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The Poisson-Nernst-Planck (PNP) system is a standard model for describing ion transport. In many applications,
e.g., ions in biological tissues, the presence of thin boundary layers poses both modeling and computational
challenges. In this paper, we derive simplified electroneutral (EN) models where the thin boundary layers are
replaced by effective boundary conditions. There are two major advantages of EN models. First, it is much
cheaper to solve them numerically. Second, EN models are easier to deal with compared to the original PNP
system; therefore, it would also be easier to derive macroscopic models for cellular structures using EN models.
Even though the approach used here is applicable to higher-dimensional cases, this paper mainly focuses on the
one-dimensional system, including the general multi-ion case. Using systematic asymptotic analysis, we derive a
variety of effective boundary conditions directly applicable to the EN system for the bulk region. This EN system
can be solved directly and efficiently without computing the solution in the boundary layer. The derivation is based
on matched asymptotics, and the key idea is to bring back higher-order contributions into the effective boundary
conditions. For Dirichlet boundary conditions, the higher-order terms can be neglected and the classical results
(continuity of electrochemical potential) are recovered. For flux boundary conditions, higher-order terms account
for the accumulation of ions in boundary layer and neglecting them leads to physically incorrect solutions. To
validate the EN model, numerical computations are carried out for several examples. Our results show that solving
the EN model is much more efficient than the original PNP system. Implemented with the Hodgkin-Huxley model,
the computational time for solving the EN model is significantly reduced without sacrificing the accuracy of the
solution due to the fact that it allows for relatively large mesh and time-step sizes.
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I. INTRODUCTION

The Poisson-Nernst-Planck (PNP) system describes the
transport of ions under the influence of both an ionic con-
centration gradient and an electric field. It is a system coupling
diffusion and electrostatics, and the nonlinearity comes from
the drift effect of electric field on ions. Such a system and
its variants have found extensive and successful applications
in biological systems, in particular in the description of ion
transport through cells and ion channels [1,2]. It has also been
applied to many industrial fields, such as the semiconductor
devices [3] and the detection of poisonous lead by ion-selective
electrode [4].

One intriguing feature of this system is the presence of
boundary layer (BL) near the boundary of concerned domain,
often called Debye layer in literature. A large number of works
have been devoted to the BL analysis of PNP systems. For
example, singular perturbation analysis of PNP system has
been carried out for narrow ion channels with certain geometric
structure [5,6]. Geometric singular perturbation approach has
been developed to investigate the existence and uniqueness
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of solutions in stationary PNP system [7,8] as well as the
effects of permanent charge and ion size [9,10]. Recently,
Wang et al. [11] have tackled the steady-state PNP system
with arbitrary number of ion species and arbitrary valences
and have successfully reduced the asymptotic solutions to a
single scalar transcendental equation.

In general, the solution of the PNP system consists of two
parts, a BL solution in a small neighborhood of boundary and
a bulk solution in the interior region of the domain. In the
one-dimensional (1D) case, the leading order solution in the
BL can be constructed either explicitly or in an integral form.
Based on the BL analysis, effective continuity conditions have
been proposed to link the bulk solution and BL solution, e.g.,
in the form of the continuity of electrochemical potential [12].
These effective conditions have been applied to the study of
steady states of 1D systems, showing the existence of multiple
steady states with piecewise constant fixed charge [13]. One
objective of our paper is to derive effective conditions for other
boundary conditions. These conditions eliminate the BL, and
the resulting electroneutral (EN) model has a big advantage
over the original PNP system for deriving macroscopic models
[14] for ion transport in regions with complicated structures.
For example, some macroscopic continuum equations are
derived for water circulation in lens [15,16], by taking into
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account the fluxes through membranes with an ad hoc model
for the BL effect, where the fluxes calculated there might not
be accurate.

The key idea to derive effective boundary conditions is to
bring back the higher-order contributions. In the case of Dirich-
let boundary conditions, we will derive a higher-order effective
boundary condition with the continuity of electrochemical
potential in Reference [12]. The higher-order effect of the new
effective condition will be verified by numerical examples. In
the case of flux boundary conditions, the solution is not unique
by using leading order condition, and from a physical point of
view, the higher-order contribution accounts for accumulation
of ions in BL, which is essential in biophysical processes and
cannot be ignored. The effectiveness of these conditions will
be demonstrated in a concrete example of action potential for
neuronal axon, where by further simplification the higher-order
terms reduce to an equivalent capacitor often adopted in cable
models.

The other objective of this paper is related to numerical
computation of PNP systems. In addition to the BL analysis,
many (conservative) numerical schemes have been developed
for PNP systems, such as finite element method [17], finite
difference scheme [18], and finite volume method [19,20],
in one- and higher-dimensional spaces [21,22]. Due to the
presence of BL, computation of the PNP system needs to be
sufficiently accurate to capture the behavior of solution in BL.
Since the solutions change rapidly in BL, more mesh points are
needed in BL than in the bulk region to attain certain accuracy,
requiring advanced techniques such as adaptive refined mesh
and moving mesh [23,24]. In general, computational cost
is higher and development of numerical method is more
demanding, especially when there are many BLs in a region
with complicated structure. Having effective conditions to
eliminate the BL significantly reduces the computational time
as well as the effort for developing sophisticated numerical
methods, since under such a framework, the solutions in the
bulk region can be obtained directly.

The rest of the paper is structured as follows. In Sec. II, we
first present the formulation for the two-ion species case and re-
lated EN models, with Dirichlet or flux boundary conditions for
ion concentration and Dirichlet or Robin boundary conditions
for electric potential. A more general multi-ion species model
is presented afterwards. In Sec. III, these effective boundary
conditions are validated by one steady state and two dynamic
examples. In Sec. IV, we combine the PNP system with the
Hodgkin-Huxley model and derive an EN model for neuronal
axon, capturing the phenomenon of action potential efficiently.
Finally, conclusions and discussion of future directions are
given in Sec. V.

II. THE ELECTRO-NEUTRAL THEORIES

In this section, we present the EN systems with various
effective boundary conditions. To introduce the main ideas, we
first present the simplest PNP system, for±1 ion species, where
the solutions and effective boundary conditions are explicit. It
is followed by the general multi-ion species case.

We consider the 1D dynamic PNP system for two ions with
valences ±1 (e.g., NaCl) in the region 0 < x < L,

−ε0εr∂xxψ = e0NA(p − n),

∂tp = −∂xJp, Jp = −D

(
∂xp + e0

kBT
p∂xψ

)
, (1)

∂tn = −∂xJn, Jn = −D

(
∂xn − e0

kBT
n∂xψ

)
,

where the first equation is the electrostatic Poisson equation for
electric potential ψ(x,t), and the second and third equations
are the transport equations for two ion concentrations p(x,t)
(cation) and n(x,t) (anion), respectively. The quantities Jp

and Jn are the associated two fluxes of positive and negative
ions, respectively, and D is the diffusion constant. The fluxes
consist of two parts, the linear part due to ionic concentration
gradient and the nonlinear part from the drift effect of electric
field. Other parameters are vacuum permittivity ε0, relative
permittivity εr , elementary charge e0, Avogadro constant NA,
Boltzmann constant kB , and absolute temperature T . Here
we have assumed that the diffusion constants for the two
ionic species are the same for simplicity. Generalization to
the multi-ion case with different diffusion constants will be
addressed later.

In the following, we will consider the dimensionless and
normalized version of the above PNP system; see Sec. IV
for details of nondimensionalization process. We still adopt
the same notations, and the PNP system for dimensionless
quantities p,n,ψ in the normalized interval 0 < x < 1 is
given by

−ε2∂xxψ = p − n,

∂tp = −∂x(Jp) = ∂x(∂xp + p∂xψ),

∂tn = −∂x(Jn) = ∂x(∂xn − n∂xψ),

(2)

where ε � 1 is a dimensionless small parameter and defined
by

ε =
√

ε0εrkBT

e2NAc̃L2
, (3)

where c̃ is some typical ion concentration. Physically, ε is
the ratio of Debye length (order of boundary layer width) to
the typical length L of the system. We will consider various
types of boundary conditions in the following subsections. For
example, as in Sec. II B, we can adopt Dirichlet condition for
ψ and two flux conditions at x = 0,

ψ(0,t) = ψ0(t), Jp(0,t) = Jp,0(t), Jn(0,t) = Jn,0(t). (4)

We will also replace flux conditions by Dirichlet conditions
of concentration (in Sec. II C) and Dirichlet condition of ψ

by Robin-type condition (in Sec. II D). The treatment will be
similar at x = 1. To complete the system, we also need the
initial conditions p(x,0),n(x,0) for two ions. But the initial
effect is not considered in this work, and we mainly limit
ourselves to the large time behavior of solutions (when BL
is already present) or the case near equilibrium state.
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We focus on the case when local electroneutrality (LEN)
condition in bulk region is satisfied, and there is no extra
O(1) unbalanced charge present in the system or interval, or
more precisely there is only O(ε) unbalanced charge, here
called near global electroneutrality (NGEN) condition. We
will illustrate later what kinds of boundary conditions fall in
this case. These conditions can be justified in many biological
applications, for example, in the neuronal axon [25]. Thus, in
the bulk region, we assume all the functions concerned and
their derivatives are O(1), i.e.,

ψ,∂xψ,∂xxψ ∼ O(1),p,∂tp,∂xp,...∼ O(1),

n,∂tn,∂xn,... ∼ O(1). (5)

Then, we obtain approximately the electroneutral condition
p ≈ n from the first equations in Eq. (2) and more precisely
we write

p(x,t ; ε) = c(x,t ; ε) + O(ε2),

n(x,t ; ε) = c(x,t ; ε) + O(ε2),

ψ(x,t ; ε) = φ(x,t ; ε) + O(ε2),

(6)

where c and φ may depend on ε due to boundary conditions;
in other words, c and φ can contain O(ε) terms if boundary
conditions have such terms. Substituting into the second and
third equation in Eq. (2) gives the EN equations,

∂tc = ∂x(∂xc + c∂xφ) + O(ε2),

∂t c = ∂x(∂xc − c∂xφ) + O(ε2). (7)

By addition and subtraction, we can also write them as

∂tc = ∂xxc + O(ε2), ∂x(c ∂xφ) = 0 + O(ε2). (8)

To complete this system, two effective boundary conditions are
needed instead of the original three. Based on the behavior of
BL solutions, we aim to derive effective conditions that connect
real boundary values of p,n,ψ (or boundary fluxes) and limit
boundary values of bulk solution c,φ (or bulk fluxes). Finally,
we get a EN system for c,φ in the bulk region, which can be
solved directly. In the following, we will always take x = 0,
for example, and briefly state the results for x = 1.

A. The leading order solution in BL

From some steady-state analysis, e.g., with finite fluxes or
Dirichlet conditions in Ref. [12] and for Poisson-Boltzmann
type equations in Ref. [26] in the absence of extra O(1)
unbalanced charge, there is boundary layer with thickness
O(ε). Also, some numerical evidence shows that, for finite
fluxes, as long as the NGEN condition is satisfied, the system
has BLs near x = 0 and x = 1 with all p,n,ψ being O(1).
In this subsection, we present the leading order solutions for
the PNP system. Although the solutions are well-known in
literature, we give a brief derivation to be self-contained with
more clear expressions for the remainder terms.

In the BL near x = 0, we assume

ψ,n,p ∼ O(1), ∂tp,∂tn ∼ O(1), Jn,Jp ∼ O(1),

∂xψ,∂xp,∂xn ∼ O(1/ε), ∂xxψ ∼ O(1/ε2), (9)

and thus we set

�(X) = ψ(x), N (X) = n(x), P (X) = p(x), X = x

ε
,

(10)

where the argument t is omitted in above functions. The
equations in BL are

−∂XX� = P − N,

∂X(∂XP + P∂X�) = ε2∂tP = O(ε2),

∂X(∂XN − N∂X�) = ε2∂tN = O(ε2).

(11)

Integrating the second and third equations once, we get

∂XP + P∂X� = −εJp,0 + O(ε2),

∂XN − N∂X� = −εJn,0 + O(ε2), (12)

where Jp,0,Jn,0 are the finite fluxes at x = 0. We denote c0,φ0

as the limit values of bulk solutions c(x),φ(x) at x = 0, and
they should match P (∞),�(∞) to leading order, implying

P (X) = c0e
φ0−�(X) + O(ε),

N (X) = c0e
�(X)−φ0 + O(ε). (13)

Substituting into the first equation of Eq. (11), we get the
Poisson-Boltzmann equation as leading order equation for �,

−∂XX� = c0[eφ0−�(X) − e�(X)−φ0 ] + O(ε). (14)

This can be integrated out by using ∂X�(∞) → 0 and �(0) =
ψ0(t) (as a given function). Finally, we obtain

�(X) = φ0 + 2 ln
1 − e−√

2c0X tanh
(

φ0−ψ0

4

)
1 + e−√

2c0X tanh
(

φ0−ψ0

4

) + O(ε). (15)

Then the solutions for P (X,t),N (X,t) become

P (X) = c0

[
1 + e−√

2c0X tanh
(

φ0−ψ0

4

)
1 − e−√

2c0X tanh
(

φ0−ψ0

4

)
]2

+ O(ε),

N (X) = c0

[
1 − e−√

2c0X tanh
(

φ0−ψ0

4

)
1 + e−√

2c0X tanh
(

φ0−ψ0

4

)
]2

+ O(ε). (16)

Note that in general c0,φ0,ψ0 are functions of t . The composite
solutions are given by

p(x) = P (X) + c(x) − c0 + O(ε),

n(x) = N (X) + c(x) − c0 + O(ε),

ψ(x) = �(X) + φ(x) − φ0 + O(ε),

(17)

which are uniformly valid for some finite interval [0,δ], say δ =
1/2, with remainder O(ε). One can also add the contribution
of BL solution near x = 1 (with transform X = (1 − x)/ε and
quantities c0,φ0,ψ0 being replaced by c1,φ1,ψ1) to make the
composite solution valid for the whole interval [0,1]. Since
in the bulk we have p(x) = c(x) + O(ε2) by Eq. (6), it is
reasonable to expect p = c(x) + o(ε) in some intermediate
region x ∼ O(εα) with 0 < α < 1, particularly we may choose
α = 1/2.
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B. Flux boundary condition

In this subsection, we consider the case with the flux
boundary conditions for two concentrations and Dirichlet
condition for electric potential. More precisely, at x = 0, we
have

ψ(0,t) = ψ0(t), Jp(0,t) = Jp,0(t), Jn(0,t) = Jn,0(t),
(18)

where ψ0,Jp,0,Jn,0 are given. The objective is to propose two
effective boundary conditions for c,φ at x = 0 based on these
three functions.

To this end, we define for the EN system two fluxes,

J±
c (x,t) = −(∂xc ± c ∂xφ), (19)

and the limit values at x = 0 are denoted by J±
c,0(t), respec-

tively. Based on assumption Eqs. (5) and (6) in the bulk region,
the two fluxes are almost the same as the two fluxes of original
PNP system,

J+
c (δ,t) = Jp(δ,t) + O(ε2), J−

c (δ,t) = Jn(δ,t) + O(ε2),

(20)

where δ is some generic point in bulk region, say δ = 1/2.
Next, we intend to find the connection between J+

c,0 and Jp,0,
or similarly between J−

c,0 and Jn,0 at boundary. For this purpose,
by integration of transport Eqs. (2)2 and (7)1, we immediately
get

Jp(δ,t) = Jp,0(t) − ∂t

∫ δ

0
p(x,t)dx,

J+
c (δ,t) = J+

c,0(t) − ∂t

∫ δ

0
c(x,t)dx. (21)

Combining these two and utilizing the composite solution
Eq. (17), we obtain

J+
c,0 = Jp,0 − ∂t

∫ δ

0
(p − c)dx + O(ε2)

= Jp,0 − ∂t

[ ∫ √
ε

0
(p − c)dx +

∫ δ

√
ε

(p − c)dx

]
+ O(ε2)

= Jp,0 − ∂t

∫ √
ε

0
[P (x/ε) − c0]dx + o(ε)

= Jp,0 − ε ∂t

∫ ∞

0
[P (X) − c0]dX + o(ε)

= Jp,0 − ε∂t

[√
2c0(e(φ0−ψ0)/2 − 1)

]
+ o(ε), (22)

where we have used the assumption that p = c + o(ε) for
x � √

ε, and by setting upper limit of integral as ∞ only
exponentially small terms are neglected. In the above, φ0,c0,ψ0

may depend on t . Similarly for the other flux, we obtain the
relation

J−
c,0 = Jn,0 − ε∂t [

√
2c0(e(ψ0−φ0)/2 − 1)] + o(ε). (23)

Physically, the quantity ψ0 − φ0 in above formulas is often
referred to as the ζ potential [27]. To see clearly the two
conditions, we carry out a linearization regarding small ψ0 −

φ0. In this case, they reduce to

J+
c,0 − Jp,0 ≈ ε∂t [

√
c0/2(ψ0 − φ0)],

J−
c,0 − Jn,0 ≈ −ε∂t [

√
c0/2(ψ0 − φ0)]. (24)

Thus, by comparing these conditions, the total flux is the same
while electric current differs at order ε, i.e.,

(J+
c,0 + J−

c,0) ≈ (Jp,0 + Jn,0),

(J+
c,0 − J−

c,0) − (Jp,0 − Jn,0) ≈ 2ε∂t [
√

c0/2(ψ0 − φ0)]. (25)

Physically, this means some cations/anions accumulate in the
BL, and the second formula is similar to that of a capacitor. The
treatment for the other end x = 1 is similar, and we summarize
the results below.

Proposition 1. Suppose the LEN and NGEN conditions are
satisfied, and let ψ0(t), Jp,0(t), Jn,0(t) be the given electric
potential and ion fluxes at x = 0 as in Eq. (18) and let
ψ1(t), Jp,1(t), Jn,1(t) be given at x = 1 for original system
Eq. (2), then we have the effective boundary conditions for the
EN system Eq. (8)

J+
c,0 = Jp,0 − ε∂t

(√
2c0(e(φ0−ψ0)/2 − 1)

)
+ o(ε),

J−
c,0 = Jn,0 − ε∂t

(√
2c0(e(ψ0−φ0)/2 − 1)

)
+ o(ε),

J+
c,1 = Jp,1 + ε∂t

(√
2c1(e(φ1−ψ1)/2 − 1)

)
+ o(ε),

J−
c,1 = Jn,1 + ε∂t

(√
2c1(e(ψ1−φ1)/2 − 1)

)
+ o(ε), (26)

where J±
c are defined by Eq. (19) and subscripts 0 and 1 denote

quantities at x = 0 and x = 1, respectively.
Remark 1. Keeping the O(ε) terms in Eq. (26) is necessary

for two reasons. First, in bulk Eqs. (7) we have assumed
an O(ε2) remainder, so it is reasonable and consistent to
bring back the O(ε) terms on boundary conditions. Second,
neglecting the O(ε) terms is physically incorrect for EN system
as the solution would not be unique (e.g., φ can differ by a
constant).

Remark 2. In this case, the fluxes Jp,0,Jn,0 can be either
O(1) or O(ε), as long as the NGEN is satisfied. This means
when fluxes are O(1), we should require the fluxes are almost
balanced Jp,1 − Jp,0 = Jn,1 − Jn,0 + O(ε) or its integral over
time satisfies∫ t

0
(Jp,1 − Jp,0)dt =

∫ t

0
(Jn,1 − Jn,0)dt + O(ε). (27)

Otherwise, the solution in BL will not be O(1) anymore. For
a steady state (Poisson-Boltzmann-type equation in Ref. [26])
with extra O(1) unbalanced charge, the solution ψ in BL is
shown to have a span of O[log(1/ε)].

C. Dirichlet boundary condition revisited

In this subsection, we will consider the case with Dirichlet
boundary conditions for two ion concentrations. We again use
x = 0 as an example and have

ψ(0,t) = ψ0(t), p(0,t) = p0(t), n(0,t) = n0(t). (28)

The leading order effective boundary conditions for this case
are well-known. With the same assumptions as previous
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subsection, we arrive at the same BL system, and easily get

∂XP + P∂X� = O(ε), ∂XN − N∂X� = O(ε). (29)

By integration and using the matching condition, we obtain

ln c0 + φ0 = ln p0 + ψ0 + O(ε),

ln c0 − φ0 = ln n0 − ψ0 + O(ε). (30)

These connection conditions are referred to as continuity of
electrochemical potential, widely adopted in literature [12].
And equivalently, the explicit effective boundary conditions
for EN system are

c0 = √
p0n0, φ0 = ψ0 + 1

2 ln(p0/n0). (31)

As in the bulk region, we keep the O(ε) terms. A natural
question is how to bring back such O(ε) effect in the effective
boundary conditions for the reduced EN system. One may want
to seek a general expansion to O(ε) in the BL and assume

� = �0 + ε�1 + ..., P = P0 + εP1 + ...,

N = N0 + εN1 + ... (32)

The leading order solutions �0,P0,N0 can be immediately
written down, which are the same as those in Eqs. (15) and
(16) with replacement given by Eq. (31). However, getting the
explicit expression for �1,P1,N1 seems difficult. Therefore,
instead we try to avoid such a process and find the higher-order
contributions directly based on leading-order solution.

Now, we take P (X) as an illustration, where the argument
t is omitted here and in the following. The second equation in
the BL system implies

∂XP + P∂X� = −εJp,0 + O(ε2X), (33)

where Jp,0 is some unknown flux constant. Dividing both sides
by P , we get

∂X(ln P + �) = −εJp,0/P + O(ε2X)

= −εJp,0/P0 + O(ε2X). (34)

From the previous subsection, we know that Jp,0 = J+
c,0 +

O(ε). Therefore, we obtain

ln[P (X)] + �(X)

= ln p0 + ψ0 − εJ+
c,0

∫ X

0
1/P0(z)dz + O(ε2X). (35)

By matching Ref. [28], let X = εα−1s or x = εαs with 1/2 <

α < 1, we can expect that

P (εα−1s) = c(εαs) + o(ε),

�(εα−1s) = φ(εαs) + o(ε). (36)

Substituting X = εα−1s into previous relation Eq. (35), we get
from the left-hand side

ln[P (X)] + �(X)

= ln(c0) + φ0 +
(

∂xc(0)

c0
+ ∂xφ(0)

)
εαs + o(ε), (37)

and from the integral on the right-hand side we get

ε

∫ X

0

1

P0(z)
dz = εαs

c0
+

√
2ε

c
3/2
0

(
e

ψ0−φ0
2 − 1

) + o(ε). (38)

Since J+
c,0 = −[∂xc(0) + c0∂xφ(0)] by definition Eq. (19), the

εαs terms automatically cancel each other (which partially
verifies the correctness of matching), and we are left with

ln c0 + φ0 +
√

2J+
c,0ε

c
3/2
0

[e(ψ0−φ0)/2 − 1] = ln p0 + ψ0 + o(ε).

(39)

Compared with previous leading-order condition Eq. (30),
there is an O(ε) correction term in the above formula, so
it can be considered as a generalization of continuity of
electrochemical potential. Treatments for the other condition
and two conditions at x = 1 are similar, and we summarize the
results as follows.

Proposition 2. Suppose the LEN and NGEN conditions
are satisfied, and let ψ0(t), p0(t), n0(t) be the given electric
potential and ion concentrations at x = 0 as in Eq. (28) and
let ψ1(t), p1(t), n1(t) be given at x = 1 for original system
Eq. (2), then we have the effective boundary conditions for the
EN system Eq. (8):

ln c0 + φ0 +
√

2J+
c,0ε

c
3/2
0

[e(ψ0−φ0)/2 − 1] = ln p0 + ψ0 + o(ε),

ln c0 − φ0 +
√

2J−
c,0ε

c
3/2
0

[e(φ0−ψ0)/2 − 1] = ln n0 − ψ0 + o(ε),

ln c1 + φ1 −
√

2J+
c,1ε

c
3/2
1

[e(ψ1−φ1)/2 − 1] = ln p1 + ψ1 + o(ε),

ln c1 − φ1 −
√

2J−
c,1ε

c
3/2
1

[e(φ1−ψ1)/2 − 1] = ln n1 − ψ1 + o(ε),

(40)

where J±
c are defined by Eq. (19) and subscripts 0 and 1 denote

quantities at x = 0 and x = 1, respectively.
Remark 3. We can alternatively derive asymptotically equiv-

alent expressions,

c0 = √
p0n0 + ε√

2

{(
n

−1/4
0 − p

−1/4
0

)2
∂xc(0,t)

+ (
√

n0 − √
p0)∂xφ(0,t)

}
,

φ0 = ψ0 + 1

2
ln(p0/n0) + ε√

2

{√
n0 − √

p0

n0p0
∂xc(0,t)

+ (
n

−1/4
0 − p

−1/4
0

)2
∂xφ(0,t)

}
,

c1 = √
p1n1 − ε√

2

{(
n

−1/4
1 − p

−1/4
1

)2
∂xc(1,t)

+ (
√

n1 − √
p1)∂xφ(1,t)

}
,
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φ1 = ψ1 + 1

2
ln(p1/n1) − ε√

2

{√
n1 − √

p1

n1p1
∂xc(1,t)

+ (
n

−1/4
1 − p

−1/4
1

)2
∂xφ(1,t)

}
, (41)

which are Robin-type boundary conditions. Compared with
Eq. (31), there are O(ε) corrections in above conditions. For
a special case, say n0 = p0 + O(ε) at x = 0, the correction
terms will be of higher order, then continuity of electrochem-
ical potential Eq. (31) holds with remainder o(ε).

Remark 4. In some cases, p(0,t) = p0(t) is not explicitly
given but is related to flux Jp,0, so proper modification
is needed. For example, in biological applications, there is
certain relation between flux and ion concentration across cell
membrane or ion channel, such as Hodgkin-Huxley model
[25] or GHK flux model [29]. And, in electrolyte there is the
Chang-Jaffle boundary condition [30,31] or modified Chang-
Jaffle condition [4]. Suppose the boundary condition is in the
form Jp,0 = f (p0), where f is some given function, then we
need to supplement the two conditions at x = 0 with

f (p0) = J+
c,0 + ε∂t [

√
2c0(e(φ0−ψ0)/2 − 1)]. (42)

If mixed conditions are given (e.g., one Dirichlet and one flux),
then we need to combine the two relevant boundary conditions
from the two propositions, e.g., if p0 and Jn,0 are given, we
should use Eqs. (40)1 and (26)2.

D. Robin-type boundary condition for ψ

In this subsection, we consider the case when Dirichlet
condition of electric potential ψ is replaced by Robin-type
boundary condition. The Robin-type condition is often used to
model the property of membrane or the stern layer near bound-
ary. The previous effective conditions need to be modified since
the quantity ψ0 in those formulas is unknown.

1. Dirichlet conditions for two ion concentrations

Suppose we have the boundary conditions at x = 0,

η∂xψ(0,t) = ψ(0,t) − g0(t),

p(0,t) = p0(t), n(0,t) = n0(t), (43)

where η is a parameter that is assumed to be η � O(ε), and g0

is some given function.
With previous assumptions, we still have Eqs. (13) and (14).

Integrating once and using ∂X�(∞) = 0, we obtain

(∂X�)2 = 2c0[eφ0−�(X) + e�(X)−φ0 − 2] + O(ε), (44)

or equivalently

∂X� =
√

2c0
[
e

φ0−�(X)
2 − e

�(X)−φ0
2

] + O(ε). (45)

Using the identity ∂X� = ε∂xψ , the above condition at x = 0
becomes

ε∂xψ(0,t) =
√

2c0
(
e

φ0−ψ0
2 − e

ψ0−φ0
2

) + O(ε)

=
√

2p0 −
√

2n0 + O(ε). (46)

Combining with the Robin-type condition Eq. (43)1 leads to

ψ0 ≡ ψ(0,t) = η

ε
(
√

2p0 −
√

2n0) + g0 + O(η). (47)

We conclude that we have the same effective conditions as
before

ln c0 + φ0 +
√

2J+
c,0ε

c
3/2
0

[e(ψ0−φ0)/2 − 1]

= ln p0 + ψ0 + o(ε) + O(η),

ln c0 − φ0 +
√

2J−
c,0ε

c
3/2
0

[e(φ0−ψ0)/2 − 1]

= ln n0 − ψ0 + o(ε) + O(η), (48)

except that ψ0 is given by Eq. (47) in this case.
Note that if η = O(ε), we can omit the O(ε) terms in

above conditions since they are not exact. If η = o(ε), the
condition will become close to that in the Dirichlet case for
ψ . In particular, for η = o(ε2), the η/ε term can be neglected
in Eq. (47), which essentially reduces to the Dirichlet case
ψ(0,t) = g0 [see Eq. (43)]. If η/ε tends to infinity (not
considered here), the previous BL assumptions might not be
true unless n0 ≈ p0, and this is left for future study.

The treatment for x = 1 is similar and we summarize the
results below.

Proposition 3. Suppose for original system Eq. (2), the
assumptions and conditions are the same as Proposition 2
except that the conditions for ψ0(t),ψ1(t) are replaced by

η∂xψ(0,t) = ψ(0,t) − g0(t),

η∂xψ(1,t) = g1(t) − ψ(1,t), (49)

where η � O(ε), then we have the same effective boundary
conditions for the EN system Eq. (8) as Proposition 2 except
that ψ0(t),ψ1(t) in Eq. (40) are calculated by

ψi ≡ ψ(i,t) = η

ε
(
√

2pi −
√

2ni) + gi + O(η), (50)

where i = 0,1.

2. Flux conditions

For this case, the boundary conditions at x = 0 are of the
form

η∂xψ(0,t) = ψ(0,t) − g0(t),

Jp(0,t) = Jp,0(t), Jn(0,t) = Jn,0(t), (51)

where η � O(ε). The manipulation follows similar lines as
before, and we summarize the results below.

Proposition 4. Suppose for original system Eq. (2), the
assumptions and conditions are the same as Proposition 1
except that the conditions for ψ0(t),ψ1(t) are replaced by

η∂xψ(0,t) = ψ(0,t) − g0(t),

η∂xψ(1,t) = g1(t) − ψ(1,t), (52)

where η � O(ε), then we have the same effective boundary
conditions for the EN system Eq. (8) as Proposition 1 except
that ψ0(t),ψ1(t) in Eq. (40) are determined by the nonlinear
algebraic equation

ψi − gi = η

ε

√
2ci

(
e

φi−ψi
2 − e

ψi−φi
2

) + O(η), (53)

where i = 0,1.
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Remark 5. For the steady case, the above algebraic equation
is the same as Eq. (1.23) in Ref. [26], with substitution
g0 = φ0(1), φ0 = 0, ψ0 = φ∗, c0 = α/2. With η = o(ε), the
effective boundary conditions reduce to those for Dirichlet
case, with ψ(0,t) = g0.

Remark 6. The case O(ε) < η � O(1) is not considered
above, since the boundary layer structure would be different.
For the NGEN case considered here, it is expected that there is
still a BL with thickness O(ε), and the above relation Eq. (53)
implies that ψi − φi = o(1) in the BL. We postulate that in the
BL near x = 0,

ψ − φ0,p − c0,n − c0 = O(ε/η),

∂xψ,∂xp,∂xn = O(1/η), ∂xxψ = O(1/(ηε)),...,

(54)

and it is proper to adopt the scaling x = X/ε and
the transform �(X) = ψ − φ0,P (X) = p − c0,N (X) = n −
c0 instead. This seems true for Poisson-Boltzmann-type equa-
tions in Ref. [26] with their electroneutral case, where bound-
ary layer with O(ε) thickness gradually disappears when η/ε

becomes larger. Then, the above condition Eqs. (53) and (26)
are still valid to leading order with new remainder O(ε), which
will be verified by numerical examples in later sections.

E. The general multi-ion species case

In this subsection we consider the general case with n

species of ions. The concentrations of ions are denoted by
pi with valences zi (i = 1,..,n), where the valences are not
necessarily different. The original PNP system for pi (i =
1,..,n) and ψ is given by

−ε2∂xxψ =
n∑

k=1

zkpk,

∂tpi = −∂x

(
Jpi

) = Di∂x(∂xpi + zipi∂xψ), (55)

where i = 1,..,n, and Di are some dimensionless diffusion
constants. The reduced EN system for bulk region is

∂tci = −∂x

(
Jci

) = Di∂x(∂xci + zici∂xφ), (56)

where i = 1,..,n. By the LEN condition
∑

zkck = 0, the last
concentration cn can be expressed by previous ones. Finally,
the EN system for n unknowns c1,..,cn−1,φ can be written as

∂tci = −∂x

(
Jci

) = Di∂x(∂xci + zici∂xφ),
n∑

k=1

zkDk∂x(∂xck + zkck∂xφ) = 0, (57)

where i = 1,..,n − 1 and whenever cn appears we should
replace it by cn = − 1

zn

∑n−1
k=1 zkck .

First, at x = 0, we consider the boundary conditions of the
type

ψ(0,t) = ψ0(t), Jpi
(0,t) = Jpi,0(t), i = 1,..,n. (58)

Theorem 1. Suppose the LEN and NGEN conditions are
satisfied, and let ψ0(t),Jpi ,0(t) be the given electric potential
and ion fluxes at x = 0 as in Eq. (58) and let ψ1(t),Jpi ,1(t) be
given at x = 1 for original system Eq. (55), then for the EN

system Eq. (57) we have the effective boundary conditions

Jci ,0 = Jpi,0 − ε∂tFi(ck0,φ0 − ψ0) + o(ε),

Jci ,1 = Jpi,1 + ε∂tFi(ck1,φ1 − ψ1) + o(ε), (59)

where i = 1,..,n, Jci
= −Di(∂xci + zici∂xφ) are defined in

Eq. (56), the argument ck0 represents a vector (c10,..,c(n−1)0),
subscripts 0 and 1 denote quantities at x = 0 and x = 1,
respectively, and

Fi(ck0,φ0 − ψ0) = ± ci0√
2

∫ eφ0−ψ0

1

uzi − 1√∑n
k=1 ck0(uzk − 1)

du

u
.

(60)

Here, the ± are chosen for the cases ψ0 � φ0 and ψ0 � φ0

respectively, but Fi is well-defined around φ0 = ψ0, and if Fi

can be integrated out, the expressions from the two cases are
the same.

Proof. The derivation follows similar lines as in Secs. II A
and II B, and here we only give the key steps different from
previous case. Near x = 0, with the scalings

�(X) = ψ(x), Pi(X) = pi(x), X = x

ε
, (61)

where i = 1,..,n, and by the BL analysis, we get

−∂XX� =
n∑

i=1

ziPi(X) =
n∑

i=1

zici0e
zi [φ0−�(X)]. (62)

Integrating once gives

∂X� = ±
√√√√2

n∑
i=1

ci0{ezi [φ0−�(X)] − 1}, (63)

where ± are chosen for the cases ψ0 � φ0 and ψ0 � φ0

respectively. Here in the derivation of Eqs. (62) and (63) we
have omitted the remainder O(ε). By utilizing the transport
equations, we obtain

Jci ,0 = Jpi,0 − ε∂tFi(ck0,φ0 − ψ0) + o(ε), (64)

where Fi depends on all ion concentrations ck0 (k = 0,..,n − 1,
cn0 is replaced by previous ones) and is given by

Fi(ck0,φ0 − ψ0) =
∫ ∞

0
[Pi(X) − ci0]dX

= ± ci0√
2

∫ eφ0−ψ0

1

uzi − 1√∑n
k=1 ck0(uzk − 1)

du

u
,

(65)

where we have made change of variable u = eφ0−�(X), and ±
are chosen for the cases ψ0 � φ0 and ψ0 � φ0, respectively.

It can be easily seen that Fi is well-defined around φ0 =
ψ0, in particular, Fi = 0 when φ0 = ψ0. Further, if Fi can be
integrated out, the expressions from the two cases are the same.
This is readily verified from the fact that there is a factor (u −
1)2 inside square root in the denominator of the integrand,
which cancels with the ± sign and the factor u − 1 in the
numerator (see Appendix A for details). �
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Remark 7. For some special cases, the explicit expressions
for Fi are available. For the previous case z1 = 1, z2 = −1,
we recover the result

F1(c10,φ0 − ψ0) =
√

2c10[e(φ0−ψ0)/2 − 1],

F2(c10,φ0 − ψ0) =
√

2c10[e(ψ0−φ0)/2 − 1]. (66)

For the case z1 = 2, z2 = −1, we get

F1(c10,φ0 − ψ0) =
√

c10

2
[e

φ0−ψ0
2

√
e(φ0−ψ0) + 2 −

√
3],

F2(c10,φ0 − ψ0) =
√

2c10(
√

1 + 2e(ψ0−φ0) −
√

3). (67)

For the three-ion case with z1 = 1, z2 = 1, z3 = −1, we have

Fj (c10,c20,φ0 − ψ0) =
√

cj0

c10 + c20

√
2cj0

(
e

φ0−ψ0
2 − 1

)
,

F3(c10,c20,φ0 − ψ0) =
√

2(c10 + c20)(e(ψ0−φ0)/2 − 1), (68)

where j = 1,2.
Next, at x = 0, we consider the boundary conditions of the

type

ψ(0,t) = ψ0(t), pi(0,t) = pi0(t), i = 1,..,n. (69)

We summarize the results in the following theorem.
Theorem 2. Suppose the LEN and NGEN conditions are

satisfied, and let ψ0(t),pi0(t) be the given electric potential and
ion concentrations at x = 0 as in Eq. (69) and let ψ1(t),pi1(t)
be given at x = 1 for original system Eq. (55), then for the EN
system Eq. (57) we have the effective boundary conditions

ln ci0 + ziφ0 + εJci ,0

Di

fi(ck0,φ0 − ψ0)

= ln pi0 + ziψ0 + o(ε),

ln ci1 + ziφ1 − εJci ,1

Di

fi(ck1,φ1 − ψ1)

= ln pi1 + ziψ1 + o(ε), (70)

where i = 1,..,n, Jci
is defined in Eq. (56), the argument ck0

represents a vector (c10,..,c(n−1)0), subscripts 0 and 1 denote
quantities at x = 0 and x = 1, respectively, and

fi(ck0,φ0 − ψ0) = ± 1√
2ci0

∫ eφ0−ψ0

1

u−zi − 1√∑n
k=1 ck0(uzk − 1)

du

u
.

(71)

Here, the ± are chosen for the cases ψ0 � φ0 and ψ0 � φ0,
respectively, but fi is well-defined around φ0 = ψ0, and if fi

can be integrated out, the expressions from the two cases are
the same.

Remark 8. For the case z1 = 1,z2 = −1, we will recover the
previous formulas in Proposition 2. For the case z1 = 2,z2 =
−1, we get

f1 =
√

2 + eφ0−ψ0 (1 + 2eφ0−ψ0 )e
3
2 (ψ0−φ0) − 3

√
3

3
√

2c
3/2
10

,

f2 = arcsinh(e(φ0−ψ0)/2/
√

2) − arccsch(
√

2)√
2c

3/2
10

. (72)

For the case with z1 = 1, z2 = 1, z3 = −1, we have

fj (c10,c20,φ0 − ψ0) =
√

2(e(ψ0−φ0)/2 − 1)

cj0
√

c10 + c20
,

f3(c10,c20,φ0 − ψ0) =
√

2(e(φ0−ψ0)/2 − 1)

(c10 + c20)3/2
, (73)

where j = 1,2.

III. NUMERICAL EXAMPLES

A. A steady-state problem

As a first example to verify the preceding effective condi-
tions, we take the steady-state problem from Rubinstein [12,
pp. 133–134], since this problem can be solved analytically
with effective conditions. Consider the stationary ionic trans-
port in a unity thick unstirred layer adjacent to an ideally
cation-permselective interface, and the PNP system with ±1
ions for x ∈ [0,1] is

−ε2ψ ′′ = p − n, p′ + pψ ′ = −j, n′ − nψ ′ = 0, (74)

together with boundary conditions

p(0) = n(0) = 1, ψ(0) = 0,

p(1) = 1, Jn(1) = 0, ψ(1) = −V, (75)

where prime denotes the derivative with respect to x, and j

is the constant flux to be determined with given potential V .
Physically, the j -V relation is the current-voltage relation in
this example. Since it is electroneutral at x = 0, there is only
a boundary layer near x = 1.

One can easily write down the EN system for c(x) and φ(x)
in bulk region, and the solutions are given by

c(x) = 1 − j

2
x, φ(x) = ln

(
1 − j

2
x

)
. (76)

By using the usual continuity of electrochemcial potential as
in Ref. [12], we get

j = 2(1 − e−V/2). (77)

By the effective condition Eq. (40) at x = 1, we get

2 ln

(
1 − j

2

)
− 4jε

( √
2e− V

2

(2 − j )2
− 1

(2 − j )3/2

)
= −V, (78)

where there is an O(ε) correction term.
In the numerical verification, we use Eq. (2) with boundary

conditions Eq. (75) and the following initial conditions at
t = 0:

p(x,0) = 1, n(x,0) = 1. (79)

TABLE I. Comparison of flux j with fixed V = 1 and different
ε, where “Rubinstein” and “Present” are from Eqs. (77) and (78),
respectively; “PNP” is obtained by solving the original PNP system.

ε 0.1 0.05 0.01

Rubinstein 0.7869 0.7869 0.7869
Present 0.8191 0.8029 0.7901
PNP 0.8192 0.8029 0.7901
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FIG. 1. Comparison between analytic bulk solution with numer-
ical solution at t = 20, with ε = 0.05.

The solution tends to the steady state solution of Eqs. (74) and
(75), and the flux j near the steady state can be found. Finite-
volume method with a refined mesh nearx = 1 is adopted in the
numerical simulation. With V = 1 and ε = 0.1, 0.05, 0.01,
we give the results of flux j using Rubinstein’s condition
Eq. (77) and the new condition Eq. (78) in Table I. It can be seen
that the new effective condition produces better results and the
O(ε) term is correct. Figure 1 shows the comparison between
bulk solution Eq. (76) and the numerical solution at t = 20 with
ε = 0.05. In order to show the error of solution with respect
to small parameter ε, Table II compares the maximum errors
of concentration c by Eq. (76), in the bulk region [0,0.5] with
different ε. It shows that the result obtained using the effective
condition Eq. (78) enjoys a higher-order accuracy than that
obtained with Rubinstein’s condition Eq. (77).

Next, we replace Dirichlet boundary condition for ψ(1) by a
Robin-type condition η∂xψ(1) = −1 − ψ(1) and keep others
the same as before. The effective condition Eqs. (40) and (50)
imply that

2 log

(
1 − j

2

)
− 4jε(

√
2eψ1/2 − √

2 − j )

(j − 2)2
= ψ1,

ψ1 = −1 +
√

2
η

ε
− 2W (e(

√
2η−ε)/(2ε)η/(

√
2ε)), (80)

where W is the Lambert-W function. For ε = 0.01 and dif-
ferent η, we compare in Table III the results of flux j using
Eq. (80) and the original PNP with initial condition Eq. (79).

TABLE II. Comparison of maximum errors of concentration c in
the bulk region [0,0.5] with different ε, where p and n are from PNP
system and c is from Eq. (76) with associated flux j in Table I.

ε 0.1 0.05 0.01

Rubinstein |c − p| 5.6 × 10−3 3.7 × 10−3 7.9 × 10−4

Present |c − p| 2.4 × 10−3 3.7 × 10−4 7.3 × 10−6

PNP |p − n| 4.2 × 10−3 6.5 × 10−4 2.4 × 10−5

TABLE III. Comparison of flux j using the present Eq. (80) and
the original PNP system.

η 10−2 10−3 10−4

Present 0.5358 0.7570 0.7867
PNP 0.5406 0.7590 0.7871

For the Robin-type condition, in general the results are correct
at the leading order, and the error is roughly O(η).

B. Two dynamic examples

In this subsection, we investigate two time-dependent exam-
ples to verify the EN models. In these examples, the previous
assumptions on the BL structure are satisfied, so we can solve
the EN system in bulk region directly and efficiently with
effective boundary conditions.

As the first example, we examine the PNP system Eq. (2)
with Dirichlet boundary conditions for p,n,ψ like Eq. (28).
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FIG. 2. Comparison between numerical results of original PNP
system with Dirichlet conditions and those of the EN model using
Rubinstein’s condition Eq. (83) and present condition Eq. (41):
(a) for ion concentrations, (b) for electric potential.
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TABLE IV. Maximum error in concentration c(x,t) and potential
φ(x,t) in some bulk region x ∈ [0.25,0.75] and t = 0.5,1, using
Rubinstein’s condition Eq. (83) and the present condition Eq. (41).

c at t = 0.5 c at t = 1 φ at t = 0.5 φ at t = 1

Rubinstein 4.5 × 10−4 1.7 × 10−3 9.5 × 10−5 6.2 × 10−5

Present 4.9 × 10−6 8.4 × 10−6 1.1 × 10−5 2.3 × 10−5

|p − n| 3.6 × 10−6 4.6 × 10−6 − −

More precisely the boundary conditions at x = 0 and 1 are
given by

p(0,t) = 1 + t, n(0,t) = 1, ψ(0,t) = 0,

p(1,t) = 1, n(1,t) = 1 + t, ψ(1,t) = 0, (81)

and the initial conditions at t = 0 are

n(x,0) = p(x,0) = 1, 0 < x < 1. (82)

In this case, the BL develops gradually over time, and
we will demonstrate it with ε = 0.01. Finite-Volume method
with refined mesh in the BL is adopted to solve the original
PNP system Eq. (2). The EN system Eq. (8) for c(x,t) and
φ(x,t) is solved with a fixed uniform mesh with the aid of
effective boundary conditions. For the original PNP system,
we use a fixed non-uniform mesh in computation, with mesh
size �x = 8.0 × 10−4 in the BL, which gradually increases to
�x = 3.0 × 10−3 in the bulk region. For the EN model, we use
a uniform mesh size �x = 5.0 × 10−3 over the entire domain.
And we try two implementations with the following effective
boundary conditions, (i) the leading order Dirichlet conditions
(called Rubinstein’s condition here)

c0 = c1 = √
1 + t, φ0 = −φ1 = 1

2 ln(1 + t), (83)

and (ii) the Robin-type conditions in Eq. (41) with O(ε)
correction term. All the above effective boundaries are explicit
and linear and thus can be easily applied.

Figure 2 shows the comparison between the numerical result
of original PNP system and two direct numerical implemen-
tations for EN system. Figure 2(a) shows that the present
higher-order effective conditions produce better results for ion
concentration than the leading order Rubinstein’s condition,
and so does Fig. 2(b) for electric potential (note that red and
pink curves coincide in the enlarged figure). By using the
numerical results of p(x,t) and ψ(x,t) of the original system
as a reference solution, Table IV gives the maximum errors of
c(x,t) and φ(x,t) in some bulk region [0.25,0.75]. The results
indicate that the accuracy is acceptable with the effective
boundary conditions. Table V compares the maximum errors

TABLE V. Maximum errors of concentration c(x,t) in some bulk
region x ∈ [0.25,0.75] at t = 0.5 for varying ε, using Rubinstein’s
condition Eq. (83) and the present condition Eq. (41).

ε 0.1 0.05 0.01

Rubinstein 1.0 × 10−2 2.5 × 10−3 4.5 × 10−4

Present 5.9 × 10−3 2.2 × 10−4 5.0 × 10−6

|p − n| 9.5 × 10−3 2.7 × 10−4 3.6 × 10−6
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FIG. 3. Comparison between numerical results of original PNP
system with flux conditions and those of the EN system with effective
boundary conditions Eq. (26): (a) for ion concentrations, (b) for
electric potential.

of concentration c(x,t) using both the new and Rubinstein’s
conditions for several values of ε, in the bulk region x ∈
[0.25,0.75] at t = 0.5. It shows that the new effective condition
produces a more accurate solution for ε. Furthermore, the EN
system allows for relatively large mesh and time-step sizes,
and as a result the computational time is greatly reduced. For
instance, it takes roughly 1 h to compute the original PNP
system up to t = 1, while it takes only 8 min for the EN system
on a Mac laptop (Processor: 1.8 GHz Intel Core i5; Memory:
8 GB 1600 MHz DDR3)

As a second example, we solve the PNP system Eq. (2) with
the flux conditions

Jp(0,t) = 0.2, Jn(0,t) = 0.4, ψ(0,t) = 0,

Jp(1,t) = 0.2, Jn(1,t) = 0.4(1 + 2ε), ψ(1,t) = 0.
(84)

Here, the fluxes are O(1) but the unbalanced flux is only O(ε),
which is consistent with previous assumptions. The initial
conditions are the same as in Eq. (82). The original PNP system
for p,n,ψ is solved using a finite volume method on a refined
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TABLE VI. Maximum error in concentration c(x,t) and potential
φ(x,t) in some bulk region x ∈ [0.25,0.75] and t = 0.1 and 1.

c at t = 0.1 c at t = 1 φ at t = 0.1 φ at t = 1

Present 9.1 × 10−7 3.6 × 10−7 4.4 × 10−5 6.7 × 10−4

|p − n| 2.3 × 10−6 3.7 × 10−6 − −

mesh, while the EN system Eq. (8) for c,φ is computed on
a uniform mesh and the linearized version of the effective
boundary conditions Eqs. (26).

Figure 3 shows the comparison between the numerical
results of p,n,ψ from the original PNP system and those of
c,φ from the EN model at t = 0.1 and 1. It can be seen that
the two solutions agree very well with each other in the bulk
region. By using the numerical results of p(x,t) and ψ(x,t)
from original system as a reference solution, Table VI shows
the maximum errors of c(x,t) and φ(x,t) in a portion of the
bulk region [0.25,0.75]. Similarly, it takes less computational
time to solve the EN system with effective boundary conditions
(6 min) compared to approximately 1 h to solve the original
PNP system on a Mac laptop (Processor: 1.8 GHz Intel Core
i5; Memory: 8 GB 1600 MHz DDR3)

IV. AN ELECTRONEUTRAL MODEL
FOR NEURONAL AXON

As a final example, we consider a region representing part
of a neuronal axon with a membrane in between [32]. The
interval is set to be [0,L], where L is typical cell length with the
membrane placed in the middle x = L/2. The left part [0,L/2)
is the extracellular space and (L/2,L] is the intracellular space.
Only three basic types of ions Na+,K+,Cl− are considered
(fixed negative charge are incorporated into Cl− ion as an
approximation), and LEN condition in bulk region is valid in
this biological application.

We first formulate the original system in dimensional form.
Let pi (i = 1,2,3) denote ion concentrations of Na+,K+,Cl−,
with valences z1 = z2 = 1,z3 = −1. The dimensional PNP
system for pi and electric potential ψ in left region
x ∈ (0,L/2) is

−ε0ε
L
r ∂xxψ = e0NA

(
3∑

k=1

zkpk

)
,

∂tpi = −∂x(Jpi
) = Di∂x

(
∂xpi + e0

kBT
zipi∂xψ

)
,

(85)

where i = 1,2,3, ε0 is vacuum permittivity, εL
r is the relative

permittivity of left region (extracellular space), e0 is elemen-
tary charge, NA is Avogadro constant, Di is the diffusion
constant, kB is Boltzmann constant, and T is absolute tem-
perature. The system for right half region is the same except
a possibly different relative permittivity εR

r . The boundary
conditions at x = 0,1 are omitted here, and will be presented
in dimensionless form.

The membrane at x = L/2 is described by Hodgkin-Huxley
(HH) model [25], to simulate action potential for neuronal axon
(one might use GHK flux model [29] for other purpuses). Thus,

the dimensional relation for the current through membrane/ion
channel, from intracellular region to extracellular region, is

Ii = Gpi
(Vm − Ei), (86)

or in terms of flux at x = L/2,

−zie0NAJpi
= zie0NADi

(
∂xpi + e0

kBT
zipi∂xψ

)

= Gpi

(
ψR − ψL − kBT

zie0
ln

piL

piR

)
, (87)

where Gpi
is the conductance for ion pi , Vm = ψR − ψL is

the membrane potential, Ei is the Nernst potential of ion pi ,
subscripts L and R denote the left and right limits of quantities
at membrane x = L/2.

Assuming that the membrane has thickness hm and relative
permittivity εm

r , and there are no ions in membrane. Thus, the
electric potential is linear inside membrane. The other two
jump conditions on the interface x = L/2 are

εL
r ∂xψ

∣∣
x= L

2 − = εR
r ∂xψ

∣∣
x= L

2 + = εm
r

ψR − ψL

hm

, (88)

where L
2 ± mean the left and right limits at x = L/2.

The conductances depend on membrane potential Vm.
Following Ref. [32], we set Gp3 ≡ GCl = 0 and

Gp1 ≡ GNa = ḠNam
3h + GNa,leak,

(89)
Gp2 ≡ GK = ḠKn4 + GK,leak,

where

dn

dt
= αn(1 − n) − βnn,

dm

dt
= αm(1 − m) − βmm,

dh

dt
= αh(1 − h) − βhh.

(90)

The coefficients depend on Vm and are given by

αn = 1

100

10 − V̄

[e(10−V̄ )/10 − 1]
, βn = 1

8eV̄ /80
,

αm = 1

10

25 − V̄

[e(25−V̄ )/10 − 1]
, βm = 4e−V̄ /18,

αh = 7

100
e−V̄ /20, βh = 1

e(30−V̄ )/10 + 1
,

(91)

where V̄ = Vm − Vr and Vr is some fixed resting potential. In
the above coefficients, the unit for V̄ is millivolt. Theoretically,
there is no singularity in above coefficients, but for computation
when V̄ is near 10 or 25, it is sensitive as denominator
approaches 0. We can use the Taylor expansions in a small
neighborhood, say δ = 0.01,

αn(V̄ ) = 1

10
+ V̄ − 10

200
+ (V̄ − 10)2

12000
, |V̄ − 10| < δ,

(92)

αm(V̄ ) = 1 + V̄ − 25

20
+ (V̄ − 25)2

1200
, |V̄ − 25| < δ,
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and the error by choosing δ = 0.01 is at least at the order of
10−12. With V̄ = 0, we obtain the steady-state solution

n0 = 4

5e − 1
≈ 0.3177, m0 = 5

8e5/2 − 3
≈ 0.05293,

h0 = 7(1 + e3)

107 + 7e3
≈ 0.5961, (93)

which are used as initial values of the time-dependent problem
to simulate action potential.

A. Nondimensionalization

In this subsection, we present the dimensionless PNP
formulation combined with the HH model. We adopt the
following scalings:

ψ̃ = ψ

kBT/e0
, p̃i = pi

p0
, x̃ = x

L
, h̃m = hm

L
,

D̃i = Di

D0
, t̃ = t

L2/D0
, G̃pi

= Gpi

G0
, (94)

where p0 is the typical concentration of ions, D0 is the typical
diffusion constant, and typical conductance G0 is defined
by G0 = p0D0e

2NA/(kBT L). All the parameter values and
typical values are given in Appendix B. In the following, we
will remove the tilde and still use the same notations but they
represent dimensionless quantities.

The dimensionless PNP system is given by

−ε2
L∂xxψ =

3∑
k=1

zkpk, 0 < x < 1/2,

−ε2
R∂xxψ =

3∑
k=1

zkpk, 1/2 < x < 1,

∂tpi = −∂x(Jpi
) = Di∂x(∂xpi + zipi∂xψ),

i = 1,2,3 0 < x < 1, (95)

together with the conditions on interface x = 1/2,

−ziJpi

∣∣
x= 1

2
≡ ziDi(∂xpi + zipi∂xψ)|x= 1

2

= Gpi

(
ψR − ψL − 1

zi

ln
piL

piR

)
, (96)

and

ε2
L∂xψ

∣∣
x= 1

2 − = ε2
R∂xψ

∣∣
x= 1

2 + = ε2
m

ψR − ψL

hm

. (97)

Here the dimensionless parameters εL,εR,εm are defined by

εs ≡
√

ε0εs
r kBT

e2NAp0L2
, s = L,R,m. (98)

The values of the dimensionless parameters are given in
Appendix B.

We use typical bulk concentrations as the initial values (see
Appendix B) at t = 0:

p1(x,0) = 1, p2(x,0) = 0.04, p3(x,0) = 1.04,

for 0 < x < 1/2,

p1(x,0) = 0.12, p2(x,0) = 1.25, p3(x,0) = 1.37,

for 1/2 < x < 1. (99)

For the boundary conditions at x = 0,1, we adopt

ψ(0,t) = 0, p1(0,t) = 1,

p2(0,t) = 0.04, p3(0,t) = 1.04, (100)

∂ψ

∂x
(1,t) = 0, Jpi

(1,t) = 0, i = 1,2,3,

where the first two lines give fixed concentrations and electric
potential in extracellular region, and the third line are the
symmetric conditions at the center of the neuronal axon.

This system is solved with Eq. (89) for conductances and
the dynamics of n,m,h given by Eq. (90). We will not scale
the quantities in the coefficients Eq. (91), where the quantity
V̄ (in millivolts) is related to normalized membrane potential
Vm = ψR − ψL through

V̄ = kBT

e0
(ψR − ψL) − Vr, (101)

and Vr is the resting potential in millivolts [see Eq. (109)
below].

B. The effective flux conditions for the electro-neutral model

The reduced EN model consists of the equations in Eq. (57)
for c1,c2,φ, with n = 3 and z1 = z2 = 1,z3 = −1. Next, we
need to propose approximate jump conditions at middle
interface for bulk quantities ciL,φL,ciR,φR (i = 1,2), where
subscripts L,R indicate the left and right limits of quantities
at interface x = 1/2. Based on previous analysis in Secs. II D
and II E, we derive the following 14 conditions to close the
system (normally six conditions are needed, but we have
introduced eight auxiliary quantities piL,piR,ψL,φR with i =
1,2,3 at interface x = 1/2),

ε2
m

hm

(ψR − ψL) = εR

√
2c3R(e(φR−ψR)/2 − e(ψR−φR )/2)

= −εL

√
2c3L(e(φL−ψL)/2 − e(ψL−φL)/2), (102)

where c3R = c1R + c2R,c3L = c1L + c2L by the electroneutral-
ity condition, and

Gpi

(
ψR − ψL − 1

zi

ln
piL

piR

)
= −zi

(
Jci ,R + εR∂tFiR

)
= −zi

(
Jci ,L − εL∂tFiL

)
,

ln ciR + ziφR + εRJci ,R

Di

fiR = ln piR + ziψR,

ln ciL + ziφL − εLJci ,L

Di

fiL = ln piL + ziψL, (103)

where i = 1,2,3, Jci
is given in Eq. (56), and we have defined

Fis = Fi(c1s ,c2s ,φs − ψs),

fis = fi(c1s ,c2s ,φs − ψs), (104)

for s = L,R. Here Fi and fi are given by Eqs. (68) and (73).
From definition Eq. (89) and the data in Appendix B,

the conductances Gpi
have at most the same order as the
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FIG. 4. Numerical results of original system and electroneutral
(EN) model to generate the resting state in step 1: (a) the dynamics of
membrane potential Vm; (b) distribution of electric potential at resting
state.

dimensionless small parameter εR = εL. Now we simplify the
conditions in Eq. (103) asymptotically and get

−ziJci ,R = Gpi

(
φR − φL − 1

zi

ln
ciL

ciR

)
+ ziεR∂tFiR

+ Gpi
εR

Dizi

[
Jci ,RfiR + εR

εL

Jci ,LfiR

]
,

= Gpi

(
φR − φL − 1

zi

ln
ciL

ciR

)

+ ziεR∂tFiR + O
(
ε2
R

)
. (105)

We expect the flux is O(εR), so the higher-order term O(ε2
R) can

be ignored while the term εR∂tFiR should be kept. Similarly,
we obtain the condition for flux Jci ,L as

−ziJci ,L = Gpi

(
φR − φL − 1

zi

ln
ciL

ciR

)

− ziεL∂tFiL + O
(
ε2
L

)
. (106)
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FIG. 5. Numerical results of the original PNP system and EN
model in the dynamics of action potential in step 2, with different
time steps: (a) �t = 5 ∗ 10−6; (b) �t = 5 ∗ 10−5; (c) �t = 5 ∗ 10−4.

These two conditions take the same form of the original HH
model with boundary values replaced by the bulk quantities,
with correction terms involving FiR and FiL, which in general
are not negligible.
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TABLE VII. Comparison of computation time between original system and EN model and the maximum error for membrane potential Vm

in EN model.

Original system �t = 5
8 ∗ 10−6 EN model, �t = 5 ∗ 10−6 EN model, �t = 5 ∗ 10−5 EN model, �t = 5 ∗ 10−4

Error − 6 ∗ 10−4 0.03 0.3
Time 8 h 1.7 h 10 min 1 min

To summarize, the final EN system consists of Eqs. (57)
with conditions Eqs. (102), (105), and (106), and dynamics of
conductances Eqs. (89)–(91).

Remark 9. If we carry out a linearization of φL − ψL and
φR − ψR in exponential functions [in Fi,fi , and Eq. (102)],
then we obtain

−
3∑

i=1

ziJci ,L −
3∑

i=1

Gpi

(
φR − φL − 1

zi

ln
ciL

ciR

)

= −εL

3∑
i=1

zi∂tFiL ≈ −εL∂t [
√

2c3L(φL − ψL)]

≈ ε2
m

hm

∂t (ψR − ψL), (107)

where we have used linearized version of Eq. (102) in last
approximation. Similarly, we have

−
3∑

i=1

ziJci ,R −
3∑

i=1

Gpi

(
φR − φL − 1

zi

ln
ciL

ciR

)

≈ ε2
m

hm

∂t (ψR − ψL). (108)

Physically, on the left-hand side, the first term is the total
current from/to bulk region, where the minus sign means from
intracellular space to extracellular space; and the second term is
total current through membrane or ion channels, approximated
by bulk quantities (they differ by higher-order term). On
the right-hand side, the quantity ε2

m/hm is the normalized
membrane capacitance [scaled by e2NAp0L/(kBT )]. Under
such linearization, this equation reduces to the HH cable model.
It is worth noting that a similar electroneutral model was
proposed by Mori [33]. A quantity σi introduced in Ref. [33],
Eq. (35), plays the same role as FiR and FiL here.

C. Numerical results

In this subsection, we present numerical results using both
the original PNP system and the present EN model. The com-
putation is divided into two steps: first, we generate a resting
state; second, we simulate the phenomenon of action potential.

Step 1. To generate a resting state, we only use two leak
conductance as in Ref. [32], by setting ḠNa = ḠK = 0 in
Eq. (89). Flux of sodium ion is positive, i.e., from extracellular
region to intracellular region, while flux of potassium ion
is negative. After certain period, e.g., at t = 6, the net flux
across membrane tends to 0, i.e., Jp1 + Jp2 |x=1/2 = 0, which
is set as the resting solution. Figure 4(a) shows the variation
of membrane potential Vm = ψR − ψL for both the original
model and the new EN model, and the two solutions agree
very well with each other. Figure 4(b) shows the distributions

of electric potential ψ for the original system and φ for the EN
model, at resting state t = 6. They agree very well in the bulk
region. The resting potential is calculated as

Vm|t=6 = ψR − ψL|t=6 ≈ −2.65,

Vr = kBT

e0
(ψR − ψL)|t=6 ≈ −63.8 mV. (109)

In the computation using the original model, nonuniform fixed
mesh is adopted, with mesh size �x = 1.7 × 10−4 in boundary
layer region of width 5ε on each side of membrane, gradually
increasing to �x = 9.0 × 10−3 in bulk region. For the EN
model, we adopt a uniform mesh size �x = 8.3 × 10−3. The
total number of points for the original and EN models are 200
and 120, respectively. More importantly, much smaller time
step size is required for solving the original system due to
stability issues, whereas the EN model allows a relatively large
time step size. Therefore, the EN model is more efficient in
computation. To calculate the resting state by original system,
it costs roughly 3.7 h, while it takes only 4 min by the EN
model on a Thinkpad laptop (Processor: 2.6 GHz Intel Core
i5-4210M; Memory: 8 GB)

Step 2. To evoke the action potential [32], we use both
leak conductance and voltage-gated conductances, with initial
values in Eq. (93) for n,m,h. To speed up the process, we
modify ḠNa to allow more flux of Na+ into the intracellular
region. In the simulation, we change ḠNa to 50ḠNa for the
period 0 < t < 0.1. In the computation, we have adopted
the same mesh as in step 1 and have used time-step size
�t = 5

8 × 10−6 for the original model and much larger time-
step size for the EN model. Figure 5 shows the variation
of membrane potential Vm = ψR − ψL obtained using the
original PNP system and the new EN model with different
time step sizes, which reproduces the generation of an action
potential. Table VII compares the computational time between
the original system and EN model, and shows the maximum
error for the entire duration of the action potential with different
time steps (numerical results from original system is treated as
exact value). This indicates that the EN model is more efficient
with acceptable error. The saving in computational time is
mainly due to the larger time step size and partially due to
the smaller number of mesh points.

Remark 10. In this case, across the membrane, we have
Robin-type boundary conditions for ψ in Eq. (97) with an
effective η as in Sec. II D:

η = ε2
Lhm

ε2
m

≈ 0.2 � O(ε). (110)

As expected in Remark 6 (this three-ion case is similar to
the two-ion case with ±1 valences), the variation of ψ,pi is
roughly O(εL/η) ∼ 10−2, which is consistent with numerical
simulations like Fig. 4(b).
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V. CONCLUSIONS

In this work, we have investigated a 1D time-dependent PNP
system with various boundary conditions, and have derived the
corresponding EN system with effective boundary conditions.
In the case of Dirichlet boundary conditions, the effective
conditions can be considered as generalization of continuity
of electrochemical potential. For flux conditions, we derived
a physically correct effective conditions by bringing back an
essential higher-order contribution. The effective conditions
for the general multi-ion species case involves elliptic integrals,
and these extra terms of elliptic integrals account for the accu-
mulation of ions in the BL. We have validated our EN models
with several examples and demonstrated the effectiveness of
the EN system with the implementation of the well-known
Hodgkin-Huxley model for generating action potential on a
cell membrane.

As a next step, we will extend our approach to 2D, and
illustrate the signal transmission in neuronal axon in a more
realistic framework. For the 2D case under the LEN and
NGEN assumptions in this paper, preliminary results show that
the metric of the boundary will enter the effective boundary
conditions whereas the curvature will not affect them. Besides
accumulation of ions in the BL, the diffusion of ions along the
domain boundary will be essential. We also plan to extend our
approach to modified PNP system where size effect of the ions
are included.

ACKNOWLEDGMENTS

The authors thank Prof. Y. Mori for valuable suggestions.
Part of the research is supported by NSERC (CA) and the Fields
Institute.

APPENDIX A: THE FUNCTIONS Fi , fi IN THEOREMS 1, 2

We show that the functions Fi, fi are well defined. We take
Fi for example, and recall that

Fi = ± ci0√
2

∫ eφ0−ψ0

1

uzi − 1√∑n
k=1 ck0(uzk − 1)

du

u
. (A1)

We analyze the integrand, and since all zk are integers, we can
write the numerator as

uzi − 1 = P (u)

Q(u)
(u − 1), (A2)

where u = 1 is a simple zero, and polynomials P (u) and Q(u)
are well defined nearu = 1. We write the function inside square
root as

H (u) =
n∑

k=1

ck0(uzk − 1), (A3)

then, one easily finds (note zk = 0)

H (1) = 0, H ′(u) =
n∑

k=1

ck0zku
zk−1, H ′(1) =

n∑
k=1

ck0zk = 0,

H ′′(1) =
n∑

k=1

ck0zk(zk − 1) =
n∑

k=1

ck0z
2
k > 0. (A4)

Therefore, u = 1 is a double zero of H (u). Since all zk are
integers, H (u) is a rational function in u, and we can write

H (u) = P1(u)

Q1(u)
(u − 1)2, (A5)

where polynomials P1(u) and Q1(u) are well-defined and
P1(u)/Q1(u) > 0 near u = 1. Then the integrand together with
± is given by

± uzi − 1

u

√∑n
k=1 ck0(uzk − 1)

= ±(u − 1)√
(u − 1)2

P (u)

uQ(u)

√
Q1(u)

P1(u)
= P (u)

uQ(u)

√
Q1(u)

P1(u)
, (A6)

where ± are chosen for cases u > 1 and u < 1, and hence the
first factor disappears. This implies that Fi has the same form
for both cases.

APPENDIX B: THE DATA USED IN SEC. IV

The data are mainly from Refs. [25,32] and the book in
Ref. [34]. The temperature in Ref. [25] is set to be 6.3oC, so
we get T = 279.45 K. The other constants are

kB = 1.38 × 10−23 J/K, NA = 6.022 × 1023/mol,

e0 = 1.602 × 10−19 C, ε0 = 8.854 × 10−12 C/(V · m).

(B1)

The typical bulk concentrations for Na+,K+,Cl− are

p1,Na+ p2,K+ p3,Cl−

Extracellular 100 mM 4 mM 104 mM
Intracellular 12 mM 125 mM 137 mM

which are used as initial conditions (scaled by p0 below). Some
typical values are (diffusivity of Cl− is from Ref. [35])

εL
r = εR

r = 80, εm
r = 2, hm = 5nm,

p0 = 100 mM = 100 mol/m3, L = 1μm,

D0 = 10−5 cm2/s = 10−9 m2/s,

D1 = 1.33D0, D2 = 1.96D0, D3 = 2.03D0. (B2)

The conductances are given by

ḠNa = 120 mS/cm2 = 1200 C/(V × s × m2),

ḠK = 360 C/(V × s × m2),

ḠNa,leak = 0.65 C/(V × s × m2),

ḠK,leak = 4.35 C/(V × s × m2). (B3)

From the above data, we get

kBT

e0
≈ 24 mV,

L2

D0
= 1 ms,

G0 = p0D0e
2NA

kBT L
≈ 400 758 C/(V × s × m2). (B4)
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For the dimensionless system we have

εL = εR = 1.33 × 10−3, εm = 2.1 × 10−4, hm = 5 × 10−3, D1 = 1.33, D2 = 1.96, D3 = 2.03,

ḠNa = 3 × 10−3, ḠK = 9 × 10−4, ḠNa,leak = 1.6 × 10−6, ḠK,leak = 1 × 10−5. (B5)
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