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Solitons as candidates for energy carriers in Fermi-Pasta-Ulam lattices
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Currently, effective phonons (renormalized or interacting phonons) rather than solitary waves (for short,
solitons) are regarded as the energy carriers in nonlinear lattices. In this work, by using the approximate soliton
solutions of the corresponding equations of motion and adopting the Boltzmann distribution for these solitons,
the average velocities of solitons are obtained and are compared with the sound velocities of energy transfer.
Excellent agreements with the numerical results and the predictions of other existing theories are shown in both
the symmetric Fermi-Pasta-Ulam-β lattices and the asymmetric Fermi-Pasta-Ulam-αβ lattices. These clearly
indicate that solitons are suitable candidates for energy carriers in Fermi-Pasta-Ulam lattices. In addition, the
root-mean-square velocity of solitons can be obtained from the effective phonons theory.
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I. INTRODUCTION

With the development of modern nanotechnology, energy
transfer in low dimensional systems has attracted intense
interest from fundamental research as well as applied research
[1–8]. One of the most intriguing phenomena is the anomalous
energy transport in momentum-conserving lattices, which is
the divergence of the thermal conductivity with the increasing
lengths of lattices [6–27]. This has been experimentally ver-
ified in one dimensional (1D) carbon nanotubes [28,29] and
two dimensional (2D) graphenes [30].

Energy carriers in a linear (harmonic) lattice are phonons.
The anomalous energy transport in it is attributed to the
noninteraction of phonons. When nonlinear effects take place,
the anomalous energy transport in 1D momentum-conserving
lattices is mainly attributed to the Lévy walk of energy carriers
on the microscopic level [31–39]. On the mesoscopic level,
the theory of nonlinear fluctuating hydrodynamics (NFH) is
a powerful tool to study the anomalous energy transport in
1D momentum-conserving lattices [40–44]. However, energy
carriers in nonlinear lattices have not been identified explicitly
so far. Because nonlinearity can cause interactions between
phonons, the noninteraction of phonons are not anymore the
reason for the anomalous energy transport in low dimensional
nonlinear momentum-conserving lattices. Other than phonons,
breathers can also be excited in nonlinear lattices [45]. How-
ever, breather excitations in classical discrete lattices should be
localized [45–47]. Breathers can thus only influence the energy
transport by scattering the energy carriers [48–52].

Although the noninteracting phonons and breathers can
be excluded from candidates for energy carriers in nonlinear
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lattices, there is still a debate about whether the energy carriers
are solitary waves [22,53–59] (for simplicity, we refer them as
solitons in this work) or effective phonons [60–64]. Solitons
are localized waves that propagate over long distances almost
without deformation even after collisions with phonons or
solitons [65]. They can be expressed as the combinations of
linear waves [66–69]. More than 50 years ago, by reducing the
Fermi-Pasta-Ulam (FPU) problem [70] to the Korteweg–de
Vries (KdV) equation based on the long-wavelength approx-
imation, Zabusky and Kruskal coined the name “soliton”
and numerically discovered that the initial cosine wave can
break up into nine solitons with different speeds [71]. This
phenomenon of multisoliton fission has been experimentally
proved in shallow water recently [72]. Remarkably, the solitons
have also been extracted from the measured data of the shallow
water ocean surface waves [73]. Besides in the continuous
nonlinear systems, the existence of solitons in FPU lattices
has been proved [74–78]. A series of numerical works have di-
rectly observed solitons in FPU lattices [69,79–86]. Therefore,
solitons were naturally supposed to be the energy carriers in the
nonlinear momentum-conserving lattices [22,53–59]. It is also
noteworthy that the first experiment of the nanoscale thermal
rectification was also speculated as the result of asymmetric
transport of solitons [87].

However, by comparing the numerical results of the sound
velocities of energy transfer with the predictions by solitons
theory and effective phonons theory (EPT), it is obtained that
energy carriers in the FPU-β lattices are effective phonons
(which are regarded as the interacting phonons) but solitons
are “ruled out” [60]. Since then, effective phonons [61–64] are
regarded as the energy carriers in nonlinear lattices.

It is noticed that the numerical results of sound velocities
were compared only with the velocity of one specific soliton
in Ref. [60]. However, at a thermal equilibrium state or a
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nonequilibrium steady state, there should exist a statistical
distribution of solitons with different velocities rather than
one soliton with a specific velocity. Therefore, the role of the
solitons in nonlinear momentum-conserving lattices should be
further investigated. In addition, EPT cannot predict accurately
the sound velocities in nonlinear lattices with asymmetric in-
terparticle interactions (including FPU-αβ lattices) [24,63,64],
where strong finite-size effects make the thermal conductivity
saturate to a finite value for a wide range of lattice lengths.
Nevertheless, it will be divergent in the thermodynamic limit
[23–27]. Even the optimal effective phonon theory based on
variational approach (vEPT) cannot predict the accurate sound
velocities in lattices with very strong asymmetric interparticle
interactions either [64]. Therefore, energy carriers in FPU
lattices should be revisited.

Same as in Refs. [56,60], we compare our results with the
sound velocities of energy transfer to study the energy carriers
in this work. We approximately obtain the soliton solutions of
the equations of motion of FPU lattices by using weak formula-
tion [88]. Adopting further the Boltzmann distribution for these
solitons, the average velocities of solitons are obtained. The
relation with the EPT is also provided. According to the EPT,
by projecting the dynamics of the FPU lattices onto a soliton,
the root-mean-square velocity of solitons can be obtained. For
comparison, we also numerically compute the sound velocities
in FPU lattices. The equations of motion are integrated by
using implicit midpoint algorithm [89] with periodic boundary
conditions. Sound velocity can be obtained by calculating the
ratio of the lowest peak frequency of the power spectrum to
the corresponding harmonic phonon frequency [24,64]. In the
FPU-β lattices, the average velocities of solitons agree well
with the predictions of EPT. The numerical results agree well
also with the predictions of EPT. This confirms the validity of
the numerical program. For FPU-αβ lattices, EPT, even vEPT,
cannot predict the sound velocities accurately. However, the
average velocities of solitons agree well with the predictions of
NFH as well as the numerical results. Therefore, we conclude
that solitons are suitable candidates for energy carriers in FPU
lattices.

The rest of the paper is organized as follows. In Sec. II A,
the model of the studied nonlinear lattices is presented. The
approximate soliton solutions of the equations of motion are
obtained in Sec. II B. How to calculate the average velocity of
solitons and its relation with the EPT are presented in Sec. II C.
The results are presented in Sec. III. Finally, the conclusion and
the discussion are presented in Sec. IV.

II. MODEL AND METHODS

A. Model

The dimensionless Hamiltonian of the 1D momentum-
conserving lattice is

H =
∑

j

[
u̇2

j

2
+ V (uj − uj−1)

]
, (1)

where uj is the displacement of the j th particle from its
equilibrium position and the dot denotes the time derivative.

The corresponding equation of motion can be expressed as

üj = V ′(uj+1 − uj ) − V ′(uj − uj−1), (2)

where the prime denotes the derivative of the function with
respect to its argument. It can be reexpressed as

φ̈j = V ′(φj+1) − 2V ′(φj ) + V ′(φj−1), (3)

where φj = uj − uj−1 denotes the relative displacement be-
tween the adjacent particles.

The potential of the FPU lattice can be expressed as

V (φj ) = 1

2
φ2

j + α

3
φ3

j + β

4
φ4

j . (4)

The lattice is respectively called FPU-β lattice or FPU-α
lattice for α = 0 or β = 0. Otherwise, it is called FPU-αβ

lattice. In this work, we choose β = 1 and 0 � α � 2 as in
Refs. [24,64]. Same results can be obtained for α < 0. To
compare with the results of Ref. [60], the nonlinear lattices
with

V (φj ) = |φ|k
k

, k = 3, 4, or 5, (5)

are also studied in Sec. III B.

B. Approximate soliton solutions

The equation of motion (3) permits the bell-shaped soli-
ton solutions for φj (corresponding to the kink-shaped
soliton solutions for uj ) [69,79–86]. Soliton is a traveling wave
solution and can be expressed formally as

φj (t) = φ(j − ct) ≡ φ(z), (6)

where c is its velocity. Substituting it into Eq. (3), a differential-
difference equation can be obtained as

c2φ′′(z) = V ′[φ(z + 1)] − 2V ′[φ(z)] + V ′[φ(z − 1)]. (7)

It can be approximately solved to obtain the soliton solutions
by using the weak formulation [88].

One should recall that the equation of motion of the FPU-
β lattices and the FPU-α lattices will result in the modified
KdV equation and the KdV equation in the long-wavelength
approximations [90]. The corresponding soliton solutions are
sech-shaped and sech-squared-shaped, respectively. We thus
express the ansatz soliton solution as a sech-shaped function

φ(z) = A sech(qz), (8)

where A and q can be determined from the following weak
formulation Eq. (9). The half-height width of the soliton is
W = 2 cosh−1(2)/q, where q can be treated as its wave vector
[85] and λ = 2π/q is the corresponding wavelength. The
amplitude A < 0 corresponds to the compressional soliton and
A > 0 to the rarefaction (dilatational) soliton. Wave vectors
±q correspond to the same soliton. We have also checked
the sech-squared-shaped solitons with φ(z) = A sech2(qz); the
results (not shown here) are the same except for the effective
widths of solitons (defined below).

Multiplying Eq. (7) by a trial function ψ(z) and integrating
it over the whole real axis, the weak formulation is obtained.
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It can be transformed into

c2
∫ ∞

−∞
ψ ′′(z)φ(z)dz

=
∫ ∞

−∞
[ψ(z + 1) − 2ψ(z) + ψ(z − 1)]V ′[φ(z)]dz (9)

by integrating by parts on the left-hand side and changing
the variable of integration on the right-hand side, as well as
assuming that ψ , φ, and their derivatives behave reasonably as
|z| → ∞.

As in Ref. [88], we choose ψ(z) = z2 and z4 in Eq. (9).
Substituting the ansatz solution Eq. (8) into Eq. (9), it is
obtained that

A± = −2α ±
√

4α2 + 2(c2 − 1)π2

π
(10)

and

q± =
√

2

πc2
[6π (c2 − 1) + α(π2 − 12)A±], (11)

where the subscripts “+” and “−” correspond to the plus
and minus signs in Eq. (10), respectively. When α = 0, the
amplitude obtained from Eq. (10) coincides with the results in
Refs. [55,60]. Once the soliton solution is obtained, its total
kinetic energy can be calculated according to Ref. [55] as

Ek = c2
∫ ∞

−∞

φ2(z)

2
dz = A2c2

q
. (12)

C. Average velocity of solitons

To calculate the average velocity of solitons, the statistical
distribution of solitons has to be determined in advance.
Although the statistical mechanics of some nonlinear inte-
grable (soliton-bearing) systems have already been developed
[91–93], the statistical distribution of solitons in nonlinear non-
integrable lattices has not yet been reported to our knowledge.
In this work, the Boltzmann distribution is used for solitons
of the FPU lattices in which the existence of solitons has been
proved [74–78]. Same as the other kind of nonlinear excitations
which are referred to as discrete breathers (intrinsic localized
modes) [94,95], solitons in FPU lattices can be also regarded as
a dilute gas of nonlinear defects. There thus exist an activation
energy ε with respect to the number of solitons. The number
of solitons is accordingly assumed to be

f (ε) = N0 exp

[
− ε

kBT

]
, (13)

where N0 is a constant relevant to the length of lattice, kB is
the Boltzmann constant, and T is the temperature.

To determine the activation energy ε, we briefly recall the
effective phonons theory first. By using the Zwanzig-Mori
projection formalism [95–97], the dynamics of the nonlinear
lattice Eq. (1) in thermal equilibrium can be projected onto one
of its harmonic normal modes. The corresponding renormal-
ized frequency can be given by

	2
l =

〈
Q̇2

l

〉
〈
Q2

l

〉 =
〈

1
2Q̇2

l

〉
〈

1
2ω2

l Q
2
l

〉ω2
l = 〈Kl〉

〈Ul〉ω2
l , (14)

where ωl , Ql , Kl , and Ul are respectively the normal-mode
frequency, the amplitude, the kinetic energy, and the harmonic
potential energy of the lth normal mode. 〈·〉 denotes the
ensemble average with respect to the single site probability
density [42,64]

ρs(vj ,φj ) = 1

Z
exp

{
− 1

kBT

[v2
j

2
+ V (φj ) + Pφj

]}
, (15)

where Z is the corresponding partition function, P is the
pressure, and vj = u̇j and φj = uj − uj−1 are the single site
variables. Based on the effective phonons theory [60,64], the
sound velocity can be expressed as

cs =
√

〈Kl〉
〈Ul〉 . (16)

We regard the solitons as the nonlinear eigenmodes of
the nonlinear lattices and thus project the dynamics onto one
soliton. By substituting the kinetic energy [Eq. (12)] and the
harmonic potential energy of the soliton

∫ ∞
−∞ φ2(z)dz/2 into

Eq. (16), the sound velocity can be expressed as

cs =
√

〈Ek〉
〈∫ ∞

−∞ φ2(z)dz/2〉 =
√

〈Ek〉
〈Ek/c2〉 ≈

√
〈c2〉. (17)

This is just the root-mean-square velocity of solitons.
In Eq. (17), cs can be regarded as depending only on the

kinetic energy of solitons; we thus suppose that the ensemble
average can be taken with respect to

ρv = 1√
2πkBT

exp
[

− v2
j

2kBT

]
, (18)

where v2
j /2 is the kinetic energy of a single site. Comparing

Eq. (13) with Eq. (18), the activation energy ε can be chosen
as the kinetic energy of a single site. For a soliton, ε should be
expressed as the average kinetic energy per site of it,

ε = Ek

We

= Ek

2ηW
, (19)

where We is the effective width of the soliton and η is a fitting
parameter to determine We. As shown in the following, We is
independent on η and can be chosen as the wavelength λ of
the soliton for FPU-β lattice. This can be attributed to the fact
that the ansatz solution Eq. (8) approaches the exact soliton
solution for FPU-β lattice, because the FPU-β lattice will
result in the modified KdV equation in the long-wavelength
approximations [90]. The soliton solution of the modified KdV
equation is sech shaped. This coincides with our ansatz solution
Eq. (8). We expect that the effective width of a soliton We is
just its wavelength λ when the soliton solution is exact.

Considering the potential degeneracy between the rarefac-
tion solitons and the compressional solitons, the average
velocity of solitons can thus be expressed by neglecting the
interactions between them as

cs =
∫ ∞

0 [(1 − ξ )cr + ξcc] exp
( − ε

kBT

)
dε∫ ∞

0 exp
( − ε

kBT

)
dε

, (20)

where cr and cc are respectively the velocities of rarefac-
tion and compressional solitons corresponding to the same
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FIG. 1. Sound velocity cs as the function of temperature T for the
1D FPU-β lattice. The solid line corresponds to the average velocities
of solitons and the dashed line corresponds to the predictions of EPT.
The symbols correspond to the numerical results.

ε and ξ is the excitation probability of a compressional
soliton.

III. RESULTS

A. FPU-β lattice

From Eq. (10), the amplitudes of the rarefaction solitons and
the compressional solitons in the FPU-β lattices are obtained
as A+ = −A− =

√
2(c2 − 1). This can be attributed to the

symmetry of the FPU-β potential. According to Eq. (12), the
velocities of these degenerate solitons (two kinds of solitons
correspond to the same ε) are equal to each other. We thus
expect that these two kinds of solitons can be excited with the
equal probability ξ = 1/2. However, one should notice that cs

is actually independent on ξ when cr = cc [see Eq. (20)] and
thus the following results of FPU-β lattices are independent
on ξ .

The average velocities of solitons can be obtained according
to Eq. (20). The results are depicted in Fig. 1 as a function of
the temperature T . The effective width is We = λ. It should
be emphasized here that the results are fitting-parameter-free
when considering the aforementioned independence of cs

on ξ . Comparing with the predictions of EPT, an excellent
agreement is obtained. Because EPT has accurately predicted
the sound velocities of FPU-β lattices [60], this agreement
clearly indicates that solitons are indeed candidates for energy
carriers in FPU-β lattices. In Fig. 1, the numerical results are
also depicted as symbols and thus confirm the validity of our
numerical program.

We should mention here that our results are negligibly
lower than the predictions of EPT at high temperature (the
relative discrepancy is less than 0.9% at T = 100). This can
be attributed to that the sech-shaped soliton is not completely
accurate at high temperature where the long-wavelength ap-
proximations are not suitable anymore [69,76]. However, if
we choose η = 1.2358 corresponding to We ≈ 6.51/q rather
than We = λ = 2π/q, the discrepancies are almost removed at
high temperatures. At low temperature region, ε and cs are not
very sensitively dependent on the width of the soliton because
the soliton is very wide and its total kinetic energy is very low.
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FIG. 2. Sound velocity cs as the function of temperature T for the
1D nonlinear lattices with V (φj ) = |φj |k/k, where k = 3, 4, and 5.
The symbols correspond to the predictions of EPT and the lines are
the average velocities of solitons.

B. Nonlinear lattice with V (φ j ) = |φ j |k/k

For comparison, we also study the sound velocity in the non-
linear lattices whose nearest-neighbor interaction potentials
are V (φj ) = |φj |k/k with k � 3. Solitons can be excited in
these nonlinear lattices [74]. It should be emphasized here that
the amplitudes of solitons, A’s, are always positive when the
potentials are V (φj ) = φk

j /k with the odd k’s. This indicates
that the rarefaction solitons are permitted only in the nonlinear
lattices with the asymmetric cubic and quintic interaction
potentials. When the potential is symmetric [e.g., V (φj ) =
|φj |k/k], compressional solitons are also permitted with the
same probability. Therefore, the average velocities of solitons
can be calculated by using Eq. (20) with ξ = 1/2 also. The
results are shown in Fig. 2 with the fitting parameter η equal to
1.5695 and 1.0765 for k = 3 and 5, respectively. Same as the
FPU-β lattices, the results for k = 4 are also fitting-parameter-
free with We = λ. In Fig. 2, the predictions of EPT are plotted
as symbols for clarity. The excellent agreements between them
and our results are obtained. This indicates that solitons are
candidates for energy carriers in the nonlinear lattices with
V (φj ) = |φj |k/k.

C. FPU-αβ lattice

To further confirm that solitons are candidates for energy
carriers in FPU lattices, average velocities of solitons in FPU-
αβ lattices are calculated. Because of the asymmetry of the
potential, velocities of two degenerate solitons are not the same
anymore. All rarefaction solitons are supersonic with c > 1 the
same as in the FPU-β lattices. But compressional solitons with
their amplitudes −4α/π < A < 0 are subsonic solitons with
c < 1.

We should mention here that there exist two specific ε,
ε1 and ε2, with ε1 < ε2. Here ε1 corresponds to A+ = A− =
−2α/π and ε2 to q− = 0. In the region 0 < ε < ε1, A+ is a
double-valued function of ε. One corresponds to a rarefaction
soliton with A+ > 0 and the other to a compressional soliton
with A+ < 0. In the region ε1 < ε < ε2, A− is the amplitude
of a compressional soliton. However, in these two energy
regions, the wave vector q of the compressional soliton is
purely imaginary. Thus the ansatz solution Eq. (8) transforms to
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FIG. 3. Sound velocity cs as the function of α for the 1D FPU-αβ

lattices at T = 0.5. The solid line corresponds to the average velocities
of solitons. The dashed line corresponds to the predictions of NFH and
the dashed-dotted line corresponds to the predictions of vEPT. The
symbols correspond to the numerical results. The fitted excitation
probabilities ξ are plotted in the inset as the solid line. It coincides
with the function 0.5–0.0415α when α < 1.5.

a singular periodic solution A sec(|q|z). The singular periodic
solution does indeed exist for the KdV equation [98]. It leads
to a positive eigenvalue of the associated linear spectrum prob-
lem, while solitons lead to negative eigenvalues in the inverse
scattering method for solving the KdV equation. Therefore,
the singular periodic solution is often coined as (zeroth-order)
“positon” [99,100]. However, potentially because of lack of
direct physical interpretation, the singular solution is mainly
interested in mathematically oriented studies.

In this work, we attribute this singular periodic solution
to the fact that the ansatz solution Eq. (8) is not accurate for
FPU-αβ lattices because q becomes real in the aforementioned
two energy regions when we choose ψ(z) = z6 in the weak
formulation Eq. (9), which should be satisfied by the exact
soliton solution for any reasonable choice of ψ(z). There thus
exist compressional solitons in these two energy regions. The
obtained soliton solutions are used to achieve the following
results. However, because ε in Eq. (19) is independent on q,
there is no difference in the results obtained by directly using
the singular periodic solutions. Therefore, whether the singular
periodic solutions can exist in FPU-αβ lattices deserves further
studies.

Excitation probability of the compressional soliton ξ should
be determined first to calculate the average velocity. When
α > 0, according to the aforementioned results of the nonlinear
lattices with V (φj ) = φ3

j /3, we expect that the rarefaction
solitons should be excited with higher probability than the
compressional solitons. It is thus expected that ξ < 1/2 and
decreases with α. However, we can only obtain ξ by fitting
our results to the predictions of NFH. Results are shown in
Fig. 3 with η = 1.2358, which has been used for α = 0. As it
should be, our results recover the predictions of NFH. All of
them agree very well with the numerical results. As shown in
Ref. [64], vEPT cannot predict accurately the sound velocities.
The curve of ξ is shown in the inset of Fig. 3. It does indeed
decrease with α. When α < 1.5, the dependence of ξ on α

is linear and can be fitted by a function 0.5–0.0415α. We
speculate that η = 1.2358 is not suitable when α > 1.5 and

1

2

3

4

0.01 0.1 1 10 100

S
ou

n
d

V
el

o
ci

ty
c s

T

Soliton
NFH
vEPT
Numerical results

FIG. 4. Sound velocity cs as the function of temperature T for
the 1D FPU-αβ lattices with α = 1. The solid line corresponds to
the average velocities of solitons. The dashed line corresponds to
the predictions of NFH and the dashed-dotted line corresponds to the
predictions of vEPT. The symbols correspond to the numerical results.

this deserves further study. However, the excellent agreements
in Fig. 3 indicate that solitons are still candidates for energy
carriers in FPU-αβ lattices.

To further confirm this conclusion, the sound velocity as a
function of temperature for the 1D FPU-αβ lattices with α = 1
is studied by using the corresponding ξ obtained from the inset
of Fig. 3. The results are shown in Fig. 4. Our results recover
the predictions of NFH again. All of them agree very well with
the numerical results. It is thus obtained that ξ is independent
on the temperature T . However, there are slight discrepancies
between the predictions of vEPT and the numerical results.

IV. CONCLUSION AND DISCUSSION

In summary, by using the approximate soliton solutions of
the equations of motion and using the Boltzmann distribution
for solitons, the average velocities of solitons in FPU lattices
are obtained. The results agree excellently with the sound
velocities of energy transfer not only in the symmetric FPU-β
lattices but also in the asymmetric FPU-αβ lattices. We thus
conclude that solitons are still candidates for energy carriers
in FPU lattices.

By using the Zwanzig-Mori projection formalism to project
the dynamics of the nonlinear lattices onto one soliton solution,
the root-mean-square velocity of the soliton is obtained based
on the effective phonons theory. The relations between solitons
and the effective phonons deserve further study.

The anomalous energy transport in FPU lattices can be
attributed to the properties of solitons which can almost con-
serve their identities after collisions. Our results also confirm
the speculation of Ref. [87] that thermal rectification can
be the result of asymmetric transport of solitons. However,
because there is a statistical distribution of solitons with
different velocities, solitons cannot be detected by visualizing
the spatiotemporal evolutions of local energy densities or
relative displacements. We hope that our investigation can
motivate further study on energy transfer in nonlinear lattices
from the point of view of solitons, especially on the relations
between solitons and thermal rectification.
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