an infinitesimal small perturbation. By
linear stability analysis of the system described by Eqs. (2),
we obtain the bifurcation diagrams to find the region of spatial
instability. We numerically solve Eqs. (2) by using a simple
Euler method for time stepping and a central finite difference
scheme to evaluate the spatial derivatives in a square box of
size L = 100, using a periodic boundary condition (unless
otherwise mentioned). The grid length and time step for the
simulations are 0.2 and 10−3, respectively. The initial condition
we use as a small perturbation of the uniform state (1,�0,1).
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III. RESULTS AND DISCUSSION

Our objective here is to understand the interplay of growth
rate and chemotactic drift of the cells with respect to the
self-secreted signaling chemicals on the spatiotemporal organi-
zation of a bacteria colony. Assuming bacteria can produce the
signaling molecules both isotropically (k = 0) and anisotropi-
cally (k �= 0), we investigate how chemoattraction or repulsion
gives rise to the spatiotemporal instabilities in bacteria in the
presence of logistic growth dynamics. In what follows, we
begin our study with positive autochemotaxis.

A. Emergent patterns due to chemoattraction

In the case of chemoattraction (χ = s, s > 0), bacteria
propel themselves toward the self-secreted chemicals (sig-
naling molecules) and form aggregates. Due to a positive
feedback, as bacteria aggregate, more chemicals are being
produced which thereby attract more bacteria. As a result,
there occurs a continuous aggregation of bacterial droplets
with time as shown in Figs. 1(a) and 1(b) in the absence of any
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FIG. 1. Snapshots of the density field of bacteria in the case of
chemoattraction. Time has increased from (a) to (b) and (c) to (d). In
the presence of the logistic growth rate (g = 0.1), the phase separation
is arrested in (c) and (d). However, it shows a continuous aggregation
in the absence of growth rate g = 0.0 from (a) to (b) as time evolves for
the parameters s = 10, k = 1.0. (e) Plot of the characteristic domain
size of the pattern, quantified by the inverse of the first moment of the
structure factor L(t) as a function of time, t (in logarithmic scale). All
other parameters are kept the same as given in Table I.

FIG. 2. Bifurcation diagrams in s-g parameter space for two
different k values. Plot of s vs g for (a) k = 0.0 and (b) k = 0.5 in the
case of positive chemotaxis. Black regions correspond to the stability
of homogeneous steady state and the color represents the wave number
of the fastest growing mode of the spatial instability. The white lines
represent the onset of instability obtained only from the necessary
conditions of instability determined by analytical treatment of linear
stability analysis.

growth dynamics (i.e., g = 0). This continuous accumulation
of bacteria is not very realistic as bacteria density cannot
grow locally without any bound. However, the presence of
a logistic growth kinetics in the system arrests the continuous
aggregation of bacteria by choosing a characteristic domain
size and developing a stationary pattern of bacteria density.
There occurs a balance between diffusion, chemotactic drift,
and birth-death dynamics. We observe the formation of sta-
tionary spot patterns of well-attained steady-state sizes and
center-to-center distances as demonstrated in Figs. 1(c) and
1(d) in the presence of logistic growth kinetics, i.e., g �= 0.
The corresponding spatiotemporal evolution of patterns is
illustrated in videos 1 and 2 in the Supplemental Material [38].
This observation can be further complemented by determining
the evolution of the characteristic domain size, L(t), which
is computed as the inverse of the first moment of the structure
factor [16] (for the details of quantification, see the Appendix).
Figure 1(e) shows that L(t) at late time finally reaches to a
steady state at a constant value with no further change for the
g �= 0 case, whereas, it shows a slow decrease and is still not
able to reach any steady-state value in the absence of growth
kinetics (g = 0). In fact, for the g = 0 case, the size of a single
droplet in the process of coarsening is almost fixed over time
but its concentration is increasing after growing out of the
initial uniform state. The other droplets are disappearing with
time. Hence, we see a slightly decreasing behavior in L(t).
We have also checked that the average area of the droplets
shows a decreasing trend with time by calculating the contour
area of the droplets (not shown here). This dynamics does
not follow the usual behavior of a phase-separating system
where coarsening increases the characteristic domain size
with time. These results strongly support the necessity of a
self-limiting mechanism in growing bacteria by the presence
of its growth-death dynamics.

To get better insights into how and to what extent growth rate
might affect the spatiotemporal organization of a colony, we
solve the dispersion relation obtained from model (2). Figure 2
demonstrates the bifurcation diagrams in the s-g parameter
plane in the absence and in the presence of the anisotropic
production of chemicals, k. These bifurcation diagrams show
two different regions: (1) the stable homogeneous region
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FIG. 3. Dependence of the wave number of the fastest grow-
ing mode (qc) associated with the largest growth rate (maximum
eigenvalue) on g and �. qc as a function of g for (a) k = 0.0,
(b) k = 0.5 and plot of qc vs � for (c) k = 0.0, (d) k = 0.5, obtained
from linear stability analysis for s = 20. g = 0.5 for (c) and (d). All
other parameters are the same as given in Table I.

(black) in which the real parts of all the eigenvalues of the
dispersion relation are negative and (2) the unstable (stationary
with respect to time) region (colored) in which the real part of
at least one of the eigenvalues is positive. In the stable region of
the bifurcation diagram, the homogeneous steady state remains
stable under infinitesimal small perturbation, whereas in the
unstable region of parameter space, the homogeneous steady
state under infinitesimal perturbation becomes unstable and
generates stationary spatial patterns. In the Appendix, we
furthermore discuss the conditions of instability and find that
no oscillatory instability is possible in the colony under the
mechanism of pattern formation by chemoattraction.

We also determine the necessary conditions for instability
from the dispersion relation using Routh-Hurwitz criteria
(for details, see the Appendix). For Dp = Dc = � = 1, the
necessary condition for instability turns out to be s > ( 1+2g

1−gk
)

(the white lines in Fig. 2) which reveals that gk should be less
than 1 for nonzero g and k. If g = 0, the instability occurs
for s > 1 independent of k. With nonzero growth rate, i.e.,
g �= 0, the minimum value of chemotactic strength s, required
to form a stationary pattern increases with g as shown in
Fig 2. On the other hand, for a fixed value of s, a very high
growth rate of bacteria can remove the spatial instability. This
suggests a rapidly growing bacterial colony with high growth
rate is less probable to form a spatially patterned colony due
to chemotaxis. Moreover, we find that there is an upper limit
of g which is independent of s, coming from the condition
gk < 1, in the case of anisotropic production of chemicals,
within which a stationary spatial pattern can emerge.

At this point, we investigate the modulation of the wave
number (qc) of the fastest growing mode (∂q2λ = 0 and ∂2

q2λ <

0 at q = qc, where λ is the eigenvalues; for details, see the
Appendix) in the presence of the logistic growth dynamics.
The wavelength of the pattern is approximately determined by

FIG. 4. Snapshots of bacterial density for (a) g = 0.1, (b) g =
1.0, and (c) g = 1.5 for �2 = 0.1, s = 10, and k = 0. All other
parameters are the same as given in Table I.

2π/qc near the onset of instability [1]. This is only a reasonable
prediction, whereas, far from the instability threshold where
the interaction caused by the nonlinearities is more complex,
the pattern length scale might differ from what we obtain from
linearly unstable simpler modes. For isotropic production of
chemicals (k = 0), qc first increases slightly with the increase
of growth rate up to g = 1 and then decreases for higher values
of g [see Fig. 3(a)]. However, we observe that qc decreases with
the increase of g for k �= 0 as depicted in Fig. 3(b). Therefore,
the wavelength of the patterns will increase with increasing
values of g.

We find that the growth rate g in the case of chemoattractive
instability in a bacterial colony has twofold effects: (1) it helps
to choose a length scale of the patterns by arresting the phase
separation and (2) it changes the wavelength of the patterns.
Based on their growth environment, bacteria can exhibit a
variable growth rate which can thereby control their spatial
organization. Depending on the availability of nutrients and
favorable environmental conditions, the growth rate of bacteria
α can vary and hence can govern the instability conditions.

To further investigate, how the evolution of the polarization
vector influences the spatiotemporal instability, we plot the
wave number qc of the pattern as a function of �. � is
controlled by the orientational relaxation of polarization of
bacteria and the degradation rate of chemicals. We find that,
for k = 0, qc decreases with the increase of �, but increases
with the increase of � for k �= 0 (see Fig. 3). It appears from
the necessary conditions of instability as described in the
Appendix that increasing � requires higher values of s for
pattern formation. Bacteria autoaggregate as spots, which is
shown in Fig. 1. The arrangement of the spots depends on
the parameters (near instability or far from instability) and
boundary conditions (periodic or no- flux). We will now turn
our attention to the parameter �2, which was not discussed yet
since it does not appear in the linear stability analysis of our
model (2). We choose �2 = 10 for all our earlier simulations
(unless otherwise mentioned). By decreasing the value of �2,
we observe an interesting set of patterns for increasing values
of g, such as spots, patterns with continuous formation and
breaking of spots, stripes, and inverted spots as shown in Fig. 4.
The characteristic length scale of the patterns increases with
the decrease of �2. The underlying reason lies in the fact that
by decreasing the value of �2, we facilitate the alignment of �p
depending on g (the overall

−→∇ · �p = 0) resulting in different
types of patterning unlike the formation of aster and antiaster
in the case of higher values of �2.

To this end, motivated by the formation of concentric
ring patterns observed in S. typhimurium [29,32] colonies,
we investigate the pattern development in a growing colony
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FIG. 5. Time evolution of a droplet of bacterial density from
(a) to (c) for s = 40. Snapshots of bacterial density for (d) s = 30,
(e) s = 80, and (f) s = 100 at a particular time for k = 0.5, g = 0.5.
The dimension of the simulation box is L = 200. All other parameters
have the same values as given in Table I.

by an initial inoculation of small bacterial droplets at the
center of the simulation box. The colony develops concentric
rings of bacterial density similar to what is observed in the
experiments. Growth helps bacteria to move away from the
center of the box but chemoattraction holds them together.
The underlying competition between growth dynamics and
chemoattraction results in ringlike heterogeneity. Furthermore,
we find destabilization of inner rings into small spotlike
structures happens with time as shown in Figs. 5(a)–5(c) (see
also video 3 in the Supplemental Material [38]). Moreover, we
observe that the destabilization of rings occurs faster for large
s as shown in Figs. 5(d)–5(f).

B. Emergent patterns due to chemorepulsion

In the case of chemorepulsion (χ = −s, s > 0), bacteria
flee away from the self-secreted signaling molecules. The
interplay among the chemorepulsive drift, diffusion, and self-
secretion of chemicals can potentially generate spatiotemporal
patterns giving rise to self-limited cluster sizes even in the
absence of growth kinetics similar to what is discussed in [34]
in the case of chemorepulsive active colloids. There are two
instability mechanisms for the formation of spatial patterns:
(1) In the case of “Janus instability” a nonzero value of k

(anisotropic production) is important. Bacteria initially goes
to the fluctuation-induced local minima of chemical density
and due to the asymmetric production of chemicals, a shell of
chemorepellent is produced around a cluster of bacterial cells
which prevents further recruitment of bacteria resulting in a
cluster of self-limited size giving rise to stationary patterns
[34]. (2) In the case of “delay-induced” instability, a delayed
response of the polarization field creates a feedback loop in
which fluctuation of chemical density changes sign which
results in oscillatory patterns [34].

To begin our study to understand chemorepulsive pattern
formation in the presence of logistic growth, we first draw
bifurcation diagrams obtained from the model (2). It can be
observed from Fig. 6 that there exist three distinct regimes
in the bifurcation diagram: (1) stable homogeneous (black),
(2) temporally stable and spatially periodic (colored), and (3)
oscillatory and spatially periodic (colored with dots) regions

FIG. 6. Bifurcation diagrams in the s-g parameter space for three
different k values, (a) k = 0.0, (b) k = 0.5, and (c) k = 1.0 in the
case of chemorepulsion. All the other parameters are kept the same
as given in Table I. Black regions correspond to the stable state. Color
represents the wave number of the fastest growing mode. The white
lines in (a) or the union of white lines in (b) and (c) represent the onset
of instability coming only from the necessary conditions of instability
determined by analytical treatment.

where imaginary parts of the eigenvalues dominate. We see
that for the isotropic production of chemicals, i.e., k = 0,
no stationary pattern formation is possible, which has been
discussed in detail in the Appendix. The necessary condition
obtained from linear stability analysis for this type of instability
is governed by the relation s > 2g2 + 12g + 10 (k = 0) as
depicted by the white line in Fig. 6(a). For stationary spatial
patterns, anisotropic production of chemicals i.e., k �= 0, is
a necessity. The necessary condition obtained for this type
of instability is governed by s >

g+2
k

or s >
2g+1
kg−1 (k �= 0)

for Dp = Dc = � = 1 which are only depicted by the white
lines in the bifurcation diagrams in Figs. 6(b) and 6(c). A
minimum value of chemorepulsive strength s(>0) is required
to obtain any spatiotemporal instability in the system and that
depends on both the parameters growth rate g and anisotropic
production rate k, for fixed values of Dp, Dc, and �. This
lower limit of s decreases with the increase of g or k in the
case of the stationary patterns region. From the bifurcation
diagrams as shown in Fig. 6, it is clear that the bacterial
colony is unable to exhibit any oscillatory instability for high
values of s or g for anisotropic production of chemicals,
i.e., k �= 0. With the increase of anisotropic production of
chemicals, the oscillatory instability region decreases and

FIG. 7. Shown here are the transitions among spatial patterns
obtained by numerically simulating the model under the case of
chemorepulsion as a function of growth rate g for fixed chemore-
pulsive strength s and k = 0.5. (i) For the s = 15 transition from
(a) oscillatory pattern: g = 0.1 to (b) homogeneous pattern: g = 2.0
to (c) stationary pattern: g = 4.0; and (ii) direct transition from (d)
oscillatory: g = 0.4 to (e) stationary: g = 1.0 for s = 25. All the other
parameters are the same as given in Table I.
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FIG. 8. Dependence of the wave number of the fastest growing
mode (qc) on s and g. For anisotropic production rate k = 0.5, (a)
qc vs s at g = 0.5 and (b) qc vs g at s = 25 plots, determined from
linear stability analysis for the case of chemorepulsion. The other
parameters are the same as given in Table I.

ultimately disappears. These observations suggest that in the
case of chemorepulsive instabilities, the bacterial growth rate
can act as a stabilizing factor to facilitate transitions from an
oscillatory to a stationary pattern.

In Fig. 7, we illustrate this transition of patterns with the
increase of growth rate g of the bacterial colony by numerically
simulating the system described by Eqs. (2). We observe from
Figs. 7(a)–7(c), that a transition occurs between oscillatory and
stationary states via a homogeneous state for a fixed value of
chemorepulsive strength. This two-step transition becomes a
one-step transition directly from an oscillatory to a stationary
patterned state for a higher value of chemorepulsive strength
depending on k as demonstrated in Figs. 7(d) and 7(e). The
oscillatory patterns corresponding to Figs. 7(a) and 7(d) are
demonstrated in videos 4 and 5 in the Supplemental Material
[38].

At this stage, to get a better insight into the pattern
transitions, we now investigate how the wavelength of the
pattern as determined from the dispersion relation obtained
from the linear stability analysis of the system, changes with
the variation of chemorepulsive strength and growth rate. In
Fig. 8, we plot qc as a function of s and g. A sudden jump of
wavelength with the increase of s or g can be observed, as we
move from regions of oscillatory patterns to stationary patterns
as shown in Fig. 8. This abrupt change in wavelength also com-
plements the transition among different types of patterns. We
also observe ring formation and subsequent breaking of rings
into spots in the presence of chemorepulsion while initializing
from a small bacterial droplet during colony development.

IV. CONCLUDING REMARKS

Growth and orientational bias are intertwined and regula-
tory factors in determining the spatiotemporal dynamics of
many biological processes such as morphogenesis, cancer
metastasis, and biofilm formation. An important feature of
those systems is the formation of clusters or multicellular
agglomerates of cells to perform certain functions collectively.
In bacteria, these agglomerates provide a number of advantages
by promoting quorum sensing in biofilm formation, increasing
resistance to environmental stresses and emerging collective
motions in various circumstances.

In the present work, to understand aggregation of signaling
bacteria, we consider an active microbial system of motile cells
which show autochemotaxis toward self-secreted signaling
molecules and grow by a logistic reaction. Using a spatially

extended model in a reaction-drift-diffusion framework, we
theoretically studied the interplay of growth, movements, and
influence of self-produced signaling chemicals which can
capture both the instabilities arising due to chemoattraction
and to chemorepulsion. This provides a large set of chemotactic
patterns which agrees with experimental observations [12,13].
It turns out that coupling of logistic growth kinetics with
chemoattraction arrests the complete phase separation and
helps in generating patterns consisting of spots or stripes of
well-defined length scale. On the other hand, growth kinetics of
bacteria is not the sole factor in arresting the phase separation in
the case of chemorepulsion. Due to an anisotropic production
of chemicals the clusters are self-limited even in the absence
of growth kinetics. However, the wavelength of the patterns
undergoes a sudden jump during the transition from oscillatory
to stationary states followed by a gradual increase with growth
rate. The birth and death dynamics works as an additional
mechanism to limit the cluster size along with the self-limiting
mechanism arises due to asymmetric production of chemore-
pellents. By this dual action, the region of instability gets
modulated. The oscillatory instability shifts toward stationary
instability either via an intermediate stable region or directly
with the increase of growth rate. Moreover, we find that
the nonlinear cubic saturation of bacterial polarization has a
significant effect on the pattern morphology. We come across
different types of patterns including stripes, and inverted spots
in the case of chemoattractive instability.

The present study illustrates the possible occurrence of
different types of natural instabilities as a result of the coupling
of orientational bias and growth dynamics in pattern formation
in bacteria. In principle, growth kinetics is inherent and system
specific. However, in those models also growth dynamics
will be a decisive factor for spatiotemporal evolution. Our
model might be useful and of considerable interest to inves-
tigate similar biological phenomena, e.g., tumor growth and
morphogenesis.
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APPENDIX

Here we perform a detailed linear stability analysis of the
system of dimensionless equations:

ρ̇ = −−→∇ · (ρ �p) + ∇2ρ + gρ(1 − ρ),

�̇p = −� �p + Dp∇2 �p + χ
−→∇ c − �2| �p 2| �p,

ċ = Dc∇2c + ρ − c + k
−→∇ · (ρ �p). (A1)

We linearize Eqs. (A1) in one dimension about the uniform
state (ρ,p,c) = (ρ0,0,ρ0) (where ρ0 = 0 and 1) and

⎛
⎜⎝

δ̇ρ

δ̇p

δ̇c

⎞
⎟⎠ = J

⎛
⎜⎝

δρ

δp

δc

⎞
⎟⎠. (A2)
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Inserting a plane-wave solution as (δρ,δp,δc) = (Aρ,Ap,Ac) exp(iqx + λt) we get

|J − λI | = 0, (A3)

where

J =

⎛
⎜⎝

−q2 + g(1 − 2ρ0) −iρ0q 0

0 −� − Dpq2 iχq

1 iρ0kq −Dcq
2 − 1

⎞
⎟⎠. (A4)

δρ, δp, and δc are the small perturbations around the uniform states. q is the wave number. Aρ, Ap, and Ac are constants.
The eigenvalue λ can be real or imaginary. For the uniform solution to be stable, all the real parts of λ should be negative. Any

positive Re(λ) creates instability in the system resulting in spatial pattern formation. λ represents the growth rate of instability.
The wavelength of the pattern is approximately determined by 2π/qc near the onset of spatial instability, where qc is the wave
number of the fastest growing unstable mode (∂q2λ = 0 and ∂2

q2λ < 0 at q = qc).
In the absence of diffusion, chemotaxis of the uniform state (0,0,0) is unstable but the uniform state (1,0,1) is stable. Therefore,

we will consider only the case when ρ0 = 1.
Inserting ρ0 = 1 in Eq. (A5) we get the following dispersion relation:

λ3 + a1λ
2 + a2λ + a3 = 0, (A5)

where

a1(q2) = (Dp + Dc + 1)q2 + g + � + 1,

a2(q2) = (DpDc + Dp + Dc)q4 + (Dp + Dc� + 1 + � + Dcg + Dpg + χk)q2 + � + g + �g,

a3(q2) = DpDcq
6 + (Dp + Dc� + DpDcg + χk)q4 + (� + Dpg + Dc�g + χkg − χ )q2 + �g. (A6)

Now according to the Routh-Hurwitz criteria [1], the conditions for Re(λ) < 0 are

a1(q2) > 0, a3(q2) > 0 and a1(q2)a2(q2) − a3(q2) > 0, (A7)

where

a1(q2)a2(q2) − a3(q2) = (Dp + Dc)(Dp + 1)(Dc + 1)q6 + [D2
c g + D2

c� + D2
pg + D2

p + 2DpDcg + 2DpDc�

+ 2DpDc + 2Dcg + 2Dc� + 2Dpg + 2Dp� + 2Dp + 2Dc + � + 1 + χk(Dp + Dc)]q4

+ [Dcg
2 + Dc�

2 + 2Dcg� + 2Dcg + 2Dc� + Dpg2 + 2Dpg� + 2Dpg + 2Dp� + Dp + 2g� + 2g

+ (� + 1)2 + χ + χk(� + 1)]q2 + (� + g + 1)(� + g + �g) − �g. (A8)

The conditions for instability are

a1(0) > 0, a3(0) > 0, a1(0)a2(0) − a3(0) > 0

and at least one of a1(q2), a3(q2), a1(q2)a2(q2) − a3(q2) < 0
for some nonzero q2.

a1(q2) is always greater than zero [see (A6)]. a3 and a1a2 −
a3 both tend to ∞ when q2 → ∞ provided that Dp or Dc �= 0.
Therefore, a finite range of q can be driven unstable. We can
estimate the wavelength of the emerging pattern.

a3 and a1a2 − a3 both are cubic functions of q2 as Y (q2) =
A(q2)3 + B(q2)2 + C(q2) + D with A,D > 0. They both are
positive at q2 = 0 and q2 → ∞. For instability one of them
should be negative. The minimum turning point can be ob-
tained by ∂q2Y = 0 and ∂2

q2Y > 0. We get minimum of Y at

q2
∗ = −B + √

B2 − 3AC

3A
. (A9)

q2
∗ is real and positive if B < 0 or C < 0 and B2 > 3AC. And

we get a complicated condition from Y (q2
∗ ) < 0.

The conditions are too complicated to handle analytically.
From now on, we only consider the conditions B < 0 or C < 0.
These are the necessary conditions for instability.

The instability can be of two types: the stationary instability
(where λ is real and positive) and oscillatory instability (where
the imaginary part of λ dominates). By considering λ as an
imaginary quantity, we can find the conditions on a2, a3, and
a1a2 − a3 (see Table 3 of [39]) to determine the nature of
emerging patterns, whether spatial or spatiotemporal.

At the threshold of instability, the minimum
turning point of a3 (A9) matches with qc. So, at
this point we can determine the wavelength pattern
which is ≈2π/q∗ where q∗ = −(Dp+Dc�+DpDcg+χk)

3DpDc
+√

(Dp+Dc�+DpDcg+χk)2−3DpDc(�+Dpg+Dc�g+χkg−χ)
3DpDc

. We also
solve Eq. (A5) numerically to find the bifurcation diagrams
in any two parameters space by choosing other parameters
constant and find the wave number (or wavelength) of
emerging patterns (see main text).

Chemoattraction. For chemoattraction χ = s, where s > 0.
Therefore, a1a2 − a3 > 0. The instability condition can only
be obtained by a3. So, the necessary condition for instability
is (� + Dpg + Dc�g + skg − s) < 0.

For the special case, � = Dp = Dc = 1, the condition
becomes s >

1+2g

1−kg
, where gk < 1, which sets the upper limit
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of g at a fixed k ( �= 0) or upper limit of k at a fixed g ( �= 0)
independent of s.

Here, in the instability region, a3 < 0 and a1a2 − a3 > 0.
According to Table 3 of [39], to get an oscillatory pattern,
a2 must be negative. But, in our case a2 is positive. So, for
chemoattraction no oscillatory pattern is possible; we only get
stationary spatial patterns for nonzero g.

Chemorepulsion. For chemorepulsion we choose χ = −s,
where s > 0. The necessary instability conditions can be found
from a3 and a1a2 − a3. Both can be negative. So, the conditions
become

a3:

(Dp + Dc� + DpDcg − sk) < 0

or

(� + Dpg + Dc�g − skg + s) < 0. (A10)

a1a2 − a3:

[D2
c g + D2

c� + D2
pg + D2p + 2DpDcg + 2DpDc�

+ 2DpDc + 2Dcg + 2Dc� + 2Dpg + 2Dp�

+ 2Dp + 2Dc + � + 1 − sk(Dp + Dc)] < 0

or

[Dcg
2 + Dc�

2 + 2Dcg� + 2Dcg + 2Dc� + Dpg2

+ 2Dpg� + 2Dpg + 2Dp� + Dp + 2g� + 2g

+ (� + 1)2 − s − sk(� + 1)] < 0. (A11)

We can obtain these necessary conditions according to the
value of k.

Case 1 (k = 0). For this case, a3 > 0. The condition
of instability can only be obtained from a1a2 − a3. For

� = Dp = Dc = 1, the condition becomes

s > 2g2 + 12g + 10. (A12)

Here, in the instability region, a2 > 0, a3 > 0, and a1a2 −
a3 < 0. So, no stationary instability is possible; we can only
get spatiotemporal patterns (see Table 3 of [39]).

Case 2 (k �= 0). For � = Dp = Dc = 1, the conditions
become

a3:

s >
g + 2

k
or s >

2g + 1

kg − 1
. (A13)

a1a2 − a3:

s >
4g + 8

k
or s >

2g2 + 12g + 10

2k + 1
. (A14)

The conditions in (A14) are a subset of the conditions
in (A13). So, we can consider the conditions in (A13) as
necessary conditions of instability. In this case, both stationary
and oscillatory instabilities are possible, although we cannot
differentiate between stationary and oscillatory instabilities
from these conditions.

We also calculate the length scale of the patterns directly
from the numerical solution of Eqs. (A1) using the relation

L(t) =
∑

�q |a(�q,t)|2∑
�q q|a(�q,t)|2 , (A15)

where a(�q,t) is the Fourier amplitude of δρ(�r,t) = ρ(�r,t) −
ρ(t) and ρ(t) = 1

N2

∑
�r ρ(�r,t) for a N × N square grid. The

sum in (A15) is dominated by q = qc at which |a(�q,t)| has a
sharp maxima.
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