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A bridge in a graph is an edge whose removal disconnects the graph and increases the number of connected
components. We calculate the fraction of bridges in a wide range of real-world networks and their randomized
counterparts. We find that real networks typically have more bridges than their completely randomized
counterparts, but they have a fraction of bridges that is very similar to their degree-preserving randomizations.
We define an edge centrality measure, called bridgeness, to quantify the importance of a bridge in damaging
a network. We find that certain real networks have a very large average and variance of bridgeness compared
to their degree-preserving randomizations and other real networks. Finally, we offer an analytical framework to
calculate the bridge fraction and the average and variance of bridgeness for uncorrelated random networks with
arbitrary degree distributions.
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I. INTRODUCTION

A bridge, also known as a cut-edge, is an edge of a graph
whose removal disconnects the graph, i.e., it increases the
number of connected components (see Fig. 1, red or light
gray edges) [1]. A dual concept is an articulation point or
a cut-vertex, defined as a node in a graph whose removal
disconnects the graph [2,3]. Both bridges and articulation
points in a graph can be identified via a linear-time algorithm
based on depth-first search [4], and they represent natural
vulnerabilities of networked systems. Analysis of articulation
points has recently provided us with a different angle to
systematically investigate the structure and function of many
real-world networks [5]. This prompts us to ask if a similar
analysis can be applied to bridges.

Note that a bridge is similar to, but different from, the notion
of a red bond introduced in percolation theory to characterize
substructures of percolation clusters on lattices [6]. To define
a red bond, we consider the percolation cluster as a network of
wires carrying electrical current, and we impose a voltage drop
between two nodes in the network. Then red bonds are those
links that carry all current, whose removal stops the current.
The definition of bridges does not require us to impose a voltage
drop on the network. Instead, it just concerns the connectivity
of the whole network.

Despite the fact that bridges play important roles in ensuring
network connectivity, the notion of a bridge has never been
systematically studied in complex networks. What is the
typical number of bridges in a random graph with a prescribed
degree distribution? Are the bridges in a real network overrep-
resented or underrepresented? How do we quantify network
vulnerability in terms of a bridge attack? In this paper, we
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systematically address those questions in both real networks
and random graphs.

II. EMPIRICAL RESULTS OF REAL NETWORKS

We first calculate the fraction of bridges (fb := Lb/L)
in a wide range of real-world networks, from infrastructure
networks to food webs, neuronal networks, protein-protein
interaction (PPI) networks, gene regulatory networks, and
social graphs. Here Lb and L denote the number of bridges
and total number of links in a network, respectively. We
find that many real networks have a very small fraction of
bridges, while a few of them (e.g., PPI networks) have a
very large fraction of bridges [Fig. 2(a)]. To identify the
topological characteristics that determine fb in real networks,
we compare fb of a given network with that of its randomized
counterpart. We first randomize each real network using a
complete randomization procedure that turns the network into
an Erdös-Rényi (ER) type of random graph with the number
of nodes N and links L unchanged [11]. We find that most
of the completely randomized networks possess very different
fb, compared to their corresponding real networks [Fig. 2(a)].
This indicates that complete randomization eliminates the
topological characteristics that determine fb. Moreover, we
find that real networks typically display much higher fb

than their completely randomized counterparts [Fig. 2(a)]. By
contrast, when we apply a degree-preserving randomization,
which rewires the edges among nodes while keeping the degree
k of each node unchanged, this procedure does not alter fb

significantly [Fig. 2(b)]. In other words, the characteristics of
a real network in terms of fb is largely encoded in its degree
distribution P (k).

To quantify the importance of an edge in damaging a
network, we define an edge centrality measure B, called
bridgeness, for each edge in a graph as the number of nodes

2470-0045/2018/97(1)/012307(11) 012307-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.97.012307&domain=pdf&date_stamp=2018-01-17
https://doi.org/10.1103/PhysRevE.97.012307


ANG-KUN WU, LIANG TIAN, AND YANG-YU LIU PHYSICAL REVIEW E 97, 012307 (2018)

(a) (b)

(c) (d)

FIG. 1. Bridges in real-world networks. Bridges are edges (in red
or light gray) whose removal will increase the number of connected
components in a graph. (a) The Grassland food web [7]; (b) the
protein-protein interaction network of C. elegans [8]; (c) a subgraph
of the road network of California [9]; (d) a subgraph of the power grid
in three western states of the United States [10].

disconnected from the giant connected component (GCC) [12]
after the removal of this edge. Note that for finite networks,
we can define bridgeness similarly as the number of nodes
disconnected from the largest connected component (LCC).
The algorithm to identify bridges and calculate bridgeness
for an arbitrary finite network is detailed in Appendix A.
By definition, if an edge is not a bridge or outside the GCC
(or LCC), it has zero bridgeness. We notice that bridgeness
has been defined differently in the literature. But none of the
previous definitions of bridgeness is based on the notion of a
bridge. Some of them are actually defined on nodes [13–16],
rather than edges. Here we define bridgeness based on the
notion of a bridge, and we focus on the damage to the GCC (or
LCC), which is typically the main functional part of a network.

We emphasize that the bridgeness centrality defined here is
fundamentally different from the edge betweenness centrality
[17]. For an edge e in a graph, its betweenness centrality is
defined as follows: CB(e) = ∑

i �=j σij (e)/σij , where σij is the
number of shortest paths between any two nodes i and j in
the graph, and σij (e) is the number of shortest paths between
i and j that pass through edge e. By definition, each edge in a
graph can be associated with a nonzero betweenness centrality.
And an edge with very high betweenness centrality can be
considered as a “bottleneck” of the graph, whose removal
may block the communications between many pairs of nodes
with the shortest paths between them passing through the
bottleneck. Yet, such a bottleneck edge, e.g., (5,7) in Fig. 3(a),
might not be a bridge. Similarly, the fact that an edge is a bridge
does not mean its betweenness centrality is always very high.
For example, in Fig. 3(b), node 1 is a leaf (with degree 1), and
it is connected to the rest of the network through a bridge, i.e.,
edge (1,3) shown in red. But the betweenness of this bridge

(a) (b)

Intra-organizational Electronic circuit Food web WWW Road
Social communication Power grid Internet(p2p) Neuronal PPI
Genetic regulatory Social trust Internet(AS) Air traffic

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

f
ra

n d
-d

eg
r e

e
b

f real
b

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

f
ra

nd
-E

R
b

f real
b

FIG. 2. Bridge fractions in real-world networks and their ran-
domized counterparts. The dashed lines are y = x. The error bars
represent the standard deviation, calculated from 100 randomizations.
(a) Complete randomization of real networks. (b) Degree-preserving
randomization.

(1,3) is much lower than that of a nonbridge edge (4,5) for
large n.

Bridgeness differentiates edges based on their structural
importance. Consider all bridges that have nontrivial bridge-
ness, i.e., B > 0. Denote their average and variance as 〈B〉
and var(B), respectively. We calculate 〈B〉 and var(B) for
the same set of real-world networks analyzed in Fig. 2, and
we compare the values with those of their degree-preserving
randomizations (see Fig. 4). We find that road networks and
certain domains (stanford.edu and nd.edu) of the World Wide
Web (WWW) have much larger var(B) than their randomized
counterparts and other real networks [Fig. 3(b)]. Structural
analysis shows that those networks have many large bicon-
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FIG. 3. Bridgeness and edge betweenness. Bridges are shown in
red (or light gray), nonbridge edges are shown in blue (or black).
The values next to the edges represents their edge betweenness. Only
bridges have nonzero bridgeness. In those two examples, all the
bridges shown in red have bridgeness 1 except for the one (3,4) with
bridgeness 3. (a) Edges with very high betweenness centrality are not
necessarily bridges. For example, the central edge (5,7) has the largest
betweenness centrality 25 among all the edges, but it is not a bridge. (b)
A bridge does not necessarily have very high betweenness centrality.
Here, the bridge (1,3) has betweenness centrality n + 4, which is
much lower than the betweenness centrality 4n of a nonbridge edge
(4,5), when n is large. Note that here node-5 is part of the n nodes.
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FIG. 4. Average and variance of bridgeness in real-world net-
works and their randomized counterparts. The bars represent the
values of real networks, empty symbols represent the average values
of their degree-preserving randomizations, and solid red points are
theoretical results derived from the analytical framework presented
in Sec. III F, using the degree distribution of the real networks as the
only inputs. The error bars represent the standard deviation, calculated
from 10 randomizations. (a) Average bridgeness. (b) Variance of
bridgeness.

nected components (BCCs) (see Table I). Here, a BCC is a
connected subgraph where for any two nodes there are at least
two paths connecting them that have no nodes in common other
than these two nodes [19]. Note that, by definition, no bridge
exists in a BCC. But bridges can connect BCCs in the GCC.
In those two domains of the WWW, certain bridges connect
very large BCCs in the GCC, yielding very large bridgeness
and var(B).

Since the bridge fractions in real networks are almost the
same as their degree-preserving randomized counterparts, the
difference of average bridgeness between real networks and
their degree-preserving randomizations indicates variations
of vulnerability of those networks in terms of bridge attack.

(a) (b)

FIG. 5. Demonstration of different types of edges. (a) The green
(or light gray), red (or dark gray), and black lines represent α-edges,
β-edges, and γ -edges, respectively. (b) Neighborhood of a β-edge.
The red edge is a β-edge and the black square and ellipse represent
an FCC and the GCC, respectively, after the removal of the β-edge.

Figure 4(a) shows that certain types of networks, such as
road networks and WWW, are more vulnerable, displaying
much larger 〈B〉 than their randomizations. By contrast, the
Internet at the autonomous system (AS) level and the Internet
peer-to-peer (p2p) file sharing networks have smaller 〈B〉 than
their randomized counterparts, indicating that those networks
are robust from the bridge attack perspective.

III. ANALYTICAL FRAMEWORK

The results of real-world networks, especially the inter-
esting results on fb in real networks and degree-preserving
randomizations [Fig. 2(b)], prompt us to analytically decipher
bridge structure for large uncorrelated random networks with
prescribed degree distributions. To begin with, we adopt the
local tree approximation (LTA), which assumes the absence of
finite loops in the thermodynamic limit (i.e., as the network
size N → ∞) and allows only infinite loops [5,20–23]. The
LTA leads to three important properties: (i) all finite connected
components (FCCs) are trees, and hence all edges inside them
are bridges; (ii) there exists only one GCC [22], only one BCC
(which has no bridges), and the BCC is a subgraph of the
GCC; (iii) subgraphs inside the GCC but outside the BCC are
trees, and all edges in those subgraphs are bridges [5,21–25].
Those properties enable us to categorize all the edges in a graph
into three types [Fig. 5(a)]: (i) α-edge: edges in FCCs, which

TABLE I. Detailed information of the road networks and the World Wide Webs analyzed in this paper. Here, N and L represent the number
of nodes and edges in the networks, respectively. sGCC is the relative size of the GCC. NBCC and Lb are the numbers of BCCs and bridges,
respectively. 〈sBCC〉 is the average size of all BCCs in the network except the largest one. Bmax represents the largest bridgeness.

Category name N L sGCC NBCC 〈sBCC〉 Lb 〈B〉 var(B) Bmax Description

Road [9] RoadNet-CA 1965206 2766607 1957027 4042 5.94 376517 1.598 6.53 162 California road network
networks RoadNet-PA 1088092 1541898 1087562 1815 4.67 216994 1.39 2.16 94 Pennsylvania road network

RoadNet-TX 1379917 1921660 1351137 3054 13.35 290333 1.48 5.32 209 Texas road network
World stanford.edu [9] 281903 1992636 255265 1073 31.77 27344 4.42 2081.1 4907 WWW from the stanford
Wide .edu domain
Web nd.edu [18] 325729 1090108 325729 308 45.77 166376 1.58 264.29 2660 WWW from the nd.edu

domain
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are bridges; (ii) β-edge: edges inside the GCC but outside
the BCC, which are also bridges; (iii) γ -edge: edges inside
the BCC, which are not bridges. Hereafter, we also use α, β,
or γ to denote the probability that a randomly chosen edge
is a α-edge, β-edge, or γ -edge, respectively. By definitions,
we have α + β + γ = 1 and fb = α + β. Note that according
to our definition of bridgeness, only β-edges have nontrivial
bridgenesses, i.e., B > 0.

Generating functions

G0(x) =
∞∑

k=0

P (k)xk (1)

and

G1(x) =
∞∑

k=1

Q(k)xk−1 (2)

are very useful in calculating key quantities of random graphs,
such as the mean component size and the size of the GCC
[22]. Here Q(k) = kP (k)/c, and c = ∑∞

k=0 kP (k) is the mean
degree. To calculate α, β, and γ , we introduce the generating
function H1(x) for the size distribution of the components that
are reachable by choosing a random edge and following one
of its ends. [The notation H0(x) is reserved for the generating
function of the size distribution of the components in which a
randomly chosen node is located [22].]

According to the LTA, H1(x) satisfies the following self-
consistency equation [22]:

H1(x) =
∞∑

k=1

xQ(k)[H1(x)]k−1. (3)

Note that we only include the finite components in calculating
H1(x), which means that the chosen edge must be a bridge due
to the LTA, namely either α- or β-edge. Equation (3) implies
that following a bridge, the excess edges of its end to finite
subcomponents should also be bridges. We can rewrite Eq. (3)
using the generation function of Q(k), i.e., G1(x), yielding

H1(x) = xG1(H1(x)). (4)

Define u := H1(1), representing the probability that following
a randomly chosen edge to one of its end nodes, the node be-
longs to an FCC after removing this edge. Then the probability
that a randomly chosen edge is an α-edge or belongs to an FCC
is simply

α = u2. (5)

For a β-edge, one of its end nodes belongs to an FCC and the
other one belongs to the GCC after removing this edge. Hence
we have

β = 2u(1 − u). (6)

For a γ -edge, both of its end nodes belong to the GCC after its
removal, and hence

γ = (1 − u)2. (7)

Note that the normalization condition α + β + γ = 1 is natu-
rally satisfied. The fraction of bridges is simply given by

fb = α + β = 1 − (1 − u)2. (8)

Besides fb, we can also calculate the bridgeness distribution
P (B) from H1(x). For nontrivial bridgeness (B > 0) we only
consider the bridges in the GCC. In other words, we calculate
P (B) for β-edges in random graphs. Define the generating
function of P (B) as

F (x) =
∞∑

B=1

P (B)xB, (9)

which leads to P (B) = 1
B!

dBF (x)
dxB |x=0. Since one end node of

a β-edge is located in the GCC after the removal of this edge
[Fig. 5(b)], we have

F (x) = 2(1 − u)H1(x)

β
, (10)

where the numerator represents the generating function for the
bridgeness distribution of a randomly chosen β-edge, and the
denominator originates from the fact that we focus on β-edges.
The moments of P (B) are then given by

〈Bk〉 =
∞∑

B=1

BkP (B) =
[(

x
d

dx

)k

F (x)

]
x=1

. (11)

For example, the average bridgeness is given by

〈B〉 = F ′(1) = H ′
1(1)

u
= H ′

1(1)

H1(1)
(12)

and

〈B2〉 = F ′(1) + F ′′(1) = H ′
1(1) + H ′′

1 (1)

u
. (13)

Consequently, the variance of bridgeness is

var(B) = H ′
1(1)[u − H ′

1(1)] + uH ′′
1 (1)

u2
. (14)

In Fig. 6(a), we show the bridge fraction fb calculated from
Eqs. (4) and (8), the relative size of BCC (sBCC) [19], and
the relative size of GCC (sGCC) [22] as functions of mean
degree c in ER random graphs with Poisson degree distribution
P (k) = e−cck/k! [11]. (See Appendix B for the generating
function formalism in calculating sGCC and sBCC.) We find that
before the GCC and BCC emerge at the percolation threshold
c∗ = 1, all components are FCCs and all edges are α-edges,
rendering fb = 1. After the emergence of the GCC and BCC at
c∗ = 1, fb begins to deviate from 1, and the fraction of β-edges
displays a nonmonotonic behavior (because the difference
between sGCC and sBCC increases first and then decreases). We
also calculate fb for scale-free (SF) networks with power-law
degree distribution P (k) ∼ k−λ generated by the static model
[26–28]. For SF networks, the smaller the degree exponent λ,
the smaller is the percolation threshold c∗ [23], causing fb to
deviate from 1 at smaller c∗ [Fig. 6(b)].

We also calculate the average bridgeness 〈B〉 and the
variance of bridgeness var(B)(:= 〈B2〉 − 〈B〉2) in ER and SF
random networks [Figs. 6(c) and 6(d)]. We find that for both
ER and SF networks, 〈B〉 and var(B) decrease monotonically
as c increases. Note that 〈B〉 and var(B) of SF networks are
typically lower than those of ER networks for small c, and
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FIG. 6. Bridge and bridgeness in ER and SF random networks.
The size of all these random network is 106. Curves in (a)–(d) are
analytical predication about bridges, and symbols are simulation
results. (a) The behavior of the bridge fraction fb, relative sizes of the
BCC and GCC (denoted as sBCC and sGCC, respectively) in ER random
graphs. (b) Bridge fraction in different random networks with dashed
vertical lines representing the corresponding percolation threshold
c∗ where the GCC and BCC emerge. Note that c∗

SF(λ = 2.5) = 0,
c∗

SF(λ = 3.0) ≈ 0.23, c∗
SF(λ = 4.0) ≈ 0.75, and c∗

ER = 1.0. (c) Aver-
age bridgeness in random networks. (d) The variance of bridgeness
in random networks. Detailed calculation and more distributions can
be found below.

higher for large c. This is because SF networks tend to first form
densely connected components of hub nodes when c is small,
and then gradually stretch out as c increases. The divergent
behavior of bridgeness around the percolation threshold c∗ is
due to the emergence of the GCC, which initially is treelike
and therefore contains bridges with a huge range of bridgeness.

For the sake of completeness, in the following subsections
we demonstrate the analytical calculation of fb, 〈B〉, var(B),
as well as sGCC and sBCC for uncorrelated random graphs
with various canonical degree distributions. For certain ran-
dom graphs with simple degree distributions and generating
functions, e.g., the ER random graphs, those quantities have
simple expressions.

A. Poisson-distributed graphs

The degree distribution P (k) for Erdös-Rényi random
graphs follows Poisson distribution [11]:

P (k) = e−cck

k!
,

where c is the mean degree. Then the generating functions of
P (k) and Q(k) are

G0(x,c) = G1(x,c) = ec(x−1)

with derivatives

G′
1(x) = cec(x−1),

G′′
1(x) = c2ec(x−1).

With

u = H1(1) = G1(H1(1)) = ec(u−1)

and

H ′
1(1) = G1(u)

1 − G′
1(u)

= u

1 − cu
,

we have

fb = [1 − (1 − u)2]

and

〈B〉 = 1

1 − cu
.

Substituting the above equations into Eqs. (12)–(14), we can
get

var(B) = cu

(1 − cu)3
.

Moreover, according to Eqs. (B2)–(B4), we have

sGCC = 1 − ec(u−1)

and

sBCC = 1 − ec(u−1) − u(1 − u)c.

Results are shown in Fig. 6.

B. Exponentially distributed graphs

The degree distribution for exponentially distributed graphs
is [22,29]

P (k) = (1 − e−1/κ )e−k/κ ,

and the mean degree is

c = e−1/κ

1 − e−1/κ
.

The generating functions of P (k) and Q(k) are

G0(x) = 1 − e−1/κ

1 − xe−1/κ
,

G1(x) =
[

1 − e−1/κ

1 − xe−1/κ

]2

,

respectively. Their derivatives are

G′
1(x) = 2e−1/κ (1 − e−1/κ )2

(1 − xe−1/κ )3
,

G′′
1(x) = 6e−2/κ (1 − e−1/κ )2

(1 − xe−1/κ )4
.

Substituting the above equations into Eqs. (12)–(14) and
(B2)–(B4), we can get fb, sGCC, sBCC, 〈B〉, and var(B).
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Unfortunately, their expressions are too complicated to show.
The results of these quantities can be found in Fig. 7.

C. Purely power-law distributed graphs

The degree distribution for purely power-law distributed
graphs is [22,29]

P (k) = k−λ

ζ (λ)
for k � 1,

where ζ (λ) = ∑∞
k=1 k−λ is the Riemann zeta function. Note

that P (k) can be normalized only for λ � 2.
The generating functions of P (k) and Q(k) are

G0(x) = Liλ(x)

ζ (λ)
,

G1(x) = Liλ−1(x)

xζ (λ − 1)
,

respectively. Here, Lin(x) = ∑∞
k=1 xk/kn is the nth poly-

logarithm of x, whose derivative is dLin(x)
dx

= Liλ−1(x)
x

. The
derivatives of the generating functions are

G′
1(x) = Liλ−2(x) − Liλ−1(x)

x2ζ (λ − 1)
,

G′′
1(x) = Liλ−3(x) − 3Liλ−2(x) + 2Liλ−1(x)

x3ζ (λ − 1)
.

Substituting the above equations into Eqs. (12)–(14) and
(B2)–(B4), we can get fb, sGCC, sBCC, 〈B〉, and var(B). The
results of these quantities can be found in Fig. 7.

D. Power-law distribution with exponential cutoff

The degree distribution for a purely power-law distribution
with exponent λ and exponential cutoff is [22,29]

P (k) = k−λe−k/κ

Liλ(e−1/κ )
for k � 1.

This distribution can be normalized for any λ.
The generating functions of P (k) and Q(k) are

G0(x) = Liλ(xe−1/κ )

Liλ(e−1/κ )
,

G1(x) = Liλ−1(xe−1/κ )

xLiλ−1(e−1/κ )
,

respectively, and their derivatives are

G′
1(x) = Liλ−2(xe−1/κ ) − Liλ−1(xe−1/κ )

x2Liλ−1(e−1/κ )
,

G′′
1(x) = Liλ−3(xe−1/κ ) − 3Liλ−2(xe−1/κ ) + 2Liλ−1(xe−1/κ )

x3Liλ−1(e−1/κ )
.

Substituting the above equations into Eqs. (12)–(14) and
(B2)–(B4), we can get fb, sGCC, sBCC, 〈B〉, and var(B). The
results of these quantities can be found in Fig. 7.

E. Static model

In the main text, we use the static model to generate
scale-free (SF) random graphs [26]. This model consists of the
following steps [29]: (i) Given N isolated nodes, we label them
from 1 to N . For each node i, we assign a weight pi ∝ i−a ,
where a = 1

λ−1 , and λ is the characteristic parameter of the SF
graphs. (ii) Then we randomly choose two nodes according
to their weight and connect them if they are not connected.
Self-links and multilinks are forbidden here. We repeat this
step until M = cN/2 links are added.

The degree distribution of the static mode can be analyti-
cally derived as [27,28]

P (k) = [c(1 − a)/2]1/a

a

	(k − 1/a,c(1 − a)/2)
	(k + 1)

,

with 	(s) the gamma function and 	(s.x) the upper incom-
plete gamma function. When k → ∞, P (k) ∼ k−(1+1/a) =
k−λ. Therefore, we can build different SF random graphs by
tuning a. The generating functions are

G0(x) = 1

a
E1+ 1

a
[c(1 − a)(1 − x)],

G1(x) = 1 − a

a
E 1

a
[c(1 − a)(1 − x)],

where En = ∫ ∞
1 e−xyy−ndy is the exponential integral. Note

that the derivative of En follows E′
n = −En−1(x). From the

generating functions, we can derive fb, sGCC, sBCC, 〈B〉, and
var(B). Results are shown in Fig. 6.

F. Degree distributions of real networks

Our analytical framework can also be applied to real-world
networks with degree distributions as the only input. For these
networks, we count the number of k-degree nodes, nk , and the
degree distribution is P (k) = nk/N . The generating functions
of P (k) and Q(k) are finite polynomials,

G0(x) =
∑kmax

k=0 nkx
k

N
, (15)

G1(x) =
∑kmax

k=0(k + 1)nk+1x
k

N
, (16)

respectively. Substituting the above equations and their deriva-
tives into Eqs. (12)–(14), we can get fb, 〈B〉, and var(B).

In this case, the theoretical results are considered as the
ensemble average of all the networks with the prescribed
degree distribution in the thermodynamic limit. As expected,
we find that the theoretical results (red points) agree well
with the numerical results (empty symbols) calculated from
degree-preserving randomized counterparts.

As shown in Fig. 2(b), we find that the fraction of bridges
is largely determined by the degree distribution. However,
higher-order correlation of real networks, such as assortativ-
ity, clustering, and modularity, may affect the structure of
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FIG. 7. The analytical results of the bridge fraction fb, sGCC, sBCC, 〈B〉, and var(B) in different random graphs. All the results are analytical,
and the dashed lines mark their percolation positions. The corresponding degree distribution is denoted in the figures.

the bridges (bridgeness). Therefore, our theoretical approach
serves as a starting or reference point to study bridge structure
in real-world networks.

IV. NUMERICAL STUDY ON NETWORKS WITH
MESOSCOPIC STRUCTURE

The above analytical framework does not apply to networks
with certain mesoscopic structure, e.g., the presence of com-
munities [30] or core-periphery structure [31]. To explore the
impact of mesoscopic structure on the bridge fraction and
bridgeness distribution, here we numerically investigate those
quantities using the stochastic block model (SBM) [32].

Consider a partition g of total N vertices into K groups,
where g is a vector of N elements and gi represents the group
to which vertex i belongs. We can define a symmetric K × K

matrix ψ , whose element ψgigj
is the probability of an edge

existing between vertices i and j .
To study the effect of mesoscopic structure on bridges in

random graphs, we mix the above SBM with an ER random
graph of the same mean degree. The elements of the probability
matrix ψ can then be written as

λψgigj
+ (1 − λ)p,

where p is the connection probability for the ER random graph
depending on mean degree c, and λ is a tuning parameter (0 �
λ � 1) [33].

We study two types of mesoscopic structure here. The first
is community structure with

ψ =
⎛
⎝a 0 0

0 a 0
0 0 a

⎞
⎠,

where three groups (communities) exist and each group
has the same number of vertices and connecting probability
(ψgigi

= a), and a is a variable depending on mean degree c.
There is no edge between groups (ψgigj

= 0). The second is
the core-periphery structure [31] with

ψ =
(

b 0.1b

0.1b 0

)
,

where two groups exist and each group has the same number
of vertices, but one group has zero inner connection. b is a
variable depending on mean degree c.

Figure 8 shows how bridge characteristics [fb,〈B〉,var(B)]
change from pure ER random networks to networks with the
above two types of mesoscopic structures, under three different
mean degrees. In the first case [Figs. 8(a)–8(c)], namely
networks with three communities, bridge characteristics do not
change significantly at different mean degrees. Indeed, it is very
unlikely that bridges will form to connect two communities.
The transition from a single ER network into three smaller ER
networks has little influence on the bridge characteristics [see
Figs. 9(a)–9(c)].
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FIG. 8. Bridge structure in networks with a mesoscopic structure. The x axis is λ, the extent to which networks are constructed close to a
specific mesoscopic structure from ER networks. The black (or solid square), red (or empty square) and blue (or solid circle) symbols represent
the bridge fraction, average, and variance of bridgeness, respectively, in different networks. All networks have 30 000 nodes. The error bar
represents standard deviation from five repeated simulations. (a)–(c) Networks with three equal-sized communities. For (a), (b), and (c), they
have mean degree 0.5, 1.2, and 5.0, respectively. (d)–(f) Networks with core-periphery structure. For (d), (e), and (f), they have mean degree
0.5, 1.2, and 5, respectively.

Interestingly, the presence of core-periphery structure has a
big impact on bridges [Figs. 8(d)–8(f)]. When mean degree c =
0.5 (almost all edges in ER networks are bridges), the transition
from ER networks to core-periphery networks increases, 〈B〉
and var(B), while fb decreases only slightly in the end, which
can be viewed as the process of turning edges (or bridges)
in the periphery into edges in the core, and thus the size of
trees increases. Finally, some BCCs are created. When c = 1.2,
the GCC and the BCC just emerge and the transition process
turns more bridges into BCCs, leading to lower fb, 〈B〉, and

var(B). However, when c = 5.0, since there are few bridges in
the very beginning, the process disassembles the BCC in the
periphery and creates more bridges and larger trees (larger
bridgeness). When this process continues, bridges between
peripheral vertices are also transformed into the core, leading
to the final decrease. We can also see the transition of the
adjacency matrix in Figs. 9(d)–9(f). When λ is large [λ = 0.9,
Fig. 9(e)], most of the bridges are between the core and the
periphery (the off-diagonal parts). Larger λ [λ = 1.0, Fig. 9(f)]
leads to fewer bridges in the off-diagonal parts. Note that in
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FIG. 9. Adjacency matrices of networks with mesoscopic struc-
ture. Each point represents an edge here, while the red (or the light
gray) are bridges and the blue (or the dark gray) are not. All networks
have 300 nodes and mean degree c = 3.0. (a)–(c) Networks with three
equivalent communities. From (a), (b), and (c), they have λ = 0.1,
0.9, and 1.0, respectively. (d)–(f) Networks with a core-periphery
structure. From (d), (e), and (f), they have λ = 0.5, 1.2, and 5.0,
respectively.

such a core-periphery structure, not all edges in the periphery
part are bridges. Actually, the definition or detection of the
periphery is much more rigorous and may be different in
various real networks [34], and in this case identifying bridges
can also be a new way to define the periphery of a network.

V. CONCLUSION

In conclusion, we systematically investigate the bridge
structure in complex networks. We demonstrate bridges in
real-world networks, calculate the fraction of bridges in dif-
ferent networks, and define an edge centrality measure, called
bridgeness, to quantify the importance of bridges in damaging
a network. Finally, we analytically calculate bridge structure
in random graphs with prescribed degree distributions. The
presented results help us understand the complex architecture
of real-world networks, and they may shed light on the design
of more robust networks against edge attack.
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APPENDIX A: BRIDGE IDENTIFICATION AND
BRIDGENESS CALCULATION

The algorithm for identifying bridges in a network is based
on depth-first search (DFS), which has linear time complexity
[4]. Randomly choosing a node from the network, we start
DFS and track two indices for each node i: its DFS visited
time stamp (DFS[i]) and the lowest DFS reachable ancestor
(low[i]). DFS[i] is defined as the number of other visited nodes
until the current one in DFS, and low[i] represents the lowest
DFS[j ] of a previously visited node j that can be reached
again by current node i in the later DFS. Note that, for two
successively visited nodes i and j in the DFS, the index low[i]
is updated by min(low[i], low[j ]) after j is visited.

Note that low[i] marks the node’s topological position in the
network. For two nodes i and j in the same biconnected com-
ponent (BCC), low[i] = low[j ]. For nodes in a tree structure,
low[i] = DFS[i], which is different for each node. A bridge
between two nearest-neighboring nodes (i and j ) is identified
whenever the later visited node, say node i, has larger low[i]
than that of the previously visited node j .

To calculate the size (b) of the subgraph that will be cut from
the network due to the removal of a bridge, we can simply use
the current time step (T ), i.e., the number of visited nodes, to
subtract the DFS visited time stamp of the end of the bridge
(which is inside the BCC), and add 1. For instance, in Fig. 10(c),
b = T − DFS[3] + 1 = 6 − 3 + 1 = 4. Naturally each bridge
has two components to be cut from the network, and we define
bridgeness to be the smaller size of the two components. Thus,
to calculate the bridgeness, we need to go through the LCC
again, and B is calculated as min{b,S − b}, where S represents
the size of the whole connected component; see Fig. 10(e).

To summarize, we first conduct DFS in each connected
component of a graph to identify bridges with one of the
separating parts (b) after their removal and get the size of each
connected component. Then we go through the LCC again to
get the bridgeness (B) of each bridge in the LCC.

APPENDIX B: CALCULATION OF sFCC, sGCC, AND sBCC

The generating function formalism allows us to easily
calculate the relative size of FCC, GCC, and BCC. We let
sFCC be the fraction of vertices in the graph that do not belong
to the giant component. Hence we have [22]

sFCC = H0(1) = G0(u). (B1)

Then the relative size of the GCC is given by [22]

sGCC = 1 − sFCC = 1 − G0(u). (B2)
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FIG. 10. Using depth-first search to identify bridges and calculate bridgeness. The labels in nodes and arrows on edges represent the sequence
of DFS, red (or thick) edges are bridges, and for each node its two indices are presented as a coordinate (DFS[i], low[i]). (a) Initial state of
indices. (b) The moment when DFS just finishes visiting all the nodes in the connected component. The size S of this connected component is
given by the current time step T . (c)–(e) Updates of indices when the search goes back. (f) Checking through all nodes in the component, and
let bridgeness be the size of the smaller part separated from that component.

As for the relative size of the BCC, we consider that if a
node is outside the BCC, then its surroundings should have at
most one edge along with a node that is not u [19], hence we
have

sBCC = 1 −
∞∑

k=1

P (k)uk −
∞∑

k=1

kP (k)(1 − u)uk−1

= 1 − G0(u) − (1 − u)G′
0(u). (B3)

Here we propose a method to calculate sBCC, which relies
on the result of sGCC and β. Consider the β-edges, which are

inside the GCC but outside of the BCC. Note that each β-edge
can be assigned to one node that is inside the GCC but outside
the BCC. Hence sBCC can be calculated as

sBCC = sGCC − βc/2 = sGCC − u(1 − u)c, (B4)

where βc/2 = u(1 − u)c represents the fraction of β-edges
normalized by the total number of nodes. Note that the above
two equations are equivalent, because G′

0(u) = cG1(u) = cu.
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