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Universal scaling and nonlinearity of aggregate price impact in financial markets
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How and why stock prices move is a centuries-old question still not answered conclusively. More recently,
attention shifted to higher frequencies, where trades are processed piecewise across different time scales. Here
we reveal that price impact has a universal nonlinear shape for trades aggregated on any intraday scale. Its
shape varies little across instruments, but drastically different master curves are obtained for order-volume and
-sign impact. The scaling is largely determined by the relevant Hurst exponents. We further show that extreme
order-flow imbalance is not associated with large returns. To the contrary, it is observed when the price is pinned to
a particular level. Prices move only when there is sufficient balance in the local order flow. In fact, the probability
that a trade changes the midprice falls to zero with increasing (absolute) order-sign bias along an arc-shaped
curve for all intraday scales. Our findings challenge the widespread assumption of linear aggregate impact. They
imply that market dynamics on all intraday time scales are shaped by correlations and bilateral adaptation in the
flows of liquidity provision and taking.
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I. INTRODUCTION

Markets allow different sources of information to be pro-
cessed and transformed into a single number: the price. Since
these market prices in turn play an important signaling role for
the rest of the economy, the efficiency of the price formation
process is a highly relevant question. Equilibrium models ex-
plain some general features of asset prices in a formally elegant
way without considering the detailed price formation process
[1–3]. There is, however, growing evidence that financial
markets are almost never in equilibrium and that prices reflect
more than fundamental information [4–7]. Instead, the flow of
demand and supply, information and opinions is only slowly
digested, one transaction at a time [8]. Understanding such
dynamics is of great importance for practitioners optimizing
their trading strategies, as well as for exchanges and regulators
interested in improving market efficiency and stability.

In modern electronic markets, participants interact through
a limit order book (LOB) in a continuous double auction. Some
market participants act as liquidity providers by placing limit
orders (buy or sell) in the LOB. Other market participants act as
liquidity takers: They need to execute their trades immediately
and correspondingly trigger transactions by sending market
orders. These market orders tend to impact prices: Statistically,
a buy (sell) market order pushes the price upward (downward).

While the average price impact of single market orders is
relatively well understood, the impact of a series of market
orders is much more complex. For example, a perplexing
empirical result is the square-root volume dependence of the
impact of a metaorder, i.e., a sequence of individual orders
belonging to the same trading decision that cannot be executed
in a single transaction but must instead be fragmented (see,
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e.g., [8,9] and references therein).1 This result is at odds with,
e.g., the classical Kyle model of impact, which predicts a
linear dependence on volume [11]. The empirical analysis of
metaorders is difficult since it requires a proprietary database,
where the trades belonging to a given trading decision can be
identified. When such data are available, the square-root impact
law seems to be universally vindicated, for a wide variety of
markets, epochs, and trading styles.

Most available data sets are, however, anonymized: While
the sign ε and volume v of each market order can be recon-
structed (see Sec. II), the identity of the trader (or of the trading
institution) at the origin of the market order is usually unknown.
One can nevertheless define the aggregate impact RN over N

consecutive trades as the average price return, conditioned to
a certain total volume imbalance QN defined as

QN =
N∑

i=1

qi, qi := εivi, (1)

where qi is the signed volume of the ith trade [see Eq. (2) below
for complete definitions]. Although the impact of a single trade
is well known to be a strongly concave function of its volume,
it is reported that the aggregate impact of N trades becomes
linear in Q as N increases [8,12].

This picture, however, is quite incomplete, as we reveal in
this empirical paper. We show that once correctly rescaled,
and for N � 10, the aggregate impact function exhibits a
nonlinear sigmoidal shape that is approximately independent
of the number of transactions N and of the chosen asset (e.g.,
large-tick stocks, small-tick stocks, and futures).

We also study the aggregate-sign impact, where the con-
ditioning variable is not QN but rather the sign imbalance

1Apparent deviations for very short or long time scales, possibly due
to conditioning or undersampling, are still debated. See, e.g., [10].
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EN = ∑N
i=1 εi . Scaling is again observed in this case, now with

an impact function that reverts to zero at both extremes.
After quantifying the rescaling of the aggregate impact

curves over different time horizons, we investigate why the
price impact for extreme order-sign imbalances reverts towards
zero. We find that the local bias of the order signs and the
probability that an order changes the price compensate each
other to a very high degree. Although possibly anticipated
on general grounds, this effect does not seem to have been
quantitatively reported so far and has very fundamental and
important consequences on the dynamics of markets.

The present paper is mostly about empirical observations.
Nevertheless, we illustrate how the aforementioned vanishing
price-change probability can determine the observed sigmoidal
impact curves in a qualitative toy model. The ability of cur-
rently available models to describe quantitatively the scaling
properties of the nonlinear aggregate impact curves is the topic
of another paper [13].

II. DATA

Our data set contains the highest turnover instruments on
three different platforms: (i) 12 technology stocks on the US
primary NASDAQ market, for the years 2011–2016, which
includes some of the most traded stocks in the world like Apple
(AAPL) and Microsoft; (ii) the 13 highest turnover stocks on
NASDAQ OMX NORDIC (called just OMX in the following),
which covers the Nordic markets Stockholm, Helsinki, and
Copenhagen for October 2011 until the end of September
2015 (OMX is the primary market for the selected stocks);
and (iii) 6 futures on EUREX EBS (BOBL, BUND, DAX,
EUROSTOXX, SCHATZ, and SMI) for October 2014 until
the end of 2015.

We chose to analyze three different platforms in order to
have some variability in terms of market microstructure in the
sample while keeping the complexity of the data preparation
manageable. The instruments were selected for their high
turnover, reasonable concentration on their primary markets,
quality of the data, and availability via the same provider for
the entire period that was analyzed: WOMBAT for NASDAQ,
NOMURA for OMX, and the exchange itself for the EUREX
data.

The NASDAQ stocks are also traded on different US
markets and trades are routed automatically to the best offer.
Nevertheless, we chose to not aggregate several US markets,
because they are frequently desynchronized at the millisecond
scale [14,15], leading to inconsistent aggregate bid and ask
prices, that is, the best visible buy and sell limit orders,
respectively, as reported by the market just before each a
transaction is executed. We found that the microstructural
parameter η ∈ [0,1] appears to be a good measure of the
importance of price discretization.2 Prices on NASDAQ are
discretized with a fixed tick size of 0.01, which can be

2Here η := Nc/2Na , where Nc is the number of subsequent price
movements in the same direction (continuations) and Na the number
of price movements in alternating directions. It measures the effect of
discretization of a diffusion process. In addition, η > 0.5 corresponds
to small-tick instruments and η < 0.5 to large-tick instruments [16].

considered very small (η = 0.73) to medium (η = 0.49) for
the analyzed stocks. Up to roughly one-third of the transactions
were executed against hidden liquidity.

Stocks on OMX are only traded on one of the Nordic
markets at a time and are much less fragmented than US
stocks. Tick sizes vary with price and are effectively larger
(0.24 � η � 0.50) than for NASDAQ. Here hidden liquidity
represents a vanishingly small fraction of all traded volume
and seems to be concentrated on the mid. Finally, the EUREX
futures are not traded on other platforms at all. Tick sizes
vary considerably between moderately large (η = 0.44) and
extremely large (η = 0.03).

In the following, we calculate price returns rt = ln mt+1 −
ln mt from the midprices m defined as the average of the
bid price and the ask price just before each transaction.
We constructed order signs by labeling all trades above the
midprice as ε = +1 and all trades below as ε = −1. Trades
exactly at the midprice were discarded. We decided not to
use the signs provided by the exchanges themselves because
hidden liquidity is not correctly labeled on NASDAQ for a
part of the analyzed period. Nevertheless, we confirmed all
the following results using the exchange-provided signs, with
only very minor quantitative differences. Trade IDs were only
available from EUREX. Therefore, we merged all transactions
based on the timestamps, which were reported with millisecond
precision for all three platforms (see also Sec. A in [17]).

Trading volumes vary considerably over time. To control
for extremely active days, we normalized aggregate transaction
volumes Q = 〈QD〉/QD

∑
i qi by the daily volume QD rela-

tive to its average. This global normalization will be omitted
in the following equations for notational simplicity.

The first 30 min after opening and before closing on each
day are discarded, as well as all days with shortened trading
hours. Obviously irregular entries were discarded too, such as
transactions labeled as irregular by the exchange or provider,
transactions outside the aforementioned hours, or transactions
with nonfinite prices (including bid and ask prices).

III. RESULTS

A. Aggregate impact

As mentioned in the Introduction, we measure the
aggregate-volume impact as

RN (Q) :=
〈

ln mt+N − ln mt

∣∣∣∣∣Q =
N−1∑
i=0

qt+i

〉
, (2)

where mt is the midprice immediately before the t th transac-
tion, qt is the signed volume of the t th transaction, and 〈· · · 〉
denotes an empirical average over all time windows containing
N successive trades, executed the same day. In addition,R1(Q)
corresponds to the average impact of a single market order of
signed volume Q as studied in, e.g., [8,18].

As expected, both the width and height of the function
RN (Q) increase with N . However, if one rescales the Q axis
with an N -dependent volume scale QN and the R axis with an
N -dependent return scale RN , all curves for N � 10 collapse
to a single master curve, as shown in Fig. 1 for AAPL and in
Sec. B in [17] for a variety of other assets. More precisely, one
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FIG. 1. AAPL on NASDAQ in 2016. (a) Rescaled expected return RN (Q/Nξ )/Nψ conditioned on the volume imbalance Q for different
bin sizes N in arbitrary units [see Eq. (2) ff]. The x- and y-axis rescaling exponents are ξ = 0.84 and ψ = 0.53. (b) Rescaled mean return
RN (E/Nψ )/Nψ conditioned on the sign imbalance E [see Eq. (9)]. Here ξε = 0.69 and ψε = 0.48. (c) and (d) Corresponding complementary
cumulative distributions. The positive and negative halves were calculated independently and then binned to smooth out noise and discretization
steps for small N . The largest shown N corresponds to the shortest day in the sample.

finds that, empirically,

RN (Q) ≈ RNF

( Q
QN

)
, (3)

where QN and RN both obey power-law scaling with N ,

QN ≈ Q1N
ξ, (4)

RN ≈ R1N
ψ, (5)

and the scaling function F (x) is a sigmoidal function
parametrized as

F (x) = x

(1 + |x|α)β/α
, (6)

where α and β are fitting parameters that describe the shape of
F (x). Note that for x → 0, the leading behavior is

F (x) = x − β

α
sgn(x)|x|1+α + · · · , (7)

i.e., a linear behavior with possibly nonanalytic corrections.
For x → ∞, on the other hand, one has

F (x) = sgn(x)|x|1−β + · · · . (8)

Hence β = 1 corresponds to saturation for large volumes, β <

1 to continued growth, and β > 1 to reversal towards lower
impacts.

In order to determine the rescaling exponents ξ and ψ , the
shape of RN (Q) is fitted for each N using the scaling form (3)

with F (x) given by Eq. (6), keeping the same values of α and β

for all N .3 We obtained α = 1.2 ± 0.6 and β = 1.3 ± 0.7 for
the mean and standard deviation of the fitted RN (Q) across all
instruments in the sample. The corresponding scaling function
for AAPL is shown as a dashed line in Fig. 1.4

Once F (x) is fixed, one can map out the scale factors QN

and RN as a function of N , which are described very accurately
by power laws of N as shown in Fig. 2(a).5 The final rescaled
impact functions are shown in Sec. B in [17] for other stocks
and futures. All scaling curves look remarkably similar, as
indicated by the similar values of α and β in all cases. Any
theoretical approach will have to explain the value not only of
the exponents ξ and ψ , but also of the full master curve F (x).

3Technically, this was achieved by alternating between fitting either
the scales or the shape parameters and using nonlinear regression.
Only 80% of all N were randomly included in each pass.

4Some instruments exhibit a slight reversal of the aggregate-volume
impact R(Q) for very large arguments. These are sometimes fitted
with quite large β, but the fitted curve only strongly reverts outside
of the observed range of Q. This is in very different from R(E)
discussed below, which strongly reverts close to zero impact within
the frequently observed range of sign imbalances E .

5This was done using robust regression. We also tried to fit the
power-law rescaling without using parametric curves as an in-between
step, but failed to achieve the same level of reliability across instru-
ments and time periods.
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FIG. 2. AAPL in 2016. (a) Volume scales QN for the impact
curves [see Eq. (3)] that were fitted to each bin size for the same data
shown in Fig. 1(a). The solid line shows the power-law fit used for the
rescaling along the volume-imbalance axis. (b) Same analysis as in (a)
but for the return scale RN , i.e., the scaling of the impact curve along
the return axis. Note that the previous fitting of the impact curves,
yielding QN and RN for each N , did not impose any assumptions
on their scaling. Relative fitting errors are below 1%, but variability
across instruments and periods is much larger (discussed below).

Together with the rescaled aggregate-volume impact, Fig. 1
shows the corresponding cumulative distribution of volume,
rescaled by QN . Events far in the saturation regime occur with
probability ∼10−2 on a daily basis. This must be compared
with the typical number of trades per day, which is of the
order of 104 for AAPL. For example, there about 100 events
per day at the end of a bin of size N = 100 and within the
saturation regime. Events contributing to the saturation regime
are relatively frequent and the effect is therefore not anecdotal.

Figure 1(b) shows the rescaled aggregate-sign impact,
defined as

RN (E) :=
〈

ln mt+N − ln mt

∣∣∣∣E =
N−1∑
i=0

εt+i

〉
. (9)

Here the impact for small sign imbalances is more linear than
for the volume imbalance, corresponding to a larger value of

the effective parameter α. Around a sign imbalance of 50%,
the impact saturates sharply and reverts towards zero at the
extremes. This may come as a surprise since it means that a
very strong imbalance in the order signs is associated with a
very small price change on average. This effect is found for
all instruments and also for the trade imbalance, as shown in
Sec. B in [17]. The reason for this highly peculiar behavior
is investigated below. First, however, we have a closer look at
the scaling exponents ξ and ψ (and their counterpart for the
aggregate-sign impact ξε and ψε).

B. Scaling and Hurst exponents

Figure 3 shows the means and standard deviations for
several scaling exponents. The scaling exponent of the width
QN of the aggregate-volume impact is found close to ξ ≈ 0.75,
while the exponent governing the height RN is ψ ≈ 0.5. In
other words, the width of the impact curve grows faster than
its height when the bin size is increased. Very similar values
are found for the aggregate-sign impacts (exponents ξε and
ψε). Note that using Eqs. (3) and (6), the slope of the linear
region of impact follows as ∂RN (Q)/∂Q|Q=0 = RN/QN . It
scales as N−κ with κ = ξ − ψ ≈ 0.25, i.e., it decreases with
N as a power law N .6

Since both RN and QN are sums over random variables
(returns and signed volumes), one expects that their natural
scaling with N is governed by the Hurst exponents of the
underlying variables r and q. Here we define the Hurst
exponent H of a zero-mean random variable x from the scaling
of the standard deviation of sums of N successive events〈(

N∑
i=1

xi

)2 〉
:= DN2Hx , (10)

where D is a constant and we take advantage of the fact that
returns and signed volumes have a zero average over long time

6The cross-instrument dispersion of κ around its average 〈κ〉 = 0.23
is actually relatively small: s(κ) = 0.10, where s denotes the standard
deviation.
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FIG. 3. (a) Analysis of the distributions of several scaling exponents. Plotted symbols denote the means and vertical lines the standard
deviations. Both were calculated over instruments, for each of which the exponents were calculated for all 1-yr periods before averaging. Blue
circles correspond to the scaling of a variable that a price impact is typically conditioned on, i.e., the width of an impact curve along the x axis.
Green triangles correspond to the scaling of a variable measuring price changes, i.e., the height along the y axis. The variables, from left to
right, are volume imbalance and corresponding return rescaling ξ and ψ , respectively, sign imbalance and corresponding return rescaling ξε

and ψε , respectively, and Hurst exponents of the volume imbalance Hq , returns Hr , order signs Hε , and return signs H± [see Eq. (10)]. (b) Cross
correlation calculated over all instruments for the same variables. Only correlations differing from zero by more than three standard deviations
are shown in solid colors.
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percentile for the day. The buy volumes q+ for each trade are drawn as bars above the order book reconstruction and the sell volumes q− below.
The volume axis is logarithmically scaled. A lower bound for the true number of trades is shown because transactions with the same sign and
timestamp were merged (see Sec. II). Therefore, a series of 100 successive market buys drawn above took at least 100 ms in wall time and may
have consisted of more than 100 independent market orders submitted to the market. The lower solid curve denotes the 50 trade sign imbalance
(causal).

horizons.7 As usual, H = 0.5 corresponds to regular diffusion,
H < 0.5 to sudiffusion, and H > 0.5 to superdiffusion.

Returns are almost diffusive with a very slight tendency for
mean reversion (particularly for large-tick instruments). This
is consistent with ψ and ψε . Volume signs are only slightly
positively correlated, at least when measured through Hq .
Order signs are (as is well known) strongly correlated with
Hε > 0.7, close to the values of ξ and ξε . This implies that the
scales of the aggregate impact curves are mostly determined
by the accumulated variation in the return and sign time series.
Interestingly, the scaling of the impact curves is not trivially
related to the Hurst exponent of volume fluctuations, but rather
to sign fluctuations. This is expected from the fact that the
volume of individual orders exhibits extreme variability that
mostly reflects the available liquidity at the best price [19–21].
Large fluctuations of order volumes v introduce an independent
source of noise that masks part of the order-sign correlations
when measuring Hq in the way described above (see [22] for
a related discussion).

Figure 3(b) shows the significant cross correlations
across instruments between the different scaling

7This method turned out to be more robust than the standard rescaled
range analysis. The reason is that returns and volumes follow very
heavy-tailed distributions, to which the range is much more sensitive
than the sum. It is also simpler than detrended fluctuation analysis,
which did not seem to be beneficial in this particular use case.

exponents.8 We find positive correlations between ξ and
Hq as well as between ψ and Hr , offering some reassurance
that the similar average values in Fig. 3(a) are more than a pure
coincidence. We also find positive correlations between ξε and
Hε . However, there are no significant correlations between
ψε and Hr or between Hε and Hq . This hints at a quite
complex interplay of several factors driving the variability in
the different scaling behaviors across instruments. Here Hε

is negatively correlated with Hr , which implies more order
splitting on more mean-reverting, larger-tick instruments.
Remember, though, that Hr only varies very little across
instruments [Fig. 3(a)].9,10

8Note that the square of the cross correlation can also be interpreted
as the coefficient of determination R2 of a linear regression with
intercept.

9We found consistent results measuring order-sign autocorrelations
directly (not shown). The latter decay with an exponent γ ≈ 0.5
for long lags. They often exhibit a steeper initial decay, however.
Correlations for γ and other exponents are similar to Hε , but are
generally weaker even though γ varies more across assets.

10We also found that the “implied spread” η (see [16] and footnote
2) seems to be informative (not shown). It varies considerably across
instruments (see Sec. II) and is strongly correlated with several
exponents. It shares these correlations with the return-sign Hurst
exponent. This finding seems to be related to the co-occurrence of
larger H± and a larger fraction of trend continuations Nc.
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C. Large order imbalances and pinned prices

As stated before, extreme order-sign imbalance is not asso-
ciated with large returns. To the contrary, such large imbalances
are observed when the price is pinned to a particular level. A
typical example is shown in Fig. 4. Around trade 9100, a series
of more than 100 market sell orders arrives, yet the midprice
only bounces up and down half a tick as liquidity providers
replenish limit buy orders at the best price or inside of the
spread (the distance between the best bid and the ask price).
Many of these trades are quite small, but some are significantly
larger as liquidity takers adapt to the available volume at the
best.

Figure 4 shows that the midprice only diffuses freely when
trades happen on both sides of the book. A more general and
systematic quantification of this effect is shown in Fig. 5(a):
the probability of a midprice change between two subsequent
trades as a function of the average order sign in the bin,
ε̄ := E/N . One of the central results of this paper is that biased
order signs lead to a lower probability for price changes on any
intraday time scale. Note in particular that the price-change
probability has an almost invariant triangular shape for all bin
sizes of N � 50. It approaches zero for highly biased order
signs. The qualitative behavior is the same for smaller N ,
although the curve is broader and smoother and has a flatter

maximum around ε̄ = 0. This behavior is universal across
all instruments (see Sec. C in [17] for more examples). The
corresponding cumulative distribution is shown in Fig. 5(b),
confirming that strong order-sign imbalances happen relatively
frequently on a daily basis. The nonintuitive negative correla-
tion between sign imbalance and return is therefore not an
artifact due to a lack of data.

To understand how the conditional probability for price
changes can explain the sigmoidal price impact shown in
Fig. 1(b), let us consider a simple toy model. As a carica-
ture of Fig. 5(a), assume that pr := P (r 	= 0 | ε̄) ∝ 1 − |ε̄|.
Furthermore, let ρ := 〈r | r 	= 0〉 ∝ ε. That is, assume prices
moved in constant steps in the direction of the last order sign.
Then the average price impact for a trade in the bin follows
as 〈r | ε̄〉 = ρ pr ∝ ε̄ (1 − |ε̄|), which is a sigmoidal curve
quite similar to the empirical observations. A stylized N -trade
impact RN (E) may be obtained, e.g., by rescaling according
to the Hurst exponents Hr and Hε as discussed above.

IV. DISCUSSION

We investigated how prices are impacted by the flow of
market orders and found a universal behavior on all intraday
time scales. We have shown that the impact curves, once
correctly rescaled, are remarkably stable across time scales
(from bins of N = 10 trades up to an entire day of trading,
beyond which overnight effects would have to be taken into a
account) and instruments (e.g., large- and small-tick US stocks,
Nordic stocks, and EUREX futures). This illustrates how mea-
suring master curves instead of either scaling laws for scalar
quantities or conditional expectation curves on individual time
scales can substantially improve the insights gained into market
dynamics. To fully appreciate the master curves’ robustness,
we encourage the reader to read the Supplemental Material
[17]. Our results suggest that the price formation process
in financial markets is the result of some general universal
mechanism. While the latter is still to be elicited, our findings
do provide some hints.

We find that the aggregate-volume impact saturates for large
(rescaled) imbalances, on all time scales. The behavior of the
aggregate-sign impact is even more striking: Highly biased
order flows are associated with very small price changes. More
precisely, we find that the probability for an order to change the
price decreases with the local imbalance and vanishes when the
order signs are locally strongly biased in one direction. At high
frequencies, extreme order-sign imbalances occur when a very
large volume is available on the opposite side of the order book,
resulting in prices being temporarily pinned to a certain level.
These large volumes manifest themselves either as visible large
limit orders or as repeated refills near a particular price level.

Qualitatively, this dependence of the price-change proba-
bilities on average order signs is consistent with models and
empirical results in the literature. For example, the Madhavan-
Richardson-Roomans model [23] postulates that the change of
price is proportional to the sign surprise, i.e., the difference
between the sign ε of a market order and its expected value,
based on previous signs. When it is extremely likely that the
next trade is a buy and a buy trade indeed materializes, then the
price change is small. Empirically, many studies have reported
that returns in the direction of a particular trade-sign predictor
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are on average lower than those in the opposite direction (see,
e.g., [24–26]). This effect is attributed to liquidity takers ad-
justing their market-order volume at the outstanding liquidity,
while liquidity providers revise their limit orders and refill
to match the incoming order bias. Our results show that the
nonlinearity of the aggregate price impact is a consequence of
this previously hypothesized bilateral order-flow adaptation.
The latter is measured directly by the probability of price
changes as a function of the local sign imbalance, which is (for
large enough N ) a tent-shaped function: It has a discontinuous
slope for zero imbalance and vanishes for strong imbalances.
This observation is consistent with [12], where a similar shape
was reported for the standard deviation of price changes in
15-min windows for US stocks traded in 1994–1995, i.e.,
before electronic markets and high-frequency algorithms.

Taken together, our findings suggest that markets generally
operate in a state where traders collectively counterbalance
the impact of predictable events to a very high degree and
on all intraday time scales. Since market-order volumes are
known to be highly conditioned on visible liquidity (see, e.g.,
[21]), the dependence of market-order signs on repeated refills
(as shown in Fig. 4) should not come as a surprise: These
observations simply confirm that liquidity takers pay attention
to the currently available liquidity. Reciprocally, liquidity
providers observe the flow of market orders and adapt their
behavior to the well-known long-range correlations of order
signs (see [22] for a related discussion).

In this scenario, price fluctuations mostly reflect the lack
of predictability, or surprise, of an event. Dynamics of this
type have previously been shown to be capable of generating

clustered volatility and extreme price jumps in stylized mul-
tiagent systems [27] and in highly adaptive control systems
in [28]. Therefore, the present work provides a first step
towards more directly testable models along these lines and
suggests that the classical notion of market efficiency [29]
should be extended to include endogenous information on top
of exogeneous news.

In another paper [13], we will investigate in detail how
accurately the nonlinear master curves and rescaling exponents
described above can be reproduced using propagator models
[30] and their generalizations [31,32]. Our results provide
important constraints for such models and for realistic market
models in general, since they quantify how the market reacts
to both order bias and price-change probability on all intraday
time scales. Naturally, such improved impact models are of in-
terest both for practitioners trying to reduce their trading costs
and for regulators trying to understand the stability of markets.
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