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Role of spatial heterogeneity in the collective dynamics of cilia beating in a minimal
one-dimensional model
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Cilia are elastic hairlike protuberances of the cell membrane found in various unicellular organisms and in
several tissues of most living organisms. In some tissues such as the airway tissues of the lung, the coordinated
beating of cilia induces a fluid flow of crucial importance as it allows the continuous cleaning of our bronchia,
known as mucociliary clearance. While most of the models addressing the question of collective dynamics and
metachronal wave consider homogeneous carpets of cilia, experimental observations rather show that cilia clusters
are heterogeneously distributed over the tissue surface. The purpose of this paper is to investigate the role of spatial
heterogeneity on the coherent beating of cilia using a very simple one-dimensional model for cilia known as the
rower model. We systematically study systems consisting of a few rowers to hundreds of rowers and we investigate
the conditions for the emergence of collective beating. When considering a small number of rowers, a phase drift
occurs, hence, a bifurcation in beating frequency is observed as the distance between rower clusters is changed.
In the case of many rowers, a distribution of frequencies is observed. We found in particular the pattern of the
patchy structure that shows the best robustness in collective beating behavior, as the density of cilia is varied over
a wide range.

DOI: 10.1103/PhysRevE.97.012403

I. INTRODUCTION

Cilia are elastic hairlike protuberances of the cell membrane
found in various unicellular organisms and in several tissues
of most living organisms. As a propulsor, a cilium is period-
ically beating in a succession of power and recovery strokes,
propelled by its internal molecular motors [1]. Propulsion acts
either on the microorganism itself such as for Paramecium or
Volvox algae, or to induce the flow of the surrounding fluid,
as is the case for airway, brain, or oviduct tissues [2–4]. In
the airway tissues of the lung, this fluid flow induced by the
coordinated beating of cilia is of crucial importance as it allows
the biological function of cilia to help to expel the mucus
and the impurities out of the airways, known as mucociliary
clearance [4].

Cilia are often observed as scattered clumps and beat in
coordinated manner in the form of metachronal waves keeping
a constant phase difference with adjacent cilia [5–7]. This
type of large scale coordinated beating pattern is of great
importance for efficient propulsion [8–12]. It is now well
established that hydrodynamic interactions play a crucial role
[7,10,13,14] for the emergence of such large scale metachronal
waves.

While most of the models addressing the question of collec-
tive dynamics and metachronal wave consider homogeneous
carpets of cilia, in real samples, cilia form patches. In cultured
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and in vivo airways epithelium tissues, cilia patches are
heterogeneously distributed over the surface [15,16]. For ex-
ample, observations performed on human bronchial epithelium
cultures show that cilia are distributed in clusters containing
∼100–200 cilia [17], and that these clusters are separated in a
random manner. The mucociliary dysfunction due to impaired
coordinated beating of cilia is poorly understood and could be
related to the spatial heterogeneity of healthy cilia distribution.
The main focus of this work is to study the collective behavior
of a system of many hydrodynamically coupled beating cilia
with heterogeneous spatial configurations.

Several theoretical models with various levels of complexity
investigate the relation between the hydrodynamic coupling
and the metachronal synchronization [13,14]. We will con-
centrate our study on a minimal model, where the beating
pattern is simple and is composed of a few degrees of freedoms
allowing us to understand the sole role of hydrodynamical
coupling in the beating synchronization of an array of cilia.
There are two classes of well studied minimal models. In one
class of models, a cilium is described as a rower: a spherical
bead oscillates between two distinct states where, in each state,
the bead moves in a specific driving potential, mimicking the
power and recovery strokes of a real cilium [14,18–24]. In
another class of models, cilia (known as rotors) are considered
as spherical beads orbiting on rigid or flexible two-dimensional
trajectories under a driving torque [13,25–27]. In more com-
plex models, cilia are modeled as actively driven semiflexible
filaments with more realistic beating pattern [10,28,29]. In
such models, the hydrodynamic coupling between cilia can
lead to metachronal waves in systems of cilia in one- and
two-dimensional lattices. In this paper, to understand the role of
spatial heterogeneity, we consider the framework of the rowers’
model.
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In this work, we will present results on how heterogeneity of
cilia position influences the stability and robustness of coherent
beating of cilia. We focus on one of the simplest models for cilia
beating: the rowers’ model [18] in one dimension. We carefully
study the effect of spatial heterogeneity in systems with few
rowers as well as in systems with a large number of rowers
with various kinds of heterogeneities. First, we study the three-
rowers case in great detail as it is the minimal way to introduce
position irregularities. We find phase drifting and bifurcation
of the frequencies of beating when the distance between
the second and third rowers is varied, keeping the distance
between the first and second rowers fixed. The phenomenon
of phase drifting is also present in a system with more than
three rowers, and we study different spatial configurations
with a finite number of rowers. This allows us to identify a
crossover distance, above which the separation between con-
secutive clusters is large enough to decouple their dynamical
behavior. In the case of a large number of coupled rowers, we
consider several types of spatial heterogeneity. We find that
when the cilia are spatially distributed on randomly clustered
configurations, their dynamical behavior is characterized by a
robust average common beating frequency, that depends only
weakly on the density of cilia. This seems to correspond to
preliminary results on human epithelial tissues [30]. On the
other hand, the collective behavior observed for other types of
spatial heterogeneities is strikingly different.

II. ROWERS’ MODEL

The rowers’ model for cilia, proposed by Cosentino et al.
in 2003 [18], experimentally realized by driven colloids in
viscous fluids [21], remains one of the basic models to
study hydrodynamic synchronization [14]. In this model, the
complex structure of a cilium is coarse grained as a spherical
bead, and the periodic beating pattern is described as an
oscillating linear motion of a bead in a viscous fluid. In order to
create a sustained oscillating motion of the bead, two different
driving potentials are used, and a mechanism for geometrical
switching between these potentials is employed. In Fig. 1 (left),
we show a schematic diagram of the geometric switch and
the harmonic potentials. The bead motion under each driving
potential corresponds to a specific state of the bead σ = ±1

(motion corresponding to ±y direction). If the bead reaches a
particular limiting amplitude y = ±s, it switches to the other
driving potential and consequently reverses the direction of its
motion. Hence, it successfully creates a sustained oscillating
motion. These two states of the bead mimic the power and
recovery stroke of beating of cilia.

We consider an array of N rowers on a one-dimensional
lattice of size L [see Fig. 1 (right)]. The spacing between
two consecutive lattice sites is d = 1. If there is no hetero-
geneity, all the lattice sites are occupied and, hence, L = N .
In the case where rowers are placed heterogeneously on the
lattice, one allows for empty lattice sites and L > N . Let us
call the positions of the rowers x1,x2, . . . ,xn, . . . ,xN where
x1 < x2, . . . < xn, . . . < xN and the subscripts refer indices
of the rowers. Two dynamical variables σn (state) and yn

(displacement) describe the motion of the nth rower.
A bead switches between the two states if the displacement

y reaches the maximum amplitude ±s, i.e., if yn(t) = ±s then
σn(t) = −σn(t) and σn(t) = σn(t) otherwise. We choose the
two driving potentials to be harmonic V (yn,σn) [Fig. 1 (left)].
The external driving force fn for the nth rower is given by

fn = −∂V (yn,σn)

∂yn

= −(kyn − σn). (1)

In our study, the stiffness constant of the potential k is assumed
to the same for all the rowers. This external driving force on the
bead is a simple approximation of the complex internal active
force of a real cilium.

Cilia motion corresponds to a low Reynolds number regime
and we are interested by the far-field hydrodynamic regime:
the size and displacements of the beads are small compared to
the lattice spacing. In this limit, the hydrodynamic coupling
between the rowers is given by Oseen tensor [31,32]. The
velocity at any instant of time vmn acting on the nth rower
induced by active oscillation of rower m is given by

vmn = O(m,n)fm. (2)

The Oseen coupling between any two rowers m and n is
O(m,n) = 1/(8πηdmn), where dmn is the distance between
the sites (dnm = |xn − xm|), and η is the viscosity of the fluid
medium. Here, we note that as our focus in this paper is on the
coherence of cilia beating (not on the flow of surrounding fluid)

FIG. 1. A schematic diagram of the model. Left: the harmonic potentials correspond to the two different states (σ = ±1) of a rower.
The bead switches between the two potentials once it reaches y = ±s. The driving potentials and the switching mechanism form a simple
description of real beating. Middle: a schematic representation of simplified beating pattern of a cilium. Right: N rowers are placed on a regular
one-dimensional lattice. The positive y direction is σ = 1 and negative y direction is σ = −1. We create heterogeneity in rowers’ position by
keeping empty lattice sites in-between occupied sites. These are shown in Fig. 11.
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and therefore the driving forces for both states are chosen to
be symmetric for simplicity (as in Refs. [21,23,24]). However,
one can make the motion of the two states asymmetric by
considering different driving forces [33] or different drag
coefficients for both states [18].

Hence, in the overdamped limit, the dynamical equations
for this system are given by

ẏn = 1

6πηa
fn +

N∑
m�=n

vmn

= 1

6πηa
fn +

N∑
m�=n

fm

8πηdmn

. (3)

Here, the factor 6πηa is the viscous drag coefficient of a
spherical bead with radius a. For computation purposes, we
choose 6πηa = 1, hence, 1/(8πη) = 3a/4 ≡ α. Replacing a

and η, Eq. (3) can be rewritten as

ẏn = fn + α

N∑
m�=n

fm

dmn

. (4)

Note that in a realistic physical situation, the coupling strength
α is always a positive quantity. In the absence of any hydrody-
namic coupling (i.e., α = 0), it is easy to calculate the natural
frequency of the rowers ω0. It depends on the force constant
k and the value of limiting displacement s; its analytical
expression is given by [18,21]

ω0 = 2π

T
= πk

ln
[

1+ks
1−ks

] . (5)

As mentioned before, this model has been studied for systems
of several rowers on regular lattices in one and two dimen-
sions [18,33]. The collective beating of the rowers leads to
metachronal waves as a result of antiphase synchronization
of neighbors for k > 0. When k < 0 [33], or α < 0 [18]
(which is not realistic), the rowers show in-phase oscillations,
not metachronal waves. Cases considering a few rowers in
special geometries were also studied [23,24,34] and showed
very different dynamical states depending on their spatial
configuration and orientation of beating. However, no previous
study has considered the spatial heterogeneity of the cilia
position [34].

For our computation, we choose the values for the parame-
ters α, k, and s already used in the original paper [18]. The force
constant for the harmonic driving potential is k = 1.0. A single
rower oscillates between −s to +s with s = 0.8. The value of
α is taken to be 0.1 unless otherwise mentioned. In order to
integrate the dynamical equations [Eq. (4)] for N rowers, we
use the Euler method with an integration step h between 10−5

and 10−3, depending on the situation. We consider here the
deterministic case, hence, simulations are run without thermal
noise. The case of adding thermal noise will be considered
elsewhere [35].

In the following, we try to understand the role of spatial
heterogeneity on the collective behavior of cilia beating. First,
we study a three-rowers system which is the minimal set
to study the heterogeneity effect. We consider three rowers
on a one-dimensional lattice such that the two first rowers
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FIG. 2. The periodic beating of a single rower is plotted as
function of time t . The red curve is the displacement y of the rower,
and the blue curve is its phase representation according to Eq. (6).

occupy two consecutive lattice sites whereas the position of
the third rower increases (see Fig. 4). Then, we study the
effect of heterogeneity in systems composed of 4, 5, and 10
rowers, where we find that the resulting dynamics obeys a
general scenario (Sec. III). Finally, we study systems of a
large number of rowers with three types of heterogeneities
(Sec. IV) corresponding to different degrees of randomness:
(i) the regular clustered case, (ii) random case, and (iii) the
random clustered case.

How to characterize collective behavior?

A collection of oscillators can display different emerging
features through coherence in phases and frequencies [36,37].
The most common phenomena of phase coherence are syn-
chronization and phase locking. In order to characterize the
phase coherence, we define a phase variable φn for nth rower
using the following prescription (given by Stark et al. [33]):

φn = 2πmn + π

2
σn

yn

s
if yn > 0 and σn = 1

= 2πmn + π

2
σn

yn

s
+ 2π if yn < 0 and σn = 1

= 2πmn + π

2
σn

yn

s
+ π if σn = −1. (6)

The phase number mn (∈ N) is increased by 1 after rower n

completes a full cycle. The piecewise linear relation between
phase and displacement ensures that one full cycle in y is
equivalent to a rotation of 2π in φ. In Fig. 2, we plot the
time evolution of displacement y and corresponding phase
φ for a single rower. In the case of perfect synchronization,
all oscillators oscillate in phase; it is defined as φj = φj+1

for all j . For phase-locking systems, neighboring oscillators
maintain a constant nonzero phase difference δ, φj = φj+1 +
δ. A nonzero δ leads to the formation of traveling wave in a
system of many oscillators. This wave is known as metachronal
wave in the literature [6]. The degree of phase coherence
can be measured by a complex order parameter Z, which is
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defined as [33]

Z = Aei
 = 1

N − 1

N−1∑
n=1

ei �φn, (7)

where �φn = φn+1 − φn and N is the total number of oscilla-
tors. The system is maximally coherent when A = 1, and has
no coherence for A = 0 (see Appendix A). When �φn = δ

for all n, A = 1. This is true for any constant δ including
zero, i.e., for both phase-locked and in-phase synchronization
solutions. Therefore, for both perfect metachronal wave and
fully synchronized states, the value of the order parameter
A is 1. In order to distinguish the synchronized states from
metachronal waves, one should also measure 
, which gives
the average angle of phase difference. For a synchronized state

 = 0, and for a metachronal wave, 
 = δ �= 0.

Aside from phase coherence, another observed emerging
behavior in a system of coupled oscillators is frequency
locking. In this case, the phases of oscillators can be different
but they oscillate with a common frequency which is different
from their natural frequency (the frequency in the absence of
coupling) [36,37]. We define the average frequency ωi of a
rower i in the following way [37]:

ωi = lim
t→∞

1

t

∫ t0+t

t0

φ̇i dt = lim
t→∞

φi(t0 + t) − φi(t0)

t
. (8)

Here, t0 is sufficiently large so that the system has reached a
dynamical steady state at that time. In general, the frequencies
of the oscillators are distributed over a distribution P (ω). For a
perfectly frequency locked system, the probability distribution
of frequencies P (ω) is a δ function.

III. RESULTS FOR FINITE-SIZE SYSTEMS

In this section, we systematically study arrays consisting
of a few rowers (from N = 2) to many rowers (N = 100). We
compute the order parameter A [Eq. (7)] and the distribution of
beating frequencies ωi [Eq. (8)] to characterize the collective
behavior of the beating. Our objective is to understand the
role of the spatial heterogeneity of cilia on the stability
and robustness of the synchronization. This heterogeneity is
introduced as soon as the number of rowers is 3.

A. Two-rowers case

The dynamical behavior of a system of two rowers is well
understood. It is known that two rowers oscillate in opposite
phase [18,21,33], and the collective frequency of the oscillation
depends on the separation and hydrodynamic strength [21].
Here, we revisit the two-rowers case mainly to study collective
frequency for different separating distances d12. As we will see
in the next sections, this study will be useful to understand a
system with more rowers.

In the inset of Fig. 3(a), the phase difference �φ12(t) =
φ2(t) − φ1(t) is plotted as a function of time t for α = 0.1.
At t = 0, we start the simulation with an arbitrary phase
difference. We observe that within a small transient time the
two rowers reach to a perfect antiphase synchronization state
[�φ12(t) = π ]. Let τtr be the average time required to reach
a perfect antiphase synchronized state. In our simulation, we
compute τtr by the time t at which �φ12(t) reaches the value

FIG. 3. (a) The transient time (τtr ) to reach the antisynchronized
state from an arbitrary initial condition is plotted against separation
d12. τtr increases linearly with d12. Inset: the phase difference between
the rowers, �φ12, is plotted against time t . At t = 0, the rowers start
from an arbitrary initial condition, and after τtr , �φ12 converges to π ,
i.e., the rowers beat in exact antiphase synchronization. (b) Collective
frequency ωcoll,2(d12) as a function of d12 for different kinds of initial
conditions. The data with solid squares are obtained when the two
rowers start from an initial condition which is different from an exact
in-phase configuration, while the data with empty squares are obtained
with an exact in-phase initial condition. Their frequencies converge
to ω0 for large d12.

0.99π and then averaging the data over many random initial
configurations (∼1000). We find that τtr linearly increases with
d12 when α is constant (or with 1/α when d12 is constant)
[see Fig. 3(a)]. This is consistent with the fact that the
larger the interaction (α/d12), the faster the rowers reach the
synchronization state.

What is the collective frequency of the antiphase synchro-
nization for two rowers? One can derive the expression for the
collective frequency ωcoll,2(d12), by assuming the antiphase
solution in the dynamical equation (4) [21]. The collective
frequency ωcoll,2(d12) is a function of d12 and α, and is given
by

ωcoll,2(d12) = ω1,2 = ω0(1 − |α|/d12), (9)

where ω0 is the natural frequency of the rower when the
interaction is absent [see Eq. (5)]. This matches exactly with
the numerical findings, as shown in Fig. 3(b).

A special case arises for a specific initial condition, which
is specific to the deterministic (zero noise) system. At t = 0,
if the rowers are an exact in phase (y1 = y2 and σ1 = σ2) there
will not be any antiphase synchronization, and the rowers will
continue to beat in phase forever. The analytical expression for
ωcoll,2 of the beating is given by

ωcoll,2(d12) = ω1,2 = ω0(1 + |α|/d12). (10)

In Fig. 3(b), we plot the frequency as a function of d12

when the rowers start from an exact in-phase initial condition
(empty squares): the data points exactly match the analytical
expression given by Eq. (10). However, this solution is very
unstable. If the simulation starts with an initial condition which
is slightly different from those specific initial conditions, one
reaches the usual solution discussed above.
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FIG. 4. The minimal setup to study the spatial inhomogeneity of
cilia position. The first two rowers occupy the two consecutive lattice
sites d12 = 1. The third is placed d23 distance apart from the second
rower.

B. Three-rowers case

A three-rowers system is the minimal setup to study the spa-
tial heterogeneity of cilia. It shows an interesting phenomenon
called phase drifting in which the third rower oscillates with a
different phase than the first two rowers, typical of a dynamical
bifurcation. This phenomenon is familiar in other coupled
nonlinear systems of oscillators when the coupling strength
or the noise strength is varied (Adler systems [36,38–40]), and
has also been reported for rotors near a wall as the distance
from the wall is increased [41].

We consider the three-rowers system in one dimension,
schematically shown in Fig. 4, where the first two rowers
occupy two consecutive lattice sites and the third rower is
placed on a site which is a distance d23 apart from the
second rower. The lattice constant is d = d12 = 1. We consider
different cases for different values of d23.

For a given value of d23, we solve the dynamical equations
for three rowers numerically. We find that, in the dynamical
steady state, the first two rowers always oscillate in antiphase
with each other and the behavior of the third depends on the
value of d23. In Fig. 5(a), we plot the phase difference �φ23 =
φ3 − φ2 as a function of time t for various d23. We see that,
for d23 < dc = 2, the phase difference �φ23 is constant and
for d23 � dc, �φ23 grows and is modulated in time. The latter

FIG. 5. (a) The phase difference between the rowers 2 and 3, �φ23

versus time t for different d23. �φ23 remains constant for d23 < dc. At
dc, a bifurcation occurs and �φ23 grows in time for d23 � dc. Here,
the value of dc is 2. (b) Frequencies of the three rowers as a function
of d23. Bifurcation occurs at d23 = dc = 2. For very large d23, rower
3 becomes almost independent of the other rowers and oscillates with
its natural frequency ω0 while the first two rowers oscillate with the
collective frequency of a two-rowers system ωcoll,2. The data here
are obtained from a single configuration. Indeed, we checked that
the steady state does not depend on the initial configuration if the
simulations do not start with a peculiar condition (such as all rowers
are in phase or all are in antiphase at t = 0).

implies that the phase locking between the second and third is
lost due to the appearance of phase drifting [36,38,39].

As a result, for d23 < dc all three rowers oscillate with the
same frequency and for d23 � dc, rowers 1 and 2 oscillate
together with the same frequency but rower 3 oscillates with
a different frequency. In Fig. 5(b), we plot the frequency of
the three rowers ω1, ω2, and ω3 as a function d23. For d23 = 1,
all the frequencies of all rowers are the same and for d23 � 2,
ω1 = ω2 �= ω3.

Hence, for the set of parameters used in our simulation (k =
1, s = 0.8, and α = 0.1), the value of the dc is 2. We simulated
the three-rowers system for several values of hydrodynamical
coupling α = 0.1, 0.05, and 0.01 with the same value of the
driving parameters k and s and find dc = 2 in all cases. In
this range of investigated parameters, dc is independent of α.
By studying several cases with different sets of driving forces
of the rowers for a given α, we found that the value of dc

depends on the force constant k, and on the amplitude of the
oscillation s, i.e., dc = dc(k,s) (see Appendix B). This result
is very interesting. It means that hydrodynamic interaction
strength does not have any role in determining dc. The value of
dc is therefore completely determined by the internal activity
of the cilia and not by the fluid viscosity. However, this result
is weakened for N > 3. For N = 4, we observe dc depends on
α as well as initial configuration of rowers (see Appendix B).

The values of ω1, ω2, and ω3 depend on d23. As we have
noted above, ω1 = ω2 for all d23, but ω3 behaves differently
for d23 � dc. For very large d23, the hydrodynamic coupling
of the third rower due to the first two can be neglected, hence,
the frequencies of the rowers become independent of d23. In
this limit, the third rower beats with the natural frequency ω0

and the first two rowers oscillate with the collective frequency
of two rowers ωcoll,2 (see Sec. III A). On the contrary, for
small d23, the dependence of the rower frequencies on d23

is nontrivial. We use the following fits: ω1(d23) = ω2(d23) �
ωcoll,2 + α/d23 and ω3(d23) � ω0 − α/d2

23. In Fig. 5(b), we plot
these functions (solid line for ω3 and dotted line for ω1). The
two lines match nicely with numerical data (points). Note that
ω3 saturates rapidly to ω0 (ω3 − ω0 � α/d2

23), while the decay
of ω1 to ωcoll,2 is slow (ω1 − ωcoll,2 � α/d23). The expression
of ω1(d23) and ω3(d23) can be understood by the following
way. Consider that the three rowers oscillate with the same
frequency, the first two being exact antiphase, and the third
one being exact antiphase with the second one. Although this
is obviously a very crude assumption, one can use Eq. (4) and
solve it for the first rower:

ω1 = ω0[1 − α + α/(d23 + 1)] � ωcoll,2 + ω0α/d23. (11)

Solving the equation for the third rower leads to

ω3 = ω0[1 − α/d23 + α/(d23 + 1)] � ω0 − ω0α/d2
23. (12)

The growth of �φ23 is not uniform and follows a periodic
pattern in time [Fig. 5(a)]. For d23 = 2, the phase difference
rather shows sharp 2 π jumps followed by almost flat regimes.
With the increase of d23, the growth rate of the phase difference
becomes faster and steps disappear. In order to characterize the
nature of the phase drift, we define the time scale τdrift(α,d23)
as the time needed for the phase difference �φ23 to increase
by 2 π (i.e., the time period of �φ23), and we compute it for
a given internal activity of rowers (i.e., for fixed k and s). We
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FIG. 6. (a) The log-log plot of ατdrift − const for α = 0.1, 0.05,
and 0.01. (b) This scaling makes all the curves fall into a single curve
f (d23). The function f (d23) is well fitted by 1/d23. To compute the
power laws more accurately, we choose very small step size for the
Euler integration method h = 10−5.

find that ατdrift(α,d23) = f (d23) + const, where the function
f does not depend on α. In Fig. 6, we plot ατdrift − const
in log-log scale and we show that the curves for different
α collapse into a single curve. The scaling function f (d23)
decays algebraically to zero as 1/d23. This collapse and the
1/d23 decay can be rationalized using the following simple
arguments and approximations. From the definition of the drift
time, it is easy to see that τdrift(d23) ∼ 1/[ω3(d23) − ω1(d23)] �
1/(α d23) + const/α, using the fitting expressions for ω1(d23)
and ω3(d23).

C. Four-rowers case

The phenomena of phase drifting and bifurcation is also
observed for a system of four or more rowers. Here, we study
the case of four rowers. We divide the four rowers into two
subgroups in order to study different configurations. For a given
internal structure (i.e., for given k and s), one obtains a variety
of behavior, as the value of dc depends on the number of rowers
in each group

Case I. Asymmetric case. The first group of rowers has
three consecutive rowers with equal gap d12 = d23 = 1. The
second group consists only of the fourth rower and the distance
separating the two subgroups is d34. In Fig. 7(b), we plot
the frequencies for rowers as a function of d34. A bifurcation
similar to the one obtained for three rowers is observed for

FIG. 7. Angular frequencies of four rowers for different gaps
between clusters; α = 0.1: (a) symmetric case 2-2, no bifurcation
is observed, (b) asymmetric case 3-1, a bifurcation observed.

d34 � dc. The critical distance for this case is different from the
three-rowers system. Unlike for N = 3, the value of dc depends
on α and initial configuration of rowers (see Appendix B). For
very large d34, the three-rowers group behaves independently
of the fourth rower which oscillates at ω0, the natural single-
rower frequency.

Case II. Symmetric case. The first group has two consecutive
rowers with gap d12 = 1. The second group consists of the third
and fourth rowers with gap d34 = 1. Here, all rowers oscillate
with the same frequency and as the distance between two
groups d23 is very large, the frequency asymptotically saturates
to the frequency of two-rowers system. Here, the two clusters
independently beat with the same frequency characteristic of
their size [Fig. 7(a)].

D. 10-rowers case

We divide the 10-rowers set into two subgroups and studied
the five different following cases.

Symmetric case (5-5): Each subgroup consists of five row-
ers equally spaced, but the distance d56 between the two groups
can vary. We observe no bifurcation in this symmetric case [see
Fig. 8(a)].

There are four asymmetric cases: 6-4, 7-3, 8-2, and
9-1 groups. In all these cases, a bifurcation occurs. In
Figs. 8(b)–8(e), results for the collective frequencies of the
two clusters are shown. The critical distances after which
bifurcation occurs are different in each case.

From the above study of finite-size systems, we learn two
instructive features. (i) As expected from symmetry, there
is no bifurcation if the sizes of the two clusters are equal,
instead all rowers beat at the same frequency whatever the
distance between the two clusters. (ii) The distance where the
bifurcation occurs is maximal for nontrivial cluster sizes and
is minimal for strikingly different sizes.

E. Link between the order parameter A
and the rowers phases φ

As seen before, local observables such as phase differences
between rowers �φij or individual frequencies ωi are neces-
sary to describe in detail the good or poor coherence state of an
assembly of rowers. If one now looks at the global observable
A, how will A be related to the dynamical state of the system?
The relation between �φij between consecutive rowers and A

is given by Eq. (7). However, by looking only at the value of
A, it is not possible to infer the dynamical state of the system
(i.e., �φij ). The study of the (3+1)-rowers case is instructive
in this respect and is reported here. As seen in Fig. 7(b), dc = 3
in this case. We show in Fig. 9 that three distinct dynamical
phases can be identified by comparing the time averaged value
of A with the rowers phase differences. If d34 = 1, the group
of rowers is compact and oscillates in almost antiphase, hence,
〈A〉 is maximal and close to 1. If d34 = 2, the system stands
right before the bifurcation (dc = 3), and the rowers’ state is
dynamically disordered as one can see on Fig. 9(c). If d34

is much larger than dc (and this is illustrated by looking at
d34 = 50), the two clusters of rowers oscillate independently
but the three rowers in the first group are coordinated in almost
antiphase, leading to A reaching a saturation value after the
dip at d34 = 2.
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FIG. 8. From (a)–(e), the sizes of the two clusters are, respectively,
5-5/6-4/7-3/8-2/9-1. When the size of the two clusters is comparable
(5-5 and 6-4) the solution of the dynamical equations depends on
initial conditions. The data are then averaged over 1000 initial
conditions.

F. Collective beating frequency of rowers on a regular array

For a regular array of N equally spaced rowers, we observe
that all rowers oscillate at the same frequency (except a few
rowers close to the boundaries for very large N , where N is
the number of total rowers) showing phase coherence both
for α < 0 (in-phase synchronization) or for α > 0 (antiphase
metachronal waves) [18]. We studied here how the collective
frequency ωcoll depends on N . We observe that for α < 0,
ωcoll strongly depends on N (see Appendix D). For α > 0,
however, ωcoll stabilizes to a constant value. This confirms that
metachronal waves in mucociliary systems can be stable even
in large samples.

The value of the collective beating frequency ωcoll of the
rowers oscillates for small N (total number of rowers), and it
eventually converges to a constant value for large N . We can
understand this behavior from a very simple picture. Consider
the following dynamical steady state for our oscillating rowers
in which a rower beats in perfect antiphase with its nearest
neighbors. This implies y1(t) = −y2(t) = y3(t) = −y4(t) =
· · · = yN−1(t) = −yN (t). In this particular case, we can easily
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FIG. 9. (a) The time averaged order parameter 〈A〉, averaged over
a large time window after the system reaches dynamical steady state
for an arbitrary initial condition for the (3+1)-rowers case is plotted
against separation d34. The time evolutions of phase differences
between consecutive rowers for d34 = 1, d34 = 2, and d34 = 50 are
plotted in (b), (c), and (d), respectively.

solve the dynamics [Eq. (4)] and calculate ωcoll. For N numbers
of total rowers, the collective frequency is given by

ωcoll,N = ω0

[
1 − α

(
1 − 1

2
+ 1

3
+ · · · + (−1)N

1

N − 1

)]
.

(13)

The coefficient of α is the alternate harmonic (convergent)
series. In Fig. 10, we plot both the collective frequency
computed from theory [Eq. (13)] and the one obtained from
simulation. For N = 2, the values of collective frequency
computed from these two different methods match exactly; the
assumption of perfect antiphase synchronization is indeed true
for N = 2 [seen previously, Fig. 3(a)]. However, for N > 2,
this is not exactly the case because the assumption of perfect
antiphase synchronization is no longer valid. We believe that
the influence of boundaries is indeed important even for large
N , as seen on Fig. 10.

We have simulated systems with a small number of rowers
for another value of α(=0.2) and have observed that the
qualitative behavior of our results is independent of coupling
strength.

IV. COLLECTIVE BEHAVIOR OF MANY SPATIALLY
HETEROGENEOUS ROWERS

In the previous section, we have studied how spatial hetero-
geneity of rowers affects the coherent beating when the number
of rowers is small. We observed that the spatial arrangement
of rowers can lead to phase drifting, phase incoherence, and
bifurcation in frequency when the separation between two
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FIG. 10. The collective frequency is plotted as a function of total
number of rowers N . The rowers are placed on a regular lattice
with lattice constant d = 1. The data are averaged over 1000 initial
configurations. It reaches a stable frequency for N > Nc (∼15). This
can be interpreted as the minimal cluster size for the existence of a
metachronal wave at the frequency typical of large systems.

clusters is greater than a critical distance. We now turn to asking
the question of how spatial heterogeneities in the position of
rowers affect the coherent beating in a system of hundreds of
rowers.

On the one-dimensional lattice, we will consider three types
of heterogeneities: (i) regular clustered configurations, (ii) ran-
dom configurations, and (iii) random clustered configurations,
which is an intermediate situation between (i) and (ii). We
generate these types of heterogeneities for different values of
the density of rowers ρ, and study the dynamical properties of
the corresponding systems.

(i) In the case of regular clustered heterogeneity, clusters
of fixed number of rowers are placed on a lattice, separated by
regular gaps. A typical lattice configuration of rowers is shown
in Fig. 11(i). We call nc the number of rowers in a cluster, and
lg the gap length between two consecutive clusters. We refer
to such clusters as “nc-lg”. One way to generate configurations
of different densities for a given cluster length nc is to vary the
gap length lg between two clusters. The density is given by

ρ = nc

nc + lg − 1
. (14)

(ii) For random heterogeneity [see Fig. 11(ii)], N rowers
are placed randomly on a one-dimensional lattice of size L.
The density of rowers is given by ρ = N/L. For a fixed N , we
generate configurations with different values of ρ.

(iii) In the case of random clustered heterogeneity, we
introduce randomness in the sizes of the clusters as well
as in the gap lengths between two clusters. Here, cluster
lengths nc are chosen randomly between nc,min and nc,max

using uniform random distribution. The gap lengths lg are
chosen randomly between lg,min and lg,max using uniform
random distribution. We refer to this type of heterogeneity as
[nc,min,nc,max] − [lg,min,lg,max]. A typical lattice configuration
is shown in Fig. 11(iii). In order to generate configurations with
different densities keeping fixed nc,min, nc,max, and lg,min, we

FIG. 11. Different types of spatially heterogeneous rowers’ con-
figurations (rowers are the arrows). (i) Regular clustered: clusters of
fixed number of rowers are placed on the lattice regularly spaced. In
this diagram, the number of rowers in a cluster is nc = 2, and the
length of the gap between two clusters of rowers lg = 3. We refer
to this lattice as “2-3.” (ii) Random: rowers are randomly placed on
the lattice. (iii) Random clustered: the number of rowers in a cluster
is not fixed, and is chosen uniformly in the interval [nc,min,nc,max].
The gap lengths between two consecutive clusters are also randomly
taken from [lg,min,lg,max]. In this diagram, the minimum and maximum
lengths of clusters of rowers are nc,min = 2 and nc,max = 4. The
minimum and maximum lengths of a gap between two clusters are
lg,min = 2 and lg,max = 5. This structure is referred to as “[2,4]-[2,5].”

vary lg,max. The average density can be computed numerically,
averaged over a large number of realizations:

ρ =
〈

nc

nc + lg − 1

〉
.

In our computation, we will use 2-lg and 3-lg regular clustered
heterogeneities. For random clustered configurations, we will
use the following heterogeneities: [2,4]-[2,lg,max] and [3,5]-
[2,lg,max].

We measure the distribution of beating frequency P (ω)
as a function of ρ in the different types of heterogeneities
discussed above. We use N = 100 and α = 0.1. In order to
computeP (ω), we consider several spatial structures and initial
conditions of rowers. In the case of random and regular clusters,
we take 100 different spatial configurations of rowers. For
regular clustered heterogeneity, as the spatial configuration of
rowers on a lattice is fixed, we consider 100 different initial
configurations of the rowers.

A. Case (i): Regular clustered

We consider “2-lg” regular clustered configurations. In
Fig. 12, we plot the spatial profile of the average beating
frequency. We observe that for a given ρ all rowers oscillate
with a single collective frequency. The value of this collective
frequency decreases as ρ is decreased (by increasing lg). In
the large lg limit, the intercluster interaction can be neglected.
As a consequence, we see in Fig. 12 that the frequency of
the rowers for lg = 20 is the same as the collective frequency
of a cluster of two rowers separated by a distance d = 1,
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FIG. 12. (i) Regular clustered case. Spatial profiles of the rowers
frequency for “2-lg” regular clustered heterogeneity for different gap
lengths lg = 1, 2, 5, and 20. The densities corresponding to these lg
values are given by ρ = 1, 0.67, 0.33, and 0.1, respectively. For a given
gap length, all rowers in a lattice oscillate approximately in a single
collective frequency. The value of the collective frequencies depends
on the value of lg . For lg = 20, the interclusters’ hydrodynamic
coupling can be neglected, and in this limit, rowers oscillate with
the collective frequency of a cluster of two rowers ωcoll,2.

ωcoll,2 (Sec. IV A). However, for “3-lg” regular clustered
configurations, ω increases as ρ is decreased, and reaches
ωcoll,3 at small ρ [see Fig. 15(a)].

B. Case (ii): Random

In Fig. 13(a), we have plotted the steady state frequency
profile as a function of rower index number for different
densities in the random case. For a given ρ, we consider
a configuration of randomly placed rowers on a lattice and
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FIG. 13. (ii) Random case. Frequency plots for randomly posi-
tioned rowers with density ρ = 0.1,0.4,0.75, and for a regular lattice
with ρ = 1. (a) The frequency of the rowers ω is plotted as a function
of rower index number. For ρ = 1, all the rowers oscillate in a single
collective frequency. For ρ < 1, we see the whole system break into
different parts, and these different local groups (synchronized island)
oscillate with different frequencies. The number of such groups
increases with decreasing ρ. (b) The probability distributions P (ω) are
plotted for the same values of ρ [as in (a)]. For ρ = 1, it is a δ function
(data are scaled by an arbitrary number for best visualization). As ρ is
decreased, the width of the distribution increases, while the average
ω increases. For ρ = 0.1,0.4 multiple peaks are observed.
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FIG. 14. (iii) Random clustered case. Frequency plots for “[2,4]-
[2,lg,max]” lattices for lg,max = 2, 4, 8, and 24. The densities corre-
sponding to these lg,max are given by ρ = 0.75, 0.6, 0.43, and 0.2,
respectively. (a) The frequency of the rowers ω is plotted as a function
of rower index number for a given spatial structure of rowers’ position.
The whole system breaks into synchronized islands, which oscillate
with different frequencies. The number of such groups increases
with increasing lg,max (i.e., with decreasing ρ). (b) The probability
distributions P (ω) are plotted for the same values of lg,max as in (a).
Remarkably, the mean and the width do not strongly depend on lg,max.

evolve this system with a random initial condition of rowers.
For ρ = 1 (perfect regular array), all the rowers oscillate with
the same frequency. This results in a δ function for P (ω)
[Fig. 13(b)]. For ρ < 1, various clusters of rowers start to
oscillate at different frequencies, leading to a finite width in
P (ω) plot [Fig. 13(b)]. Let us call synchronized island a group
of consecutive rowers (connected by next occupied lattice sites)
beating with the same frequency. We find that a synchronized
island consists of a few clusters (∼2–3, see Appendix C). The
number of such synchronized islands increases with decreasing
ρ (except for very small density where most rowers beat at their
natural frequency) and so does the width of the distribution
P (ω). From our study on finite numbers of rowers, we know
that if the separation between two groups is less than a critical
distance, they oscillate with the same frequencies. The value of
the frequencies depends on the separation between two groups
and number of rowers in each group. This leads to a nontrivial
distribution of the beating frequencies.

For small densities, the frequency spectrum will be domi-
nated by small clusters’ characteristic frequencies. Indeed, for
ρ = 0.1, the position of the distant peak at ω � ω0 is due to
isolated single rowers, while the other peaks at small ω are
due to a collective effect of the rowers. For larger densities, the
frequency spectrum is getting even more complex and broad.

C. Case (iii): Random clustered

We consider [2,4]-[2,lg,max] random clustered heteroge-
neous configurations. The frequency profile and P (ω) are
plotted for lg,max = 2, 4, 6, 8, and 24 in Fig. 14. As in the case
of random heterogeneity, we observe that various clusters of
rowers oscillate with different frequencies and the number of
such clusters increases with lg,max. This leads to finite widths in
P (ω) [see Fig. 14(b)]. A remarkable feature is that the mean of
the distribution is almost independent of the density ρ(lg,max).
For [2,4]-[2,lg,max] configurations such that lg,max � 1, the
average gap between two consecutive clusters is large and
the effect of hydrodynamic couplings between them will be
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FIG. 15. Mean frequency and its fluctuation as a function of
density ρ for α = 0.1 and N = 100. For random and random clustered
lattice, the data are averaged over 100 spatial configurations. For
regular clustered lattice, the data are averaged over 100 initial
configuration of rowers. For these plots we consider “2-x” and “3-x”
regular clustered lattice, and “[2,4]-[2,x]’ and “[3,5]-[2,x]” random
clustered lattice. (a) 〈ω〉 against ρ (with standard errors, error bars
are often smaller than point sizes), and (b) normalized variance Cv

versus ρ.

negligible in many cases. Indeed, the peaks in P (ω) correspond
to the collective frequencies of those clusters. The study with
[3,5]-[2,lg,max] configurations also leads to the same qualitative
results (Fig. 15). We also find that a synchronized island
consists of several numbers of clusters. This number increases
as a function of the density of rowers, and for large densities,
this number is very high compared to the random heterogeneity
case (see Appendix C).

D. Comparing different structures with same density

In the last sections, we have considered each type of het-
erogeneity separately and have investigated the nature of P (ω)
for various densities. As experimental samples can present a
variety of spatial heterogeneities, we now compare the results
for different heterogeneities for a given density. Moreover,
many studies only report experimental values of ρ and not
the precise spatial distribution of cilia. Hence, comparing the-
oretically the dynamical behavior of different configurations of
cilia with fixed density will provide different types of scenarios
that we hope we can compare to experimental observations
and check whether this is consistent with the observed spatial
arrangement of cilia.

1. Frequency spectrum for different structures

We compare the mean frequency 〈ω〉 and the coefficient of
variation Cv =

√
〈ω2〉 − 〈ω〉2/〈ω〉 of the distributions P (ω).

In Fig. 15(a), we plot 〈ω〉 as a function of density for different
spatial heterogeneities of rowers. For random heterogeneity,
〈ω〉 decays monotonically with density ρ. In the limit of ρ →
1, all structures look like regular lattices and, consequently, all
reach the collective frequency for many rowers. In the other
limit ρ → 0, 〈ω〉 converge to specific values depending on
structures. In the case of random structures, 〈ω(ρ → 0)〉 =
ω0. In the case of regular clusters, 〈ω(ρ → 0)〉 = ωcoll,2 for
“2-x” and 〈ω(ρ → 0)〉 = ωcoll,3 for “3-x”. In the case of
random clusters, 〈ω(ρ → 0)〉 lies between ωcoll,2 and ωcoll,4 for
“[2,4]-[2,x]” and between ωcoll,3 and ωcoll,5 for “[3,5]-[2,x].”
Note that 〈ω〉 is almost independent of density in the random

FIG. 16. Order parameter 〈A〉 as a function of density ρ for
different structures for N = 100. For random and random clustered
lattices, the data are averaged over 100 spatial configurations. For
regular clustered lattice, the data are averaged over 100 initial
configuration of rowers. For these plots we consider “2-x” regular
clustered lattice and “[2,4]-[2,x]” random clustered lattice.

clusters case, in contrast with the results for other heterogeneity
types. The standard deviation Cv [Fig. 15(b)] shows that the
frequency distribution is the broader for random heterogeneity.

The average frequency ω appears to be a robust quantity
for randomly clustered configurations of cilia, independently
of the surface coverage ρ. This most probably corresponds
to the type of surface coverage observed in in vivo samples.
Consequently, this robustness implies that even at low densities
(ρ � 0.1 seems to be a commonly observed value), the collec-
tive frequency of cilia will be equal to the frequency one would
observe at any larger density. This sets a “universal” frequency
for the cilia whatever the state of the surface coverage, given
that it has the randomly clustered type of structure.

2. Order parameter for different structures

The results in the previous sections show that heterogeneity
in the rowers’ positions lead to partial loss of frequency
locking. Hence, all rowers do not oscillate with a common
global frequency. But, some rowers do oscillate with a common
frequency locally. This common local frequency is different
in the different parts of the lattice and depends on the local
environment of the rowers in a nontrivial manner. The local fre-
quency may also depend on the initial condition of the rowers.

Hence, it is complementary to investigate whether there is
any phase coherence among the rowers even in this partially
frequency locked system. This might give an idea about the
local phase coherence of the rowers that oscillate with the same
frequency. In order to estimate phase coherence, we measure
the order parameter A [defined in Eq. (7)] and compute its
average value 〈A〉 for different values of ρ and different lattice
structures, in the same spirit as what we did in the (3+1)-
rowers case in Sec. II E. 〈A〉 is computed after steady state time
average and ensemble average (average over several spatial
configurations and/or several initial conditions of rowers) and
is plotted in Fig. 16.
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For ρ = 1, the order parameter A � 0.9, which is close but
not equal to 1. The definition of A [Eq. (7)] shows that its value
depends on the distribution of phase difference of neighbors
�φj = φj+1 − φj . The phase-locked angle is not perfectly π ,
rather we see a finite width of the distributions of �φj which
is (almost) independent of system sizes. This leads to a value
slightly less than 1 (see Appendix A).

Not surprisingly, the regular clustered configurations con-
serve the phase coherence, except at very low densities.
However, it is remarkable that the random clustered case is
more coherent at all densities than the pure random case. In
this case, which is likely to be the experimentally relevant
case, spatially separated clusters are internally coherent, and all
rowers beat with almost the same average frequency whatever
its position and the density of the sample.

V. CONCLUSION

While ciliated epithelia are most often modeled as large
homogeneous carpets, they are observed experimentally to be
inhomogeneous and often rather sparse. However, cilia on such
surfaces show coordination to a large extent, and thanks to this
coordination fulfill their biological role. We have addressed
this issue here, in a simplified model of a 1D heterogeneous
array of rowers.

Hydrodynamic coupling is long range and leads to collec-
tive coordination of the rowers’ phases in the homogeneous
array previously studied. When spatial heterogeneity is intro-
duced, gaps where rowers are absent lead to unperfected or lack
of coordination. This is true in the simplest case of a very small
number of rowers: if the gap length between two small clusters
of rowers exceeds a critical distance, phase drifting is observed
and ultimately leads to decoupling of rower clusters which are
internally coordinated. Interestingly, this critical distance does
not depend on the prefactor in the hydrodynamic interaction,
which is proportional to the viscosity; it only depends on the
internal parameters of the rower motility (but is likely to depend
on the range of the interactions).

Looking at the coordination of two clusters of rowers as
the spatial gap between them increases paves the way to
understanding more complex arrays of rowers. We find that
when the two clusters contain the same number of rowers, all
the rowers beat at the same frequency whatever the gap. If
they do not contain the same number of rowers, each cluster
bifurcates to its own intrinsic characteristic frequency after the
gap length exceeds a certain value. The distance after which
the clusters are totally decorrelated (their frequency reaches
the one they would have in the absence of the other cluster)
varies in a nontrivial way with the size of the patches.

Hence, the study of more complex arrays of rowers con-
taining a large number of clusters of various sizes reveals
a distribution of frequencies based on the physics described
above. Not surprisingly, a regular configuration of clusters of
similar size will show a delta distribution of frequencies. In
contrast, a totally random configuration will produce a wider
distribution of frequencies if the density of rowers is small,
while the average frequency will decrease. In-between those
two cases, a randomly clustered configuration (consistent with
experimental observations) has a distribution of frequencies
that depend barely on the density of rowers, while the average

beating frequency is close to a constant when the density is
varied. Consequently, a realistic carpet of cilia with density
typically ρ = 0.1 will have the same average frequency as a
more dense carpet. Both the frequency spectrum, and the order
parameter A which quantifies the coordination of phase differ-
ences between neighboring rowers (existence of a metachronal
wave), are complementary in providing a description of the
dynamical states of the rowers.

While an experimental situation is obviously subject to
thermal noise, our study and many others [18,24,33] are
deterministic. In this approximation, the model presents a few
complications as the dynamical states may marginally depend
on initial conditions, as discussed in the text. This complication
is removed as one would include noise, and we believe the
results stay qualitatively the same [23]. Aside from the thermal
noise, there is an active source of noise which is intrinsic to the
system. In the case of the flagellar beating for Chlamydomonas
and sperm cells, it has been demonstrated that the latter has a
dominating contribution in its synchronized beating [42,43]. It
would be interesting to study the role of spatial heterogeneity
in the presence of such intrinsic noise in the future.

Moreover, other studies have considered a variation of
hydrodynamical coupling, by taking into account the presence
of a wall on which the rowers are attached (however, without
including noise [33,41]). This variation introduces remarkable
changes in the observed dynamical states of the cilia, like
the coexistence of phase-locked and desynchronized clusters,
known as chimera states. This is likely to happen in homoge-
neous arrays as studied in the above cited papers, and is likely
to happen too in the heterogeneous case, though it has not been
studied so far.

Along the same line, it will be interesting to study 2D carpets
of rowers, as well as a realistic experimental spatially resolved
sample. In this case, we believe that the orientation of beating
of the rowers will also be responsible for the spatial correlations
of the dynamical states in 2D [35].
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APPENDIX A: THE ORDER PARAMETER A

As we have discussed in the main text, the degree of
synchronization in the system of phase oscillators can be
measured by the following complex order parameter:

Z = Aei
 = 1/(N − 1)
N−1∑
j=1

ei�φj , (A1)
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where �φj = φj+1 − φj are the phase difference of nearest
neighbors and N is the number of the oscillators. The mag-
nitude A describes the phase coherence, and polar angle 


indicates average phase difference of neighbors. The system
shows a maximal coherence when A = 1, and no coherence for
A = 0. In the large N limit, we can write the above summation
by integration,

Aei
 =
∫ 2π

0
d(�φ) P (�φ) ei�φ, (A2)

where P (�φ) is the probability distribution of phase difference
of nearest neighbors.

Let us discuss three cases in detail for different types
of phase coherence. Perfect phase locking: in this case, the
neighboring pairs are phase locked to a constant angle δ, i.e.,
�φj = δ. Therefore, P (�φ) = p(δ − �φ). From Eq. (A2) we
get A = 1, and we also see that A is independent of δ. No
synchronization: the probability distribution of �φ is totally
random. In this case, P (�φ) = 1/(2π ) which leads A = 0.
Partial phase locking: the width (standard deviation) of the
distribution of �φ is neither zero (as in delta function) nor
does it possess a maximal width (as in uniform distribution).
It rather has a finite width in-between two extreme cases. Let
us assume such a distribution by a normal distribution with
standard deviation σ :

P (�φ) = 1√
2πσ 2

e−φ2/2σ 2
. (A3)

For the above distribution, we can derive the expression for
A using Eq. (A2). After calculating the Gaussian integral,

TABLE I. The critical distance dc for five different sets of internal
parameters of cilia (k,s) for N = 3 (column 3) and 4 (asymmetric
case, column 4). For each set of (k,s), we consider three different
values of hydrodynamic coupling strength α = 0.1, 0.05, and 0.01.
For the computation of each dc, 1000 initial configurations are used.
The integration step h = 10−3. As the value of the lattice constant in
our computation is 1, the value of dc is an integer. For N = 4, dc is
sensitive to initial configuration of rowers and its value lies between
(dmax − dmin), as shown in column 4. The average values with error
are also presented.

(k,s) α dc for N = 3 dc for N=4

(1.0, 0.8) 0.01 2 (3-5) 3.51 ± 0.02
0.05 2 (3-4) 3.51 ± 0.01
0.1 2 (3-4) 3.51 ± 0.01

(1.0, 0.95) 0.01 4 (11-12) 11.51 ± 0.01
0.05 4 (8-9) 8.50 ± 0.01
0.1 4 (6-7) 6.44 ± 0.01

(1.1, 0.75) 0.01 2 (4-5) 4.49 ± 0.01
0.05 2 (3-4) 3.51 ± 0.01
0.1 2 (3-4) 3.51 ± 0.01

(1.1, 0.8) 0.01 3 (5-7) 5.52 ± 0.02
0.05 3 (5-6) 5.49 ± 0.01
0.1 3 (4-5) 4.50 ± 0.01

(1.2, 0.7) 0.01 2 (4-5) 4.49 ± 0.01
0.05 2 (4) 4
0.1 2 (3-4) 3.51 ±0.01

FIG. 17. Plots of synchronized island for different hetero-
geneities. (a) 〈Ncluster〉 is plotted against ρ. (b) 〈Ncluster〉/〈Nisland〉
against ρ.

we get

A = e−1/2σ 2
. (A4)

Please note that A → 1 when σ → 0, and A → 0 as σ → ∞.

APPENDIX B: CRITICAL DISTANCE FOR VARIOUS
PARAMETERS

In Table I, we present the value of critical distance between
two clusters at which phase drift behavior appears for five
different sets of internal parameters of cilia (k,s) for N = 3 and
4 (asymmetric case). For N = 3, we observe that the value of dc

depends on k and s but, independent of α and initial conditions.
However, for N = 4 the value of dc is quite sensitive to α and
initial conditions.

APPENDIX C: SYNCHRONIZED ISLAND

Let us recall the definition of a synchronized island: a group
of consecutive rowers (connected by next occupied lattice
sites) beating in a common frequency. We have measured this
quantity for random and random clustered heterogeneity for
the same data provided in Figs. 13 and 14 in the main text.
In Fig. 17, we plot the average number synchronized islands

FIG. 18. In-phase synchronization for a two-rowers system. The
phase difference �φ12 = φ2 − φ1 is plotted as a function of time t . At
t = 0 the rowers start from an arbitrary initial condition. The phase
difference vanishes as t increases.
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FIG. 19. (a) Angular frequencies of three rowers as a function of
d23 are plotted for α = −0.02. Bifurcation occurs for d23 � 4. For
very large d23, rower 3 becomes almost independent of others and
oscillates with its natural frequency ω0 while the first two rowers
oscillate with the collective frequency of two-rowers system. (b) The
log-log plot of τdrift for α = −0.2,−0.02, and −0.002. We multiply
the data with respective |α|. This scaling makes all the curves fall into
a single curve g(d23). The function g(d23) shows 1/d2

23 decay.

(〈Ncluster〉) and the ratio of the average number of clusters to
the average number synchronized islands (〈Ncluster〉/〈Nisland〉).
We observe that for all heterogeneity 〈Nisland〉 decreases with
increasing ρ and the value of 〈Nisland〉 is large for random
heterogeneity compared to random clustered heterogeneity,
suggesting that the synchronization is more vulnerable to
random heterogeneity. From Fig. 17(b), it is clear that a
synchronized island consists of several clusters. This number
increases with decreasing ρ.

APPENDIX D: THE ATTRACTIVE CASE α < 0

In the main text, we have discussed the effect of spatial het-
erogeneity in the case when two rowers oscillate in antiphase,
and many rowers oscillate collectively as metachronal waves.
Here, we discuss the effect of spatial heterogeneity, in the
case when rowers show in-phase synchronization. While for a
system of rowers the antiphase solution can be achieved using

FIG. 20. The collective frequency is plotted as a function of total
number of rowers N . The rowers are placed on a regular lattice
with lattice constant d = 1. The data are averaged over 1000 initial
configurations. It decays with system size N .

FIG. 21. Mean frequency and its fluctuation as a function of
density ρ for N = 100. For random and random clustered hetero-
geneity, the data are averaged over 100 spatial configurations. For
regular clustered heterogeneity, the data are averaged over 100 initial
configurations of rowers. For these plots we consider “2-x” and “3-x”
regular clustered and “[2,4]-[2,x]’ and “[3,5]-[2,x]” random clustered
heterogeneity. (a) 〈ω〉 against ρ, and (b) the coefficient of variation
Cv against ρ.

a realistic hydrodynamic interaction (α > 0) (as discussed in
the main text), the in-phase synchronization can be realized
through a “nonrealistic” hydrodynamic coupling with negative
α [18] or using a negative force constant k of harmonic driving
force of rowers [33]. We investigate the case of in-phase
synchronization using the same dynamical equation (4) but
with negative α. Here, we present the results for α = −0.02
and the same values of the force constant k and amplitude s as
mentioned in the main text are used.

1. Few rowers

In Fig. 18 we show that two rowers, initially having arbitrary
phases, oscillate in the same phase after a transient period. For

FIG. 22. Order parameters as a function of density ρ for different
structures for N = 100. For random and random clustered lattices,
the data are averaged over 100 spatial configurations. For regular
heterogeneity, the data are averaged over 100 initial configuration of
rowers. For these plots we consider “2-x” regular lattice and “[2,4]-
[2,x]” random clustered lattice. For regular lattice, the phases of the
rowers are coherent for all the density. For random clustered and
random lattices, the synchronization of phases gets destroyed at lower
densities.
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a three-rower system, the phenomenon of phase drifting is seen
as the distance between second and third rowers d23 is varied. In
Fig. 19(a), we plot the frequency of all the three rowers. Note
that a bifurcation occurred for d23 � dc(= 4). In Fig. 19(b),
we show the drift time τdrift for different values of negative α.
As in the case of positive α, the similar scaling of τdrift holds
for negative α: |α| τdrift(α,d23) = g(d23) + const. However, the
decay of scaling function g(d23) is different from the scaling
function f (d23) for positive α (see main text). Here, the scaling
function g(d23) decays as g(d23) ∼ 1/d2

23 which is faster than
the decay of f (d23).

2. Many rowers

We first consider N rowers on a regular lattice with lattice
constant d = 1. In this case, all the rowers oscillate with a
single common frequency ωcoll,N. The phase of a rower and its
adjacent neighbors are in-phase synchronized. In Fig. 20, we

plot collective frequency as a function of system size N . We
observe that ωcoll,N decays with N .

Next, we present the results of three different types of
heterogeneous lattices (regular clustered, random, and random
clustered) for α < 0. We find that the spatial inhomogeneity in
rowers’ position leads to fluctuation in the beating frequency
of the rowers and reduces the order in phase coherence. In
Fig. 21(a), we plot average frequency of the rowers. We observe
that 〈ω〉 decreases as a function of the density ρ for all the
types of heterogeneous lattices. In Fig. 21(b), we plot the
coefficient of variation Cv which is a normalized fluctuation
of frequency. We observe that for a fixed ρ, Cv depends on the
type of heterogeneity. For regular clustered Cv is less and for
random heterogeneity Cv is high, while for random clustered
it is intermediate.

The phase coherence can be measured by the order param-
eter A (defined in the main text). The order parameter A is
plotted as function of density ρ in Fig. 22.
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