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Cross-diffusion-induced subharmonic spatial resonances in a predator-prey system
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In this paper we investigate the complex dynamics originated by a cross-diffusion-induced subharmonic
destabilization of the fundamental subcritical Turing mode in a predator-prey reaction-diffusion system. The model
we consider consists of a two-species Lotka-Volterra system with linear diffusion and a nonlinear cross-diffusion
term in the predator equation. The taxis term in the search strategy of the predator is responsible for the onset of
complex dynamics. In fact, our model does not exhibit any Hopf or wave instability, and on the basis of the linear
analysis one should only expect stationary patterns; nevertheless, the presence of the nonlinear cross-diffusion
term is able to induce a secondary instability: due to a subharmonic spatial resonance, the stationary primary
branch bifurcates to an out-of-phase oscillating solution. Noticeably, the strong resonance between the harmonic
and the subharmonic is able to generate the oscillating pattern albeit the subharmonic is below criticality. We
show that, as the control parameter is varied, the oscillating solution (subT mode) can undergo a sequence of
secondary instabilities, generating a transition toward chaotic dynamics. Finally, we investigate the emergence
of subT -mode solutions on two-dimensional domains: when the fundamental mode describes a square pattern,
subharmonic resonance originates oscillating square patterns. In the case of subcritical Turing hexagon solutions,
the internal interactions with a subharmonic mode are able to generate the so-called “twinkling-eyes” pattern.
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I. INTRODUCTION

In this paper we want to investigate the complex spatiotem-
poral dynamics emerging from a subharmonic destabilization
of a primary subcritical Turing pattern in a simple predator-
prey reaction-diffusion system.

Spatiotemporal oscillatory and irregular behavior in
reaction-diffusion systems are generally ascribed to the inter-
action between Turing and Hopf instabilities, which can occur
either through a codimension-two Turing-Hopf bifurcation
[1–7] or due to different competing bifurcations of multiple
steady states [8,9]. In particular, the observed dynamics in
the proximity of a codimension-two Turing-Hopf bifurcation
point can be classified in two different groups: the first
includes the dynamics resulting from the interplay between
a Turing mode and a Hopf mode. The resulting structures are
typified by bistability, localized patterns, and mixed modes,
i.e., oscillating structures characterized by the presence of one
wave number kc and one frequency ωc, with all peaks oscillat-
ing synchronously (in-phase oscillations). The second group
consists of dynamical behaviors originated by subharmonic
instabilities of the Turing and the Hopf modes. A subharmonic
Turing mixed mode (subT mixed mode), for example, results
when the root of the characteristic equation corresponding
to the subharmonic of the Turing mode, with wave number
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kc/2, crosses the imaginary axis with nonzero imaginary
part (ω[kc/2] �= 0). In this case a resonance between the
Turing mode with wave-number-frequency couple (kc,0) and
its subharmonic mode (kc/2,ω[kc/2]) originates an oscillating
pattern with two wave numbers oscillating in time with one
frequency [8]: the subharmonic then oscillates out of -phase
with the fundamental mode.

Subharmonic T modes have been found in the presence
of bulk oscillations, originated either from a Hopf instability
[1,5,10], or from spatially uniform external periodic forcing
[4,11], or in coupled layers of oscillators [12–15].

In this paper we propose a simple mechanism able to
generate subharmonic T modes in absence of Hopf or wave
bifurcations: keeping a simple form of the Lotka-Volterra type
for the kinetic term, we assume that the movements of the
individuals of the predator species are determined by classical
random diffusion and by a taxis term down the gradient of prey.
This model had previously appeared in [16], and we postpone
to Sec. II a discussion on the physical motivations of the model.

In particular, we show that in a monostable regime where the
linear stability analysis predicts the existence of a stationary
pattern, temporal oscillations and chaos emerge. The occur-
rence of a wide variety of spatiotemporal patterns including
regular and irregular oscillations is not new in spatially dis-
tributed predator-prey systems but it is usually induced by the
presence of kinetic terms with a high degree of nonlinearity
[17–22]. Differently from all these approaches, we adopt a
particularly simple form for the reaction term which does not
support any oscillatory instability, and prove the nonlinear
cross-diffusion term to be the effective promoting factor for
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the occurrence of a resonant mechanism resulting in regular
and aperiodic oscillations.

We start our analysis on one-dimensional (1D) spatial
domains where the cross-diffusion term allows, in the presence
of a subcritical Turing band, for the onset of an internal
subharmonic instability of the critical mode that gives rise to a
stable out-of-phase oscillating mixed state. Furthermore, as the
control parameter is varied, we show that the subT solutions
undergo a phase instability, which produces successive bifurca-
tions leading to quasiperiodicity, transient temporal chaos, and
temporal chaos [23,24]. A similar transition has been recently
reported in the Barrio-Varea-Aragon-Maini model [25–27],
where a detailed numerical investigation had identified in the
presence of competing cubic terms in the kinetics the main
ingredient for the observed Ruelle-Takens-Newhouse route to
chaos.

We stress the fact that in our model the spatiotemporal
patterns are only due to the presence of the nonlinear cross-
diffusion term. The crucial role played by cross-diffusion
terms in establishing the emergence of an oscillatory Turing
pattern in absence of any Hopf instability was pointed out also
in [28], where linear cross diffusion and Michaelis-Menten
functional response were considered. It is also noteworthy that
recently out-of-phase oscillating Turing patterns were reported
in a bistable reaction-diffusion system describing enzymatic
reactions in a parameter region where no Hopf bifurcation is
expected [29].

On one dimensional spatial domains, increasing the size of
the domain, we shall also see the emergence of spatiotemporal
chaos.

On two-dimensional (2D) domains we show resonant sub-
harmonic interactions of stationary square patterns and subcrit-
ical Turing hexagons. In this latter case, the interplay between
the static and the oscillatory subharmonic instability originates
the “twinkling-eyes” pattern [30], first found theoretically as
a resonant interaction between a Turing and a wave instability
[31,32].

The plan of the paper is the following: In Sec. II we
introduce the model and briefly recall the main outcomes of the
linear stability analysis close to the homogeneous equilibrium.
In Sec. III we discuss the bifurcation analysis leading to
the formation of oscillatory patterns and the transition to
spatiotemporal chaotic dynamics. In Sec. IV we extend our
investigation to the case when the spatial domain is two-
dimensional: we perform a weakly nonlinear analysis close
to the bifurcation threshold, derive the normal forms for the
Turing patterns, and elucidate the occurrence of oscillatory
dynamics, twinkling-eye patterns and transition to irregular
behavior.

II. MODEL AND LINEAR ANALYSIS

The proposed system describes a predator-prey model such
that the predator movement is directed toward areas of low prey
density. Therefore the presence of the prey affects movements
of the predator in such a way that the latter avoids the zones with
high prey density to enhance its hunting success. In fact, there
is evidence that, for many species, living in aggregation can
be an effective predator-avoidance tactic, so that the hunting
success of predators generally decreases with prey group size.

The assumption of “negative aggregation” [33] for the
movement of the predators chasing the preys, gives rise in our
model to a nonlinear cross-diffusion term. Density-dependent
self- and cross-diffusion terms were first introduced by Shige-
sada et al. to model spatial segregation of competing species
[34]. Since then, strongly coupled reaction-diffusion systems
with linear and nonlinear self- and cross-diffusion terms have
been extensively applied to many different physical, chemical,
and biological systems and their pattern-forming properties
thoroughly investigated [35–42].

On the other hand, predator-prey systems have been ob-
served to exhibit complex spatiotemporal dynamics, which
includes, other than stationary patterns, regular and irreg-
ular oscillations, propagating fronts, spiral waves, pulses,
patchiness, and chaotic oscillations. In order to elucidate the
mechanisms underlying this richness of possible dynamics,
different modeling approaches have been proposed: spatial
variations of the environment [43–45], Allee effect [46–48],
and predator invasion [49,50], just to name a few.

The model we consider here [16], in its nondimensional
form reads

∂tu = �u(r − γ u − v) + ∇2u,

∂tv = �v(−1 + u) + d21∇(v∇u) + d2∇2v, (1)

where u(x,t) and v(x,t) indicate the population densities of
preys and predators, respectively, and x ∈ �, where � is a
bounded fixed domain. In this and in the following section
we shall assume � ⊂ R. The reaction term of model (1) is of
the Lotka-Volterra predator-prey type with a logistic growth for
the preys, where the nonnegative coefficients r andγ denote the
growth rate and the inverse carrying capacity of u, respectively,
and � is a measure of the relative strength of the kinetic term.

In the second equation the nonlinear diffusion term
d21∇(v∇u) describes the tendency of the predator species v

to keep away from high-density areas of the prey, preferring
low-density areas of preys for hunting. The positive coefficients
d2 and d21 are the diffusion rate of the predator and the cross-
diffusion rate, respectively. We shall impose homogeneous
Neumann boundary conditions, as we assume that no external
input is imposed from the outside.

The only spatially homogeneous stationary solution of (1)
is (u0,v0) = (1,r − γ ) which has biological relevance only if
r − γ > 0, a condition that will be supposed to hold throughout
the rest of the paper.

Linearizing the system around (u0,v0) one gets

wt = �Jw + D∇2w, w =
(

u − u0

v − v0

)
, (2)

where

J =
( −γ −1

r − γ 0

)
, D =

(
1 0

d21v0 d2

)
. (3)

The equilibrium point is linearly stable, being an attractive
node for γ < r < γ + γ 2/4 or an attractive spiral for r >

γ + γ 2/4. Since tr(J ) = −γ is always negative, this system
does not support any Hopf bifurcation, which would require
tr(J ) = 0.

To investigate the conditions for diffusion-driven instability,
we construct the matrix A(k) = �J − k2D. If there is an
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FIG. 1. (a) The Turing instability region r > γ is shown for
the parameter set � = 5, d2 = 1: regions I (nodes) and II (spirals)
correspond to the supercritical Turing bifurcation; regions III (spirals)
and IV correspond to the subcritical case. The numerically computed
boundary between regions III and IV corresponds to the locus of the
subharmonic bifurcation (see Sec. III). (b) Numerically computed
bifurcation diagram of the species u at the central spatial point as
γ is varied: stable and unstable stationary branches are represented
by solid and dashed black lines, respectively; stable and unstable
oscillatory solutions are represented by solid and dashed gray lines,
respectively.

eigenvalue λ of A(k) with positive real part, for some k �= 0,
then the spatially homogeneous equilibrium is destabilized
by a periodic perturbation of wavelength 2π/k, exponentially
growing with time.

We observe that tr[A(k)] = −�γ − k2(d2 + 1) < 0, there-
fore the system does not support oscillations with k �= 0
either. Therefore, according to the linear stability analysis,
oscillations are prohibited.

Choosing d21 as bifurcation parameter, in [16] a stationary
(Turing) bifurcation was found to occur at the following critical
values:

dc
21 = γ d2 + 2

√
det(J ) det(D)

det(J )
, (4)

k2
c = �

√
det(J )

d2
. (5)

In Fig. 1(a), in the parameter space (γ,r) we report the
zone r > γ where Turing instability can develop. This region
is further divided into four distinct domains: in region I, the
stable equilibrium point is a node; in regions II, III, and IV
it is a spiral. The numerically computed boundary between
regions II and III separates the supercritical Turing instability,
i.e., region II, from the subcritical case, regions III and IV. The
boundary between regions II and III is computed imposing
the Landau coefficient of the amplitude equation to be zero
(see next section for more details). In region IV, subharmonic
instability leads to oscillations (see next section).

In Figs. 2(a)–2(d) the real and imaginary parts of the eigen-
values are plotted as a function of k in the four different regions
of the (γ,r)-parameter space: in regions I and II, one has a
supercritical Turing band (positive real part of the maximum
eigenvalue and zero imaginary part in correspondence to a band
of positive wave numbers), while in regions III and IV the
Turing band is subcritical. In all four regions, the k = 0 mode
has negative Reλ, corresponding to the absence of uniform
oscillatory instabilities.
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FIG. 2. Dispersion relation for the regions I–IV. The real and the
imaginary part of the eigenvalues are plotted by gray solid lines and by
black dashed lines, respectively: All the curves have � = 5, d2 = 1.
(a) Region I: r = 1.1, γ = 1,d21 = 19. (b) Region II: r = 1, γ =
0.5, d21 = 5. (c) Region III: r = 0.5, γ = 0.1, d21 = 2.6. (d) Region
IV: r = 1, γ = 0.1, d21 = 2.28.

In Fig. 3 the dependence of the maximum of Re(λ) on the
cross-diffusion coefficient d21 is reported: one can observe that,
moving from region I toward region IV, the critical value of the
bifurcation parameter dc

21 decreases, while the maximum value
of the real part of the eigenvalue becomes larger.

III. SUBHARMONIC INSTABILITY
AND BIFURCATION ANALYSIS

A. Subharmonic resonance

In [16] a detailed weakly nonlinear analysis investigating
the resulting patterns in the parameter regions corresponding
to both the supercritical and the subcritical Turing bifurcation
was performed. Here we shall focus on the region lying on
the left of the boundary between regions II and III of the
(r,γ )-parameter space shown in Fig. 1(a) where, according to
the weakly nonlinear analysis, one should expect a subcritical
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FIG. 3. Depencence of maximum of Re(λ) at k = kc on the cross-
diffusion coefficient in the regions I–IV. The parameter values are
chosen as in Figs. 2(a)–2(d), respectively.
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FIG. 4. Out-of-phase oscillatory Turing patterns: (a) The parameter values are chosen as in Fig. 1(b) and γ � 0.053 83. Left: space-time
evolution of u with x ∈ [0,2π ] on the horizontal axis and time increasing from bottom to top. Center: phase portrait of v(25) vs u(25). Right:
Poincaré section at u(27) = 2. (b) Black and gray curves are two antiphase patterns separated in time by T/2 � 1.21. (c) Black and gray curves
are two-phase oscillations at locations separated in space by λc = π . (d) Dispersion relation at the Hopf bifurcation: γ = 0.0615. The real and
the imaginary parts of the eigenvalues are plotted by gray solid lines and by black dashed lines, respectively.

stationary Turing pattern. It is worth recalling that the kinetic
term of (1) does not exhibit any Hopf bifurcation so that, in
the whole region, the equilibrium point is a stable spiral in
absence of diffusion. On the basis of the linear stability analysis
one should therefore expect a pure Turing instability, giving
rise to a stationary pattern. As pointed out in [16], this is not
the case if the system parameters are chosen well inside the
subcritical region, i.e., in region IV of Fig. 1(a). Fixing the
parameters d21, d2 and r so that a subcritical Turing pattern is
obtained and decreasing the parameter γ , the stationary pattern
is destabilized by disturbances twice its wavelength so that
time oscillations of the periodic structure are observed. Such
oscillations are to be ascribed to the resonance between the
fundamental subcritical Turing mode and its 1/2 subharmonic:
with decreasing γ , in fact, there exists a critical value of the
amplitude of the critical mode beyond which the instability
triggers an efficient transfer of energy to the 1/2 mode,
which oscillates with frequency ω[kc/2], out of phase with
the fundamental.

We shall therefore investigate the system dynamics using
γ as a control parameter. The system is numerically solved
with a finite difference scheme based on the method of the
lines, where the equations are first discretized with respect
to the spatial variable. The resulting semidiscrete ordinary
differential equation system is then integrated in time. A
standard second-order centered difference scheme is adopted
to approximate the Laplacian term while the nonlinear diffu-
sion term is approximated by a second-order finite difference

algorithm. For the time integration we used the CVODE stiff
integrator included in the XPPAUT computational software
package. We set error tolerances of 10−10, and used a time
step 	t = 10−3 and a spatial mesh size with N = 50 nodes on
the interval [0,2π ], where Neumann boundary conditions are
imposed.

We choose the following parameter values: r = 0.85, � =
5, d2 = 1, d21 = 2.269, in a way that, on the basis of the
weakly nonlinear analysis, the stationary Turing pattern is
expected to bifurcate subcritically from the homogeneous
steady state at γ � 0.032 17. The linear analysis and the
imposed boundary conditions predict that the most rapidly
growing mode is kc = 2. In fact, for γ > 0.032 17, a stable
spatially periodic stationary pattern is formed, which displays
the expected wavelength. To illustrate the outcomes of the
simulations and investigate the system dynamics far from
the primary bifurcation, in Fig. 1(b) we report the numerical
bifurcation diagram, obtained with the software AUTO.

In Fig. 1(b) one can see the subcritical Turing branch bifur-
cating from the homogeneous equilibrium. At γ � 0.061 53,
the Turing branch loses stability due to a subharmonic reso-
nance: the resonant interaction between the fundamental mode
and its subharmonic, determines the birth of oscillating-in-
time, periodic-in-space structures. A representative numerical
simulation, for γ = 0.053 83, is reported in Fig. 4(a): on the left
the space-time map of the resulting oscillatory Turing pattern
is shown, which corresponds to a limit cycle in the phase space
of the central points (reported in the middle column). The
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Poincaré section at u(27) = 2 is displayed in the right column,
showing a fixed-point steady state. We notice that, at each
spatial location, the system oscillates with one frequency but,
because of the presence of the two wave numbers kc and kc/2,
the minima of the pattern are shifted one wavelength every
half period of oscillation (a subharmonic mixed mode or subT

mode). This behavior can also be discerned from Fig. 4(b),
where the u profiles obtained at two different times separated
by T/2 are depicted. In Fig. 4(c) we report the antiphase
oscillations at two neighboring Turing extrema (separated by
λc = π ). In Fig. 4(d) we report the dispersion relation at the
onset of the subT -mode: it shows that both the fundamental
(kc = 2) and its 1/2-subharmonic are subcritical, so that in the
proposed model out-of-phase oscillations can arise at negative
Re(λ). The Fourier spectrum of the spatial profile of the two
species (not shown here) displays two significantly nonzero
amplitudes corresponding to the excited modes oscillating in
time: the critical mode kc and the mode kc/2. The numerically
computed value of the period of oscillations fits quite well
with the expected value T = 2π/ω(kc/2), where ω(kc/2) is
the imaginary part of the eigenvalue at k = kc/2.

We have numerically computed the bifurcation diagram
corresponding to the onset of the subT mode, for different
values of the parameter r , therefore obtaining, in the (γ,r)-
Turing space, the locus of subharmonic instability threshold.
The corresponding curve is plotted in Fig. 1(a), separating
region III, where a stationary Turing pattern is observed, from
region IV, where spatiotemporal oscillations emerge.

B. Temporal and spatiotemporal chaos

In this section we explore the possibility of chaotic temporal
and spatiotemporal dynamics: in fact, as the parameter γ is
decreased while maintaining all the other parameters fixed
as in Sec. III A, one observes the occurrence of successive
bifurcations which eventually lead to temporal chaotic solu-
tions. At γ � 0.052 73 the oscillatory subT mode undergoes
a torus bifurcation, which introduces a second frequency in
the temporal dynamics of system (1). The corresponding
numerical simulation for γ = 0.052 02 is reported in Fig. 5(a),
showing also the expected limit cycle in the Poincaré section.
In Fig. 6 we report the corresponding power spectrum, where
sharp peaks are identified, each of which can be matched to a
linear combination of the two frequencies characteristic of the
motion on a 2-torus.

As γ is further decreased, a period-doubling bifurcation
occurs at the value γ = 0.039 38, after which the system ex-
hibits quasiperiodic behavior [see Fig. 5(b)]. Further decrease
of the parameter γ induces the occurrence of temporal chaotic
dynamics. Indeed the chaotic behavior is not asymptotically
stable: after some time, in fact, it collapses, evolving toward a
periodically oscillating solution. This scenario is exemplified
in Figs. 5(c) and 5(d), where we report the system behavior
at γ = 0.029 75: the dynamics is initially characterized by the
presence of temporally aperiodic oscillations, which are shown
in the left panel of Fig. 5(c) and can also be deduced from
the complex nested pattern of the phase-space plot [middle
panel of Fig. 5(c)] and from the scattered points displayed in
the Poincaré section [right panel of Fig. 5(c)]. The temporal
chaos persists up to approximately 60 time units, after which

the system settles in a stable periodically oscillating pattern.
The dynamics from t � 500 is shown in Fig. 5(d): both the
phase-space and the Poincaré section indicate the presence of
a periodic-in-time orbit.

As the control parameter is further decreased, the oscillating
subharmonic pattern becomes, in fact, phase unstable, giving
rise to a transition to temporal broadband turbulence [see
Fig. 5(e) and the inset of Fig. 6]. This transition has also been
observed in other systems presenting subharmonic instabilities
[1,23].

The transient nature of chaotic dynamics described above
and shown in Figs. 5(c) and 5(d) is not new and has been
found in several reaction-diffusion systems [51–57]. Since
it is known that the chaos lifetime increases exponentially
with system size [58], in the rest of this section we shall
investigate the system size dependence of the chaotic dynamics
by considering different system sizes.

We choose the following parameter values: r = 1.5, γ =
0.22, d2 = 1, d21 = 2.269, which on the basis of the weakly
nonlinear analysis, prescribe the presence of a subcritical
Turing pattern. We then consider different domain sizes by
varying the parameter �, whose square root is proportional to
the linear size of the domain.

For small system sizes (small values of �), the oscillating
pattern induced by the subharmonic instability is stable. This
is shown in Fig. 7(a), where the space-time plot for � = 3.535
is displayed, which corresponds to a system size equal to four
times half of the spatial wavelength λ of the pattern. In the
case of small domain sizes, stable oscillatory patterns are also
found when the value of � is such that the domain size is not an
integer multiple of λ/2. Increasing the value of � corresponds
to the occasional missing of a beat or to periodic movements of
the maxima of the pattern, as is shown in Fig. 7(b), where � =
7.955 has been selected, which corresponds to a domain size
equal to six times λ/2. A critical value of � � 14.14 has been
identified, which corresponds to a domain size approximately
equal to eight times λ/2, above which the system presents
spatiotemporal chaotic behavior. This is displayed in Figs. 7(c)
and 7(d), obtained for � = 43.31 (corresponding to a domain
size equal to 14 times λ/2) and � = 83.388 (corresponding to
a domain size equal to 20 times λ/2), respectively. The space-
time plot of the corresponding dynamics shows the presence
of merging and splitting of maxima, and of phase slips, all
elements that characterize spatiotemporal chaos [54].

IV. 2D PATTERNS

To investigate the formation and stability of coherent so-
lutions to the system (1) on the two-dimensional rectangular
domain � = [0,Lx] × [0,Ly] we perform a weakly nonlinear
(WNL) analysis so to derive a reduced description of the re-
sulting patterns in terms of their amplitude [59,60]. Restricting
our analysis to the cases where the homogeneous steady state
bifurcates at a single or a double eigenvalue, we are able to
characterize the type of supported patterns as follows:

(i) rolls and square-rhombic patterns when the bifurcation
occurs via a single eigenvalue;

(ii) mixed-mode patterns when the bifurcation occurs via a
double eigenvalue and the no-resonance condition holds;
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FIG. 5. Dynamical behaviors at different values of γ : transition to temporal chaos. Left: space-time evolution of u with x ∈ [0,2π ] on
the horizontal axis and time increasing from bottom to top. Center: phase portrait of v(25) vs u(25). Right: Poincaré sections at u(27) = 2.
(a) γ = 0.052 02: dynamics on a torus which corresponds to a limit cycle in the Poincaré map; (b) γ = 0.035 05: quasiperiodic motion;
(c) γ = 0.029 75, up to t = 20: transient temporal chaos; (d) γ = 0.029 75 from t = 500: the system has settled in a stable oscillatory motion;
(e) γ = 0.027 92: temporal chaos.
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FIG. 6. Fourier power spectrum for γ = 0.051 16 at t = 300
(after 300 000 iterations), displaying the typical peaks of a torus
dynamics. Inset: Broadband continuous power spectrum obtained for
γ = 0.028 19, characteristic of chaotic behavior.

(iii) hexagonal patterns when the bifurcation occurs via a
double eigenvalue and the resonance condition holds.

Here we skip the technical details of the analysis in all the
above considered cases (see [59] for a full description), and
simply report the resulting normal forms.

In case (i), there exists a unique couple of integers (m,n)
such that

k2
c ≡ φ2 + ψ2 where φ ≡ mπ

Lx

, ψ ≡ nπ

Ly

.

The WNL multiple scale analysis leads to finding the evolution
equation for the amplitude of the pattern, which is the following
Stuart-Landau equation:

dA

dT2
= σA − LA3. (6)

When the model parameters are such that bifurcation is su-
percritical (i.e., L > 0), the emerging solution of the reaction-
diffusion system (1) close to the onset is given by

w = ερA∞ cos(φx) cos(ψy) + O(ε2), (7)

where ε measures the square root of the distance of the
control parameter from the bifurcation value, A∞ is the stable
stationary state of the Stuart-Landau equation (6), and ρ ∈
Ker(�J − k2

cD). The solutions in (7) are rhombic spatial
patterns, whose special cases are the rolls (when either φ or ψ

is zero) or the squares (when φ = ψ).
In case (ii), there exist two couples of integers (mi,ni), i =

1,2 such that

k2
c ≡ φ2

i + ψ2
i where φi ≡ miπ

Lx

, ψi ≡ niπ

Ly

, (8)

and the following no-resonance condition holds:

φk + φj �= φj or ψk − ψj �= ψj

and (9)

φk − φj �= φj or ψk + ψj �= ψj

FIG. 7. Space-time plots for different system sizes. All the plots
have r = 1.5, γ = 0.22, d2 = 1, d21 = 2.269, and different values
of �. (a) � = 3.535, corresponding to a ratio between the domain
size and λ/2 of 4: the out-of-phase oscillating pattern is stable.
(b) � = 7.955, corresponding to a ratio between the domain size
and λ/2 of 6: the oscillatory structure is destabilized by occasional
irregularities. (c) � = 43.31, corresponding to a ratio between the
domain size and λ/2 of 14: the pattern displays merging, split-
ting, and phase slips phenomena, typical of spatiotemporal chaos.
(d) � = 83.388, corresponding to a ratio between the domain size
and λ/2 of 20: fully chaotic spatiotemporal dynamics.
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with k,j = 1,2 and k �= j . Performing the WNL analysis,
one finds that the two different amplitudes A1 and A2 which
characterize the resulting pattern are governed by the following
system of two coupled Landau equations:

dA1

dT
= σA1 − L1A

3
1 + R1A1A

2
2, (10a)

dA2

dT
= σA2 − L2A

3
2 + R2A

2
1 A2. (10b)

If the system (10) admits at least one stable equilibrium
(A1∞,A2∞), the emerging asymptotic solution of the reaction-
diffusion system (1) is correctly approximated by

w = ερ

2∑
i=1

Ai∞ cos(φix) cos(ψiy) + O(ε2). (11)

The solutions in (11) describe the so-called mixed-mode
patterns, complex structures arising due to the interaction of
different modes φi,ψi . They reduce to the rhombic spatial
patterns found in case (i) when either one between A1∞ and
A2∞ is zero.

Finally, in case (iii), there exist two couples of integers
such that (8) is satisfied and the following resonance condition
holds:

φk + φj = φj and ψk − ψj = ψj

or (12)

φk − φj = φj and ψk + ψj = ψj

with k,j = 1,2 and k �= j . Through the WNL asymptotic anal-
ysis, we recover at O(ε2) a dynamical system governing the
evolution of the pattern amplitudes which does not admit stable
equilibria in any parameter regime: this returns a subcritical
transition. Pushing the analysis at O(ε3), we find the following
system for the amplitudes A1 and A2:

dA1

dT
= σ1A1 − L1A1A2 + R1A1A

2
2 + S1A

3
1,

dA2

dT
= σ2A2 − L2A

2
1 + R2A

2
1 A2 + S2A

3
2. (13)

Assuming, without loss of generality, that the second
condition in (12) holds with i = 2 and j = 1, and taking into
account the relation in (8), it follows that φ2 = 2φ1, ψ2 = 0,
ψ1 = √

3φ1, φ1 = kc/2, and Ly = √
3Lx . If the system (13)

admits at least one stable equilibrium, the emerging asymptotic
solution of the reaction-diffusion system (1) at the leading
order is approximated by

w = ερ[A1∞ cos(φ1x) cos(ψ1y)

+A2∞ cos(φ2x) cos(ψ2y)] + O(ε2), (14)

where (A1∞,A2∞) is a stable stationary state of the system
(13). These solutions are hexagonal patterns or, in the case
when A1∞ = 0, rolls.

The outcomes of the WNL analysis constitute the starting
point for the investigation of 2D oscillatory patterns. As in the
case of the 1D domain, the oscillatory instability is generated
by subharmonic resonances, involving secondary modes with
lower wave number. We start considering the oscillatory
instability of the subcritical hexagons. On the rectangular

FIG. 8. The numerical solution of (1) asymptotically converges
to the subcritical hexagonal pattern predicted by the WNL analysis.
The parameters are chosen as � = 45, r = 0.85, d2 = 1, γ = 0.21,

d21 = 2.8281.

domain Lx = 2π and Ly = 2
√

3π , we choose the parameter
set such that the only unstable discrete mode is k2

c = 36,
which corresponds to the two mode pairs (6,18) and (12,0)
satisfying the condition (8). Numerical simulations, performed
choosing as initial condition a small random perturbation of the
equilibrium, show the evolution toward the stationary solution
given in Fig. 8.

Its explicit form is captured by the following hexagonal
pattern, predicted by the WNL analysis to be a stable subcritical
solution of system (1):

w = ερ

[
A1∞ cos(3x) cos

(
9√
3
y

)
+ A2∞ cos(6x)

]

+O(ε2), (15)

where (A1∞,A2∞) is a stable equilibrium of the system (13).
Assuming now as initial condition the stationary pattern

depicted in Fig. 8 and decreasing the value of γ to 0.2 (while
maintaining all the other parameter values fixed), the numerical
solution loses its stability and starts to oscillate in time.
The snapshots of the twinkling-eye hexagons are shown in
Fig. 9(a). The observed time oscillatory behavior is determined
by the resonant interaction between the fundamental subcritical
Turing mode, whose wave number is kc = 6 and which gives
rise to a stationary hexagonal lattice and its subharmonic mode.
The subT has wave number ksub = kc/

√
(3) � 3.46, and lies

within the Hopf domain, i.e., Im(λ) = ω[kc/
√

(3)] �= 0 [see
Fig. 9(d)]. Although the subT has negative Re(λ), the strong
intrinsic coupling with the steady mode is able to induce
a destabilization of the fundamental, which results in the
development of a temporally oscillating subhexagonal lattice
[11]. The hexagonal array of spots thus separates into three sets,
each forming a hexagonal sublattice with wavelength

√
(3)

times the wavelength of the original lattice and shifted in phase
by 2π/3 from the other sublattices.

A further decrease in the value of γ induces secondary
(Hopf) instabilities of the subT solution with the consequent
birth of chaotic dynamics.

To show the emergence of oscillating square patterns,
we consider the square domain Lx = Ly = π , and select
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FIG. 9. Twinkling-eye hexagons: (a) All the parameter values are chosen as in Fig. 7 except γ , whose value is γ = 0.2. Snapshots of the
hexagonal pattern taken at successive times. Left: at time t . Center: at time t + T/3. Right: at time t + 2T/3. (b) Black, light-gray, and gray
curves are three sections of the pattern at x̄ = 2.27, y = 3.8 separated in time by T/3 � 0.12 and showing out-of-phase oscillations. (c) Black,
light-gray, and gray curves are three sections of the pattern at y = 3.8 at locations separated in space by λc/3 = π/9 showing three-phase
oscillations. (d) Dispersion relation. The real and the imaginary parts of the eigenvalues are plotted by gray solid lines and by black dashed
lines, respectively.

the following parameter values � = 60.78, r = 0.85, d2 =
1, γ = 0.2, d21 = 2.7884. The most unstable discrete mode
is given by k2

c = 49 and the condition (8) is satisfied by the
two mode pairs (7,0) and (0,7). This parameter set returns a
pattern belonging to case (ii) above; the WNL analysis then
predicts that the system admits only the stable equilibria:

P (±,±) ≡
(

±
√

σ (L2 + �1)

L1L2 − �1�2
, ±

√
σ (L1 + �2)

L1L2 − �1�2

)
, (16)

so that the expected solution is the following square pattern:

w = ερ[A1∞ cos (7x) + A2∞ cos (7y)] + O(ε2). (17)

FIG. 10. (a) Snapshot of the stationary square pattern predicted
by the WNL analysis. The system parameters are � = 60.78, r =
0.85, d2 = 1, d21 = 2.7884, γ = 0.2. (b) Snapshot of the oscillatory
pattern. The values of the parameters are as in (a), except γ = 0.19.

where (A1∞,A2∞) are the coordinates of the point P (±,±).
Starting from the random periodic perturbation of the equi-
librium, the numerical solution of the full system (1) in fact
evolves to the square pattern whose amplitude is predicted
by the WNL analysis and shown in Fig. 10(a). Assuming
as initial condition the square pattern depicted in Fig. 10(a)
and decreasing the value of γ to γ = 0.19 (while maintaining
all the other parameter values fixed), the numerical solution
loses its stability and jumps to a large amplitude subcritical
solution, which, after a short transient, starts to oscillate in
time. The snapshots of the spatiotemporal periodic pattern are
shown in Fig. 10(b). In this case, therefore, the subcritical mode
resonantly interacting with its subharmonic is not the critical
mode predicted by the WNL analysis. In fact we conjecture
that, with decreasing the value of γ , one induces a change in
the expression of the coefficients of the normal form derived in
case (ii), which now admits only unstable solutions. To predict
the resulting critical mode (and its subharmonic) it would be
then necessary to push the weakly nonlinear analysis to the fifth
order and derive the explicit expression of the stable solutions
to the quintic amplitude equations. This will be the subject of
a subsequent paper.

V. CONCLUSIONS

In this paper we have investigated the complex dynamics
supported by a novel predator-prey system with non-linear
cross-diffusion term and quadratic Lotka-Volterra reaction
kinetics. The nonlinear cross-diffusion term describes the
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tendency of the predators to move in response to a spatially
decreasing prey density to maximize prey suppression. The
model was presented in [16], where it was shown how the
introduction of the cross diffusion is critical to the formation
of periodic structures, also in the presence of a trivializing
kinetics. Moreover the detailed theoretical and numerical
analysis performed in [16] on 1D domains allowed one to
distinguish between supercritical and subcritical transitions
to stationary periodic patterns. The occurrence in the nu-
merical experiments of oscillating-in-time pattern solutions
was also reported. In this paper we have deeply investigated
the secondary instabilities induced by subharmonic resonance
phenomena, leading to the spatiotemporal oscillating solutions
and to the consequent transition to chaotic dynamics. With the
aid of the numerical bifurcation diagram we have identified the
region, in the parameter space, where the subcritical Turing
branch undergoes a subharmonic destabilization, resulting in
oscillations of the underlying periodic structure. This behavior
is unexpected on the basis of the linear analysis and contradicts
the belief that oscillations in a reaction-diffusion system can
be obtained only in the presence of either a Hopf bifurcation
in the local dynamics or a wave instability. In the proposed
model the spatiotemporal periodic solutions are generated by
a spatial resonance of the fundamental Turing mode with its
subharmonic, whose corresponding growth rate has a nonzero
imaginary part. Remarkably, the subharmonic mode is able
to resonantly interact with the subcritical fundamental Turing
mode, generating time oscillations, although its growth rate
as predicted by the linear analysis, is negative. We have
therefore detected the presence of a sequence of self-induced

subharmonic instabilities, corresponding to the emergence
of transient temporal chaos and fully chaotic-in-time solu-
tions. Exploiting the dependence of the supported dynamics
on the domain size, we have illustrated the transition from
subharmonic-induced oscillations to spatiotemporal chaotic
solutions as the domain size exceeds a critical value.

In the case of a two-dimensional spatial domain, we have
derived the normal forms of the bifurcating stationary spatially
periodic solutions, classifying the different resulting pattern
as the parameters are varied in the Turing space. We have
proved that the presence of the cross-diffusion term in a simple
reaction-diffusion system is responsible for the formation
of the twinkling-eye hexagons and other oscillating Turing
patterns.

These results emphasize the need of further investigation
of simple systems to better understand the mechanisms un-
derlying the generation of complex dynamics. In particular,
we believe it would be of interest, for the proposed model, to
derive the normal forms of the resonant interaction, both in
the case of 1D and 2D domains and investigate through the
formalism of the amplitude equations, the phase instabilities
which originate the chaotic dynamics [61]. These subjects will
be investigated in a forthcoming paper.
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