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We consider many-site mutation-recombination models of evolution with selection. We are looking for
situations where the recombination increases the mean fitness of the population, and there is an optimal
recombination rate. We found two fitness landscapes supporting such nonmonotonic behavior of the mean
fitness versus the recombination rate. The first case is related to the evolution near the error threshold on a
neutral-network-like fitness landscape, for moderate genome lengths and large population. The more realistic
case is the second one, in which we consider the evolutionary dynamics of a finite population on a rugged fitness
landscape (the smooth fitness landscape plus some random contributions to the fitness). We also give the solution
to the horizontal gene transfer model in the case of asymmetric mutations. To obtain nonmonotonic behavior for
both mutation and recombination, we need a specially designed (ideal) fitness landscape.
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I. INTRODUCTION

Recombination is one of the key factors in evolution and
is assumed to be one of the possible advantages of sex [1].
While the asexual evolution models by Crow-Kimura [2,3]
and Eigen [4] can be mapped to systems of linear differential
equations (using some nonlinear algebraic transformations
[5]), the models of recombination are described only via
strongly nonlinear differential equations, and they are much
more complicated than the Crow-Kimura and Eigen models.
A growing body of literature recognizes the importance of
recombination [6–9]. Recombination can be modeled using
discrete time models and few loci [6,10], as well as by
looking continuous time models with symmetric or random
fitness landscapes, on the basis of Crow-Kimura or Eigen
models [11–16]. The latter class of models assumes a simpler
mathematical formulation, while qualitatively both classes of
models give similar results. This study is motivated by [17],
where recombination is considered as an evolvable trait. This
evolutionary mechanism leads to different system properties
in evolutionary dynamics. First, it increases mean fitness,
providing an advantage in the case of negative epistasis; i.e., the
Malthusian fitness function r = f (m), is convex near m = 1,
where m = 1 − 2l/L, l is the total number of mutations from
the wild sequence, and L is the genome length [10]. While
in [10] this result was derived for the discrete time few allele
diploid model, the phenomenon is rather general and occurs
in all the considered infinite population evolution models with
recombination. Second, the finite size of the population can
benefit due to recombination [18]. For a single peak fitness
landscape, the recombination decreases the mean fitness, as
has been found numerically in [19] for the version of the
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Eigen model and analytically in [14] for the Crow-Kimura
model. Moreover, the strong common effect of recombination
and neutrality was first found numerically in [15] for the
Crow-Kimura model and analytically in [16] for the Eigen
model. Then a question arises (see [6], which attempts to model
the phenomenon using an infinite allele Wright-Fisher model
with recombination): Is there a limitation to the recombination
rate, and when does it give an advantage?

The answer to this question is the goal of our work here. In
the current paper, we are looking at situations with nonoptimal
behavior of the mean fitness as a function of the recombination
rate. Here we will work with the Crow-Kimura model of
infinite population, and also with the finite population model
(birth and death model for the offspring), as the simplest finite
population model with recombination and long genome length.
For the relation between different evolution models (Crow-
Kimura, discrete time Eigen model, Wright-Fisher model) we
recommend to readers the work [20]. We will consider both
horizontal gene transfer (HGT) [12], where two replicators
exchange by a gene, and recombination, where two replicators
exchange by a whole piece of genome, between two randomly
chosen loci.

To describe the evolutionary dynamics, several popular
fitness landscapes are used: single peak fitness, symmetric fit-
ness landscape, fitness landscape with neutrality, and random
fitness landscape. We will consider recombination on most of
these landscapes.

We give the definition of our model (Crow-Kimura model
with recombination) in the Appendix. In Sec. II, we investigate
the evolution model with neutrality (the substantial part of
mutations from the peak sequence are neutral). In Sec. III,
we derive the analytical results for the recombination with
different forward and backward mutation rates, which is
typical in evolution. In Sec. IV, we investigate the effect of
recombination on a rugged fitness landscape.
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FIG. 1. The infinite population models of evolution. (a) The evolution model with L = 100, μ = 1.2, μ = 1, and ν = 0.8 neutrality. The
mean fitness is plotted versus the recombination rate c. (b) The evolution model with asymmetric mutations, without the recombination and
fitness function f (m) = 2m + 2. The mean fitness R is plotted versus μ, the ratio of the backward and forward (from the wild sequence)
mutation rates. We see that even when μ → 0 the mean fitness is positive, instead of becoming negative. For a finite population, the mean
fitness should go to −2 at μ = 0.

II. THE EFFECT OF RECOMBINATION IN THE CASE
OF PARTIALLY NEUTRAL FITNESS LANDSCAPE

AND FINITE GENOME LENGTH

A. The horizontal gene transfer model and main known results

We consider the Crow-Kiumra model version of HGT. One
has the following system for Pl , total probabilities of sequences
in the lth Hamming class (the group of all the sequences with
l total number of mutations) for the model with two types of
alleles in any loci [12,14]:

dPl

dt
= Plrl + μ

L
[(L − l + 1)Pl−1 + (l + 1)Pl+1]

−Pl

(
μ +

∑
k

rkPk

)

− cPl + c

[(
1 − l̄

L

)(
1 − l

L

)
+ l̄

L

l

L

]
Pl

+ c

[(
1− l̄

L

)
l + 1

L
Pl+1 + l̄

L

(
1− l − 1

L

)
Pl−1

]
,

(1)

where l̄ = ∑L
l=0 lPl . The first two lines of Eq. (1) are from the

Crow-Kimura model, and rk is the Malthusian fitness of the
kth Hamming class. The coefficients l and (L − l) arise due to
combinatorics; see [21]. We chose the mutation rate 1. The term
−Pl

∑
k rkPk supports a constant population size. The further

lines in Eq. (1) describe the recombination process. During
the period of time dt , we replace any allele in the genome of
the given sequence with the probability cdt by the allele at
the same position of other sequences (choosing randomly the
second sequence from the population; see [12]). Therefore,
there is a term −cPl in the third line of Eq. (1). The remaining
terms in the third line correspond to the replacement of an allele
with an allele of the same type. The last term corresponds to
the replacement of an allele with an allele of another type.

For the mean fitness in the case of single peak fitness (r0 = S

and rl = 0, l � 1), we obtained in [14]

R = (S − μ) + μ

LS

(
μ − cμ2

S − μ

)
. (2)

Near the error threshold, μ → S, the influence of recombi-
nation on mean fitness becomes stronger. The single peak
fitness landscape is not a realistic one; however, it is useful
for analysis, because the evolution model in this case is similar
to the one on the random fitness landscape [22,23].

Consider the evolution model with the following fitness
landscape: the peak sequence and its νL neighbors have
high Malthusian fitness values S, while other sequences have
zero Malthusian fitness values. To describe such a case,
we need more advanced techniques (recombination on two-
dimensional fitness landscape [14]). The recombination can
significantly increase the mean fitness in the case of strong
neutrality around some wild type (most one-point mutations
are neutral) [16]. The estimate of the increase is

�R = μ

√
ν
(
1 + cl

μ

)
√

L
, (3)

where ν is the fraction of the neutral mutations from the
wild genotype, and l is the length of a piece of the genome,
exchanged during the recombination.

Combining both formulas (1) and (2), we obtain for the HGT
that there are positive terms O(

√
ν/

√
L) and negative terms

O(1/L). Therefore, there is chance for nonmonotonic behav-
ior. In the next subsection we investigate the phenomenon
quantitatively.

B. Our results for recombination on partially neutral
landscape with the O(1/L) terms

The solution for the mean fitness with accuracy O(1/L)
is given in the Appendix for the case of complete neutrality,
ν = 1. For ν < 1, the expressions are too cumbersome, which
is why we are just doing the numerics.

We have found a situation where the increase of mean
fitness due to recombination is a nonmonotonic function of
recombination rate. For the competition of negative [Eq. (2)]
and positive terms [Eq. (3)], it is important that the system
be near the error threshold, where the O(1/

√
L) term is

suppressed, and we can observe an optimal mutation rate; see
Fig. 1(a). The effect disappears if the system is far from the
error threshold or the genome length is too large.
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FIG. 2. The finite population evolution with asymmetric mutations. (a) The evolution model with recombination at L = 50, k = 2, f (m) =
km + 2, μ = 0.5 for the finite population size N . The recombination increases the mean fitness, as the mutations are directed far from the
wild sequence. (b) The evolution model with recombination at L = 50, k = −2,f (m) = km, μ = 0.5 for the finite population size N . The
recombination acts against the mean fitness, as the mutations are directed to the wild sequence.

III. MEAN FITNESS OF RECOMBINATION
AT DIFFERENT BACKWARD AND FORWARD

MUTATION RATES

We consider the evolutionary dynamics when forward and
back mutation rates are different. Nonsymmetric mutation rates
are typical for evolutionary biology [24]. Here we give the
solution of recombination models for such a case, calculating
the mean fitness, searching again for nonmonotonic behavior
of mean fitness.

A. The general fitness case

Consider the following model. The genome has a length
L and two alleles at every locus, the mutation rate from the
wild sequence is 1, the back mutation rate is μ, and the
recombination rate is c.

In the Appendix, we derive the following equation for the
mean fitness:

R = max

[
f (m) +

√
1 − m2

√(
1 + c

1 − s

2

)(
μ+c

1 + s

2

)

− c

2
(1 − ms) − 1 + m

2
− μ

1 − m

2

]∣∣∣∣
−1�m�1

,

R = f (s). (4)

In order to define the mean fitness, we should solve the system
of equations for m and s, where the Hamming class with k

mutations has a fitness rk .
The point here is that, for asymmetric mutations, our

formula is counterintuitive; see Fig. 1(b). While the finite
population with directed mutations should get a fitness R =
−2, the mean fitness R = 1 for the infinite population case.
While, at infinite population, the recombination does not
change the mean fitness, in the case of finite population it
should move the mean fitness to the infinite population result;
see Fig. 2(a). In Fig. 2(b), we see the opposite tendency: the
recombination acts against the mutations, decreasing the mean
fitness.

B. The mean fitness of the recombination model
with the additive fitness landscape and random distribution

of the fitness values

Consider the model where the fitness is additive for every
locus [6]. Then, using Eq. (4) for the choice f (m) = γ x for
the fitness function, we obtain the following expression for the
mean fitness:

R =
√

(γ + (μ − 1)/2)2 + μ − 1 + μ

2
. (5)

The mean fitness is independent of recombination, as in the
case of symmetric mutations.

Consider now the case when the fitness of genotype is a
sum of contributions from loci, so the total fitness of genotype
equals 1

L

∑
l P γlsl , where sl is the type of allele ±1, and γl has

a distribution ρ(γl). Then we obtain for the mean fitness the
following expression:

R =
∫

dγρ(γ )

[√
[γ + (μ − 1)/2]2 + μ − 1 + μ

2

]
. (6)

The mean fitness of the finite population model on the
smooth fitness landscape reveals a monotonic behavior for the
steady state case; see Figs. 2(a) and 2(b) (for a finite period of
time it reveals some nonmonotonic behavior in the case of a
linear fitness function). So the asymmetry of mutation rate is
not enough to create a nonmonotonic behavior.

C. The mean fitness in the recombination model on the rugged
fitness landscape

It is important to make a proper choice of the finite
population algorithm in the case of recombination. For our
simulations, we used a birth and death model with mutation
and recombination, combining the ideas of both the Moran
model and the Gillespie algorithm, but with the dilution process
put strictly at the end of the iteration loop. We calculate the
mean fitness of population R, then at one iteration loop there
is a birth of new offspring with probability R/(R + μ + c),
mutation with probability μ/(R + μ + c), and recombination
with probability c/(R + μ + c). If there is a birth event, it is
distributed among the sequences proportional to their fitnesses.
At the last stage, we randomly kill one of the chosen replicators.
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FIG. 3. The mean fitness R versus the recombination rate c, for
the evolution model with recombination at L = 50 and population
size N = 1000. We have five blocks with the length 10 for each. The
total fitness of the genome is the sum of the fitnesses of the blocks, and
the fitness of the block is a random number with normal distribution,
with a variance 0.42/2.

As the evolution model on the random fitness landscapes
resembles the properties of the model on the single peak fitness
landscape [22,23], we assume that the recombination reduces
the mean fitness in such a model. Our numerics supports such
a hypothesis; see Fig. 3. On the other hand, the finite size
corrections of recombination models on the smooth fitness
landscape should not be negative [25]. That is why we have
decided to look at the mixture of random fitness landscape with
smooth landscape.

Combining these two landscapes (a version of rugged fitness
landscape), we obtain nonmonotonic behavior (see Fig. 4)
when the strengths of both contributions to the fitness have the
same order, so our intuition again is confirmed. The rugged
fitness landscape has been assumed to be relevant to the life
sciences, [26–28]; it is puzzling that it gives a possibility for
the optimal choice of the recombination rate.
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FIG. 4. The mean fitness R versus the recombination rate c, for
the evolution model with recombination L = 50. The fitness is a sum
of f (m) = 2(m + 1) and five random numbers chosen for each of five
blocks with the genome length 10. Each random number should be
extracted from a normal distribution, with a variance 0.42/2, for the
finite population size N = 1000.

IV. CONCLUSION

We have investigated the role of recombination when there
is an optimal choice of recombination rate. From the biological
perspective, it is quite a reasonable feature of evolutionary
dynamics. Neverthless, it is quite a nontrivial problem to find
models with such a property. The simplest case we have found
is the case of evolution with finite genome length and partial
neutrality. We considered also the finite population [29] version
of HGT with simple symmetric landscapes. We again found
only monotonic behavior of R(c). While the recombination
reduces the mean fitness for a pure random fitness landscape
with finite population (see Fig. 3), we found a nonmonotonic
behavior in the case of rugged fitness landscape; see Fig. 4.
Thus, to have an optimal recombination rate (a reasonable
restriction to the evolutionary dynamics), the living matter
needs a specially designed fitness landscape: a rugged fitness
landscape, which already has been assumed to be highly
typical in evolution [26–28]. There are different versions of the
rugged fitness landscape: the most popular is the NK fitness
landscape where the Hamiltonian of N spins is described via
k-spin interaction with randomly chosen couplings (quenched
disorder) [26]. We used the simpler one, just adding to the
symmetric fitness landscape a random noise. Such models can
be solved in statistical physics [30,31]. In [27], the authors con-
sidered the evolutionary dynamics with an evolvable mutation
rate and concluded that an optimization is impossible in the
case of some phenomenological versions of a rugged fitness
landscape. In view of our results, the optimal choice of both
recombination and mutation rates assumes a special design of
the fitness landscape (an “ideal” landscape). We have applied
different algorithms and realized that birth-death models are
the best choice for recombination tasks with finite population,
selection, and mutations.
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APPENDIX: THE HORIZONTAL GENE
TRANSFER MODEL

Our goal is to calculate the mean fitness with accuracy
O(1/L). Before, it was calculated with accuracy O(1/

√
L)

in [16].

1. The neutral model

We consider the model with the fitness landscape r0 = r1 =
J ; other fitnesses are zero. We have

Pl[J (P0 + P1) + 1 − rl]

= −cPl

[(
1 − l̄

L

)
l

L
+

(
1 − l

L

)
l̄

L

]
+ L − l + 1

L
Pl−1

×
[

1 + c
l̄

L

]
+ l + 1

L
Pl+1

[
1 + c

(
1 − l̄

L

)]
. (A1)

If we ignore the recombination, then we get that

P1 = J − 1

J
+ O

(
1√
L

)
, Pl = P1

J l−1
, l > 1. (A2)
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Denote q = 1
J

. We get

cPl = P1q
l−1 = (1 − q)ql−1, l̂ =

∑
l

Pll = (1 − q)
d

dq

(∑
l

ql

)
= 1

1 − q
= J

J − 1
. (A3)

The recombination brings us to the smaller correction of Eq. (A2).
Consider the following expansion for P0,P1:

P1 = J − 1

J
+ p1√

L
+ y

L
, P0 = p0√

L
+ x

L
. (A4)

Let us first derive the terms p0,p1. With an accuracy of O(1/L), we have from Eq. (A1)

P0(R − J + 1) = P1

L
, P1(R − J + 1) = P0, R = J (P0 + P1). (A5)

We first find

(R − J + 1) = �, � =
√

1 + c

L
, P0 = J − 1

J
� = p0√

L
, p0 = J − 1

J

√
1 + c. (A6)

For P1, we deduce

P1 = (J − 1)
1 + �/(J − 1)

1 + �
= J − 1

J

(
1 + �

2 − J

J − 1

)
= J − 1

J
+ p1√

L
, p1 = 2 − J

J

√
1 + c. (A7)

Consider now the higher order correction terms.
We derive the following system of two equations from (A2):

P0[J (P0 + P1) + 1 − J ] = −cP0
l̄

L
+ P1

L

[
1 + c

(
1 − l̄

L

)]
,

P1[J (P0 + P1) + 1 − J ] = −cP1

[(
1 − l̄

L

)
1

L
+

(
1 − 1

L

)
l̄

L

]

+P0

(
1 + c

l̄

L

)
+ 2P2

L

[
1 + c

(
1 − l̄

L

)]
. (A8)

We consider the O(1/L3/2) terms in the first equation and O(1/L) term in the second one:

P0[J (P0 + P1) + 1 − J ] = −cP0
l̄

L
+ P1

L
(1 + c), P1[J (P0 + P1) + 1 − J ] = −cP1

[
1 + l̄

L

]
+ P0 + 2P2

L
(1 + c), (A9)

Jx(p0 + p1) + Jp0(x + y) = −cl̄p0+p1(1 + c), (J − 1)(x + y)+p1J (p0 + p1) = −c
J − 1

J
(1 + l̄) + x+2

J − 1

J 2
(1+c).

(A10)

Solving the system for x,y, we calculate the mean fitness as

R = (J − 1) + J

(
p0 + p1√

L
y + (x + y)

L

)
. (A11)

Our numerics confirms well Eq. (A11). For J = 3, c = 1, and L = 1000 the numerics gave 2.04345, while our analytics give
2.04344.

2. The derivation of the mean fitness of HGT model with asymmetric mutations

We consider the Crow-Kiumra model version of HGT with asymmetric mutations: we have rate 1 for the forward mutation
and rate μ for the backward mutations. One has the following system for Pl (total probabilities of sequences in the lth Hamming
class):

dPl

dt
= Plrl + [(L − l + 1)Pl−1 + (l + 1)Pl+1μ] − PlL

(
1 + 1

L

∑
k

rkPk

)

− [l + μ(L − l)]Pl − cL

[(
1 − l̄

L

)
l

L
+ l̄

L

(
1 − l

L

)]
Pl

+ cL

[(
1 − l̄

L

)
l + 1

L
Pl+1μ + l̄

L

(
1 − l − 1

L

)
Pl−1

]
, (A12)
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From [31]

Pl = exp[u(m,t)L] (A13)

and m = 1 − 2l/L, and we obtain the Hamilton-Jacobi equation

∂u

∂t
= −H (m,p), H = f (m) − 1 + m

2
− μ

1 − m

2
+ 1 + m

2

(
1 + c

1 − s

2

)
e2u′

+ 1 − m

2

(
1 + c

1 + s

2

)
e−2u′

μ − c

2
(1 − ms). (A14)

Looking for the minimum of the H (m,p) via p, we obtain U (m) = min[H (m,p)]p:

U (x) = f (m) + 1 + m

2

(
1 + c

1 − s

2

)
e2u′ + 1 − m

2

(
1 + c

1 + s

2

)
e−2u′

μ − c

2
(1 − ms) − 1 + m

2
− μ

1 − m

2
. (A15)

Then we find the mean fitness R by searching for the maximum of U (m),

R = max[U (m)]m, (A16)

according to [31], and obtain Eq. (3).
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