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Modeling and parameter estimation to capture the dynamics of physical systems are often challenging because
many parameters can range over orders of magnitude and are difficult to measure experimentally. Moreover,
selecting a suitable model complexity requires a sufficient understanding of the model’s potential use, such as
highlighting essential mechanisms underlying qualitative behavior or precisely quantifying realistic dynamics. We
present an approach that can guide model development and tuning to achieve desired qualitative and quantitative
solution properties. It relies on the presence of disparate time scales and employs techniques of separating
the dynamics of fast and slow variables, which are well known in the analysis of qualitative solution features.
We build on these methods to show how it is also possible to obtain quantitative solution features by imposing
designed dynamics for the slow variables in the form of specified two-dimensional paths in a bifurcation-parameter
landscape.
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I. INTRODUCTION

Pulsing in lasers [1], mixed-mode oscillations in a chemical
reaction [2,3], and bursting in neurons [4] are just a few
examples among the ubiquitous patterns that exhibit features
evolving on disparate time scales. One classical approach
to understanding such patterns is the method of fast-slow
decomposition of the underlying mathematical model, where
each variable in the model is classified as fast or slow. All slow
variables are then fixed, so that the fast variables define the so-
called fast subsystem for which the slow variables are treated
as parameters [5–8]. The slow dynamics imposes a particular
path that the slow variables sweep out in the bifurcation
landscape of the fast subsystem. The full system dynamics
can be approximated by assuming that the fast variables drift
along a sequence of attractors, punctuated by occasional rapid
transitions between different attractors at certain bifurcation
events, while the slow variables trace the path imposed by the
slow dynamics. In particular, when a single slow variable is
used, the classical modeling approach includes an ordinary
differential equation (ODE) for that variable and considers
the locus of zero speed, or nullcline of the slow variable with
respect to the fast variables, to specify its direction of motion
[7–11]; another approach is to view the slow dynamics as a
nonautonomous external force [12–14].

The method of fast-slow decomposition offers a simple
and effective way of classifying different oscillatory patterns
for two-time-scale systems. Each type of pattern is uniquely
described by the sequence of bifurcations that are encountered
as the slow variables trace a selected path, and by the particular
attractors of the fast subsystem that are visited once such
bifurcations are crossed [9,10,12]. More precisely, bursting
patterns will be qualitatively the same if the associated paths
traced by the slow variables cross the same bifurcations of the

fast subsystem in the same order. However, this approach does
not reveal quantitative features of the oscillation, which may be
quite important for the particular application associated with
the pattern.

In this paper, we propose an extension to the applica-
tion of fast-slow decomposition. The underlying idea of our
approach is that we gain access to quantitative information
about the fast dynamics by exploring and characterizing in
more detail regions in slow-variable space corresponding to
similar qualitative behaviors of the fast variables. The relevant
quantitative information in this context includes the depen-
dence on parameters of convergence rates to attractors and the
periods of periodic orbits. In our study, we will prescribe a
simple form of slow dynamics, leading to a particular class of
imposed paths that can be explored by variation of a small set
of associated parameters. Importantly, we consider two slow
variables, which provide access to a parameterized continuum
of paths that can be used to tune quantitative features of
an oscillation pattern. Specifically, we will be considering
families of elliptic paths in our case study below.

The combination of imposed paths and easily obtained
quantitative information about the fast subsystem provides a
resource that helps steer the fast-variable outputs to a quanti-
tative agreement with desired targets. The resulting dynamical
system may serve as a partially phenomenological model of
the physical system under study in its own right; moreover,
it may provide a guide for subsequent parameter estimation
in the full model, if one is available; or, finally, it may serve
as a tool to assist in the development of a model for the slow
components of the system, if one is not yet available.

In what follows, we consider the specific field of neu-
rophysiology and focus on patterns generated by neurons.
Neurons engage in activity patterns known as bursting in a
variety of settings, including sleep, novelty detection, gen-
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eration of repetitive movements, release of hormones, and
certain pathological conditions [4,15]. In very general terms,
bursting refers to any time course of the membrane potential
that features active phases of consecutive high-frequency
oscillations alternating with intervals in which oscillations are
much smaller, much more infrequent, or absent altogether.
This simple characterization, however, encompasses a striking
diversity of bursting patterns that arise across different neurons
in various contexts [9,10,14].

Classic analysis of bursting dynamics, as pioneered by
Rinzel [7,8], utilizes the fast-slow nature of such systems and
is based on singularity theory [9,12,14]. The key idea is to
investigate bursting patterns and to design minimal bursting
models via the analysis of the underlying fast subsystem. While
this type of analysis has been used for realistic slow-fast mod-
els, it may yield entirely abstract models of phenomenological
bursting patters that exhibit specific features in a qualitative
way only [7,8,14,16]. In particular, systems with a single
slow variable have been explored extensively in this way. For
such systems, an imposed path associated with a periodic
bursting pattern is necessarily a line segment and the slow
variable oscillates back and forth over a given range of values.
The bursting patterns obtained for such systems are entirely
characterized by the number and order of bifurcations of the
fast subsystem that are encountered along the imposed path;
for example, a complete classification of bursting patterns was
attempted in [10].

There are cases of other types of bursting that involve two
slow variables [17]. For example, the qualitative pattern of
parabolic bursting has been explained in terms of slow motion
across bifurcation curves of the fast subsystem [18], and a
canonical underlying model associated with this bifurcation
structure was derived via nonlinear coordinate changes [16,19].
We adapt and extend this approach of slow-fast decomposition
with the goal of capturing particular quantitative features of
the bursting pattern that are not expressible by the sequence of
bifurcations alone. Hence, rather than focusing on a canonical
model, we will incorporate also quite precise information
regarding the dynamics of the fast variables. The overall slow-
fast model is developed in what can be considered a design
stage: an entire family of paths that encounters the required
sequence of bifurcations is defined and, subsequently, a path
is selected that best represents the prespecified quantitative
features.

As a leading example and case study for this paper, we
consider a seven-dimensional model of bursting in neurons of
the respiratory brain stem [20] with five fast and two slow
variables. This model exhibits a particular form of neuronal
bursting, which we refer to as depolarization block or DB
bursting; an example of the corresponding voltage time course
is shown in Fig. 1(b). This type of bursting pattern has also
been observed in other neuronal models [21,22]. Each cycle
within a DB bursting pattern consists of the following:

(i) a silent phase of quiescence;
(ii) the emergence of sustained voltage spiking with grad-

ually increasing spike frequency;
(iii) a fairly abrupt significant increase in spike frequency

and attenuation of spike amplitude;
(iv) an approach towards a depolarization block state of

steady, elevated voltage;
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FIG. 1. DB bursting in the seven-dimensional system (1)&(2).
(a) Shows the bursting oscillation in projection onto the ([Ca],[Na])
plane overlaid on the bifurcation set of the fast subsystem in this
region, given by the loci of saddle-node bifurcations on an invari-
ant cycle and Andronov-Hopf bifurcations, labeled SNIC and AH,
respectively. (b) Shows the corresponding time course of voltage v.

(v) a reemergence of spiking; and
(vi) a return to quiescence.
The quantitative features of DB bursting may be important

for the biological function of a neuron; for example, the
spiking phase within a burst may be associated with release
of substances such as hormones or with activation of a
particular muscle group. Moreover, it may not be obvious
that two bursting solutions that are qualitatively similar from
the point of view of fast-slow decomposition really share
what biologists would consider to be the same features. For
example, if oscillations become sufficiently small, they will
be undetectable or swamped by noise, while only certain
frequencies of oscillations may suffice to achieve a biological
purpose; thus, two solutions with oscillations of different
amplitudes and frequencies may merit a distinction that is not
present in qualitative analysis of fast-slow decomposition.

What determines the quantitative features of a bursting
pattern in a fast-slow system? We present a case study il-
lustrating that a natural extension of the method of fast-slow
decomposition can provide useful information for quantita-
tively representing data on bursting arising from biological
experiments. Here, we go beyond the consideration of which
bifurcation curves are crossed and take into account details
of the path in the plane traced dynamically by the two slow
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variables in-between these crossings, as well as corresponding
details about the attractors of the fast subsystem encountered
along this path.

This paper is organized as follows. In the next section, we
present the relevant analysis of the DB bursting model from
[20] and compare its dynamics with that of a four-dimensional
reduced model. The full details of the seven-dimensional
model can be found in [20], but the system of equations is
also given in the Appendix. Section III illustrates how imposed
paths for the two slow variables in the four-dimensional model
can be used to obtain quantitatively similar bursting patterns
as exhibited by the full seven-dimensional model. In this work,
we use elliptical paths to illustrate our approach but it will be
clear that more involved paths could be designed and used
for specific applications. We explore in Sec. IV how other
aspects of the fast-subsystem dynamics, which are related to
but go beyond the analysis of its bifurcation diagram, determine
quantitative features of the bursting patterns. We end with a
discussion in Sec. V.

II. DB BURSTING MODEL AND ITS DYNAMICS

Rubin et al. [20] presented a seven-dimensional model of
bursting in neurons of the respiratory brain stem. The model is
based on the Hodgkin-Huxley formalism and is given by the
following system of ODEs involving five fast and two slow
variables; see the Appendix for a complete description of the
various functions and parameter values used:

v′ = −1

c
{IL(v) + IK(v,n) + INa(v,m,h) + Isyn(v,s)

+ ICAN(v,[Ca]) + Ipump([Na])},

n′ = 1

τn(v)
[n∞(v) − n], m′ = 1

τm(v)
[m∞(v) − m],

h′ = 1

τh(v)
[h∞(v) − h], s ′ = 1

τs

[(1 − s) s∞(v) − k s], (1)

[Ca]′ = ε{kIP3 s − kCa ([Ca] − [Ca]b)},
[Na]′ = α{−ICAN(v,[Ca]) − Ipump([Na])}. (2)

Here, system (1) comprises equations for the five fast variables
v, n, m, h, and s, and system (2) comprises equations for
the two slow variables [Ca] and [Na], which denote the
intracellular calcium and sodium concentrations, respectively.
Hence, the five-dimensional fast subsystem depends on two
parameters that yield curves in the ([Ca],[Na])-parameter
plane along which bifurcations occur. These curves can readily
be computed with standard software packages, for example,
with XPPAUT [23].

Rubin et al. [20] used fast-slow decomposition to highlight
the underlying bifurcation set of (1) that dictates the qualitative
form of the DB bursting pattern. They found that there are
two types of bifurcations, namely, a saddle-node bifurcation
on an invariant cycle, denoted SNIC, and an Andronov-Hopf
bifurcation, denoted AH; Fig. 1(a) shows the curves SNIC
and AH in the ([Ca],[Na]) plane. For values ([Ca],[Na])
in-between the curves SNIC and AH, an attracting periodic
orbit of (1) exists together with a single equilibrium from
which it bifurcates at AH; the equilibrium also exists to the

right of AH, where it is stable. For values ([Ca],[Na]) to the
left of SNIC, three equilibria exist; one of these is stable
and corresponds to hyperpolarized voltages near the resting
potential. During one period of the DB bursting pattern in the
full system (1)&(2), the path taken by the slow variables [Ca]
and [Na] is such that bifurcation curves are crossed four times;
this is illustrated in Fig. 1(a), where the DB bursting pattern is
shown in projection onto the ([Ca],[Na]) plane. Our hypothesis
is that the quantitative features of this particular path taken by
the two slow variables [Ca] and [Na] control the specific pattern
of the time course of v shown in Fig. 1(b).

The stages of the DB bursting pattern listed in Sec. I can
be explained in terms of the trajectory path in the ([Ca],[Na])
plane. Starting from a point on the periodic orbit located top
left in the ([Ca],[Na]) plane, the trajectory lies near the family
of hyperpolarized rest states and the DB bursting pattern is
in the quiescent or silent phase (i); upon crossing the curve
SNIC, sustained voltage spiking emerges (ii); as soon as the
curve AH is crossed, the frequency of the spiking increases
significantly, while the amplitude decreases during stages (iii)
and (iv); spiking reemerges as the path crosses AH again (v),
which is followed by a return to silence after crossing SNIC
for the second time (vi). Hence, the active phase of each burst,
namely, the epochs of voltage spiking and elevated voltage
in stages (ii)–(v), occurs while the trajectory is on the side
of the curve SNIC that contains AH; the attenuation of spike
amplitude and approach towards depolarization block of stages
(iii) and (iv) occurs between the two crossings of AH; compare
with [20]. Barreto and Cressman [21] also associated curves of
saddle-node bifurcations on an invariant cycle and Andronov-
Hopf bifurcations with bursting dynamics.

For this paper, we think of the output of the seven-
dimensional model as our data set, or target output for a
reduced model. In an actual application, it would be replaced
by experimentally recorded data.

III. IMPOSED PATHS FOR A FOUR-DIMENSIONAL
REDUCED MODEL

Our simulations show that a fairly similar DB-like burst-
ing pattern can be obtained from a reduction of the seven-
dimensional model of Rubin et al. [20] to a four-dimensional
version. This reduction is achieved by a quasi-steady-
state approximation, made by setting m = m∞(v) and s =
s∞(v)/(s∞(v) + k), and by the classical step of replacing h

with 1–1.08 n [7,24]. The fast subsystem is then reduced to the
following two-dimensional model:

v′ = −1

c
{IL(v) + IK(v,n) + INa(v,m∞(v),1–1.08 n)

+ Isyn(v,s∞(v)/(s∞(v) + k))

+ ICAN(v,[Ca]) + Ipump([Na])},

n′ = 1

τn(v)
[n∞(v) − n]. (3)

Figure 2 shows DB bursting for the reduced system (3)&(2).
The DB bursting pattern of (3)&(2) is again projected onto
the ([Ca],[Na]) plane in Fig. 2(a), along with the bifurcation
curves SNIC and AH for the two-dimensional fast subsystem
(3), and the time course for v is shown in Fig. 2(b). Due to the
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FIG. 2. DB bursting in the reduced four-dimensional system
(3)&(2). (a) Shows the bursting oscillation in projection onto the
([Ca],[Na]) plane overlaid on the SNIC and AH curves. (b) Shows
the corresponding time course of voltage v; compare with Fig. 1.

approximations used, an adjustment of some of the parameter
values was required for achieving the characteristics of DB
bursting of the target system (1)&(2); see the Appendix for
details. One key ingredient is that we have obtained a similar
bifurcation structure of the fast subsystem for (3) as for (1).
Another is achieving the appropriate sequence of traversals
of bifurcation curves. Despite the overall similarity between
the systems, comparison with Fig. 1 reveals some differences
with the DB bursts from the seven-dimensional model, which
we found to persist despite extensive exploration of parameter
space: in the DB bursts of the reduced model, stage (ii) of
sustained voltage spikes is brief, the voltage spikes are less
attenuated in the approach toward depolarization block in stage
(iv), and the reemergence of spiking is prolonged in stage (v).
These effects are linked in Fig. 2(a) with the behavior of the
slow variable [Ca]; the projection of the bursting solution of
the four-dimensional system onto the ([Ca],[Na]) plane shows
that during the spiking phase, the trajectory dances back and
forth across the curve AH, failing to cross over it completely.

The comparison between Figs. 1 and 2 indicates that the
model reduction from seven to four dimensions induces an
unwanted effect on the behavior of the slow variables [Ca]
and [Na]. Rather than trying to fit the slow-variable dynamics,
however, our approach is to ignore their biological relevance
completely. That is, we will demonstrate that, given a particular
bifurcation structure of the fast subsystem, we can generate

a desired quantitative pattern by imposing a path on the
associated slow variables. For this purpose, unwanted effects
in a particular parameter tuning are not relevant, as long as
the bifurcation structure is present. To this end, we replace
the biological ([Ca],[Na]) dynamics with imposed paths in the
([Ca],[Na]) plane, so that the combined system has the relevant
qualitative and quantitative features of DB bursting as given
by the seven-dimensional model; see also [12,14] for similar
ideas with one-dimensional imposed paths.

More specifically, we consider a parameterized path P in
the ([Ca],[Na]) plane in the form of an ellipse with principal
axes along the [Ca] and [Na] axes. Such an ellipse reasonably
resembles the path shown in Fig. 1(a), yet it is defined by only
five parameters that still provide enough freedom to adjust
quantitative features of the dynamics. A sixth parameter is the
speed ε with which the ellipse is traced. Hence, P is defined
as

P = P([Ca]c,[Na]c,d,[Ca]0,[Na]0,ε)

:=

⎧⎪⎪⎨
⎪⎪⎩

[Ca](t) = [Ca]c + ([Ca]0 − [Ca]c) cos (ε t)
− d ([Na]0 − [Na]c) sin (ε t),

[Na](t) = [Na]c + ([Na]0 − [Na]c) cos (ε t)
+ 1

d
([Ca]0 − [Ca]c) sin (ε t).

Here, [Ca]c and [Na]c define the center of the ellipse, d is its
aspect ratio, and ([Ca]0,[Na]0) is a chosen initial point at time
t = 0. The ranges for [Ca] and [Na] are the intervals [[Ca]c −
δ, [Ca]c + δ] and [[Na]c − 1

d
δ, [Na]c + 1

d
δ], respectively,

where δ =
√

([Ca]0 − [Ca]c)2 + d2 ([Na]0 − [Na]c)2. For the
paths used in this paper, we fix [Na]0 = [Na]c and use [Ca]0 to
tune the path width and d to control its aspect ratio. We assume
0 < ε � 1, such that P is traced in the counterclockwise
direction and [Ca] and [Na] evolve slowly in time. We stress
again that elliptical paths do not represent a model of any
biological process, but are rather used as a tool for exploring
the space of slow variables and, thereby, accessing features of
the fast subsystem dynamics.

It is convenient for our purposes that the evolution along an
ellipse P can also be considered as the solution of the system
of ordinary differential equations

[Ca]′ = −εd ([Na] − [Na]c),

[Na]′ = ε
1

d
([Ca] − [Ca]c), (4)

for the initial conditions [Ca]0 and [Na]0. By combining system
(4) with the fast subsystem (3) of the reduced four-dimensional
model, we obtain the four-dimensional driven model (3)&(4)
that is the main subject of this paper. Note that the formulation
(4) suffices for our purposes here, even though its periodic
orbits, the ellipses, are not isolated. In case continuation of the
overall periodic orbit of the driven system (3)&(4) is required,
a family of isolated attracting elliptical periodic orbits can be
obtained in similar fashion from a scaled version of the Hopf
normal form [23].

IV. RESULTS

The approach of imposing a path P for the two slow
variables [Ca] and [Na] allows us to control and explore
their qualitative and quantitative effects systematically. Our
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FIG. 3. DB bursting patterns for the seven-dimensional driven
system (1)&(4) with [Ca]c = 0.7, [Na]c = 5.35, [Ca]0 = 0, and ε =
0.009, and three different values for d , namely, d = 1

2 (blue, outermost
ellipse), d = 2 (purple, central ellipse), and d = 20 (red, innermost
ellipse). (a) Shows the three paths P in the ([Ca],[Na]) plane overlaid
on the loci for SNIC and AH, and (b) shows the three corresponding
time courses for v; note that only the time course with d = 1

2 shows
isolated tonic spikes at the start of each burst.

main result is that we are able to quantify different features
observed in the (fast) voltage variable of DB bursting patterns
by harnessing the behavior of the underlying slow subsystem;
these findings go beyond the standard approach of determining
the bifurcation diagram of the fast subsystem.

A. Bursting with an imposed ([Ca],[Na]) ellipse

We expect that a driven system, where the two slow variables
[Ca] and [Na] evolve as determined by an imposed elliptic path,
can exhibit DB bursting if the fast subsystem gives rise to a
region in the ([Ca],[Na]) plane bounded by bifurcation curves
SNIC and AH. We now confirm that claim by showing that the
qualitative features of DB bursting are obtained by choosing a
pathP that crosses these curves in the specific sequence SNIC,
AH, AH, and SNIC.

We first explore this for a driven version of the seven-
dimensional model, that is, by combining the fast subsystem
(1) with the driven system (4). Figure 3 shows three different
DB bursting patterns for system (1)&(4), using three different
imposed paths for the slow variables [Ca] and [Na]. The
imposed paths in the ([Ca],[Na]) plane are shown in Fig. 3(a)
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FIG. 4. DB bursting patterns for the four-dimensional driven
system (3)&(4) with [Ca]c = 0.15, [Na]c = 5.85, [Ca]0 = 0, and
ε = 0.004, and three different values for d , namely, d = 1

5 (blue,
outermost ellipse), d = 1 (purple, central ellipse), and d = 50 (red,
innermost ellipse). (a) Shows the three paths P in the ([Ca],[Na])
plane overlaid on the loci for SNIC and AH, and (b) shows the three
corresponding time courses for v; note that the time courses with
d = 1 and d = 50 are shifted ahead in time and show less spike
attenuation within the burst relative to that for d = 1

5 .

overlaid on the loci for SNIC and AH of the fast subsystem
(1); the corresponding three time courses for v are shown
in Fig. 3(b). For each path, we used [Ca]c = 0.7, [Na]c =
5.35, with initial condition [Ca]0 = 0 (recall that we always
set [Na]0 = [Na]c) and constant speed ε = 0.009. Only the
aspect ratio d was varied, namely, d = 1

2 for the outermost
ellipse (blue) shown in Fig. 3(a), which was increased to
d = 2 (purple, central ellipse) and then d = 20 (red, innermost
ellipse). All three paths cross the curves SNIC and AH in the
specified sequence needed for DB bursting and, as illustrated
in Fig. 3(b), all yield DB bursting patterns that exhibit the
qualitative features described for stages (i)–(vi); note that the
path with d = 1

2 yields some tonic spiking at the onset of each
active phase that is also seen in the DB bursting of system
(1)&(2), and which is a quantitative feature not seen for the
other paths.

Qualitatively similar DB bursting can be obtained for the
four-dimensional driven system (3)&(4). Since the loci of
SNIC and AH for the fast subsystem (3) have shifted slightly in
the ([Ca],[Na]) plane, slightly different paths must be imposed.
Figure 4 shows the effect of three different ellipses centered
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at [Ca]c = 0.15 and [Na]c = 5.85, with [Ca]0 = 0 and ε =
0.004. Again, only the aspect ratio d was varied, where we
chose d = 1

5 (blue, outermost ellipse), d = 1 (purple, central
ellipse), and d = 50 (red, innermost ellipse). As for Fig. 3, the
associated paths are overlaid in Fig. 4(a) on the loci for SNIC
and AH in the ([Ca],[Na]) plane, and the three corresponding
time courses for v are shown in Fig. 4(b). Note that only a short
segment of each of the three imposed elliptic paths lies in the
region to the right of AH, which regulates stages (iv) and (v)
of DB bursting. Consequently, the approach towards and away
from the depolarization block state of steady, elevated voltage
is relatively brief; compare Figs. 3(b) and 4(b). Also, the path
with d = 1

5 (blue, with earliest burst onset) yields particularly
deep hyperpolarizations between bursts, and maximal spike
attenuation during bursts, which is also the case for the path
with d = 1

2 (blue, exhibiting isolated tonic spikes at the start
of the burst) in Fig. 3. The difference in the range for the t axes
in Figs. 3(b) and 4(b) is controlled by the different choices
for ε.

Thus, as expected, the qualitative features of the DB
bursting pattern for both the full seven-dimensional driven sys-
tem (1)&(4) and the reduced four-dimensional driven system
(3)&(4) are entirely determined by the type of bifurcations
exhibited by their respective fast subsystems and the specific
order in which these bifuractions are encountered. As illus-
trated in Figs. 3 and 4, we can easily control such properties
by choosing [Na]c large enough and deciding on appropriate
values for [Ca]c and [Ca]0. We also observe, however, that
quantitative differences in the bursting patterns are obtained by
tuning the aspect ratio d of the elliptic path, as well as the speed
ε at which this path is traced. For example, comparison between
Figs. 3 and 4 suggests that the speed with which [Ca] and
[Na] traverse the same path leads to quantitative differences
in the bursting. We next pursue the idea of linking model
parameters associated with the imposed path in ([Ca],[Na])
space to quantitative features of the DB pattern.

B. Quantitative features of bursting beyond the basic
bifurcation structure

We now explore how the dynamics of the fast subsystem
can be analyzed to determine quantitative features of bursting
solutions for the full system. Here, we focus exclusively on the
reduced four-dimensional driven system (3)&(4).

We first return to the consideration of the traversal rate
of the imposed path. Figure 5 shows time courses of v for
three quantitatively different bursting patterns for the four-
dimensional driven system (3)&(4) with ε = 0.002 in panel
Fig. 5(a), ε = 0.006 in Fig. 5(b), and ε = 0.01 in Fig. 5(c) for
an imposed elliptic path with the parameters [Ca]c = 0.15,
[Na]c = 5.85, [Ca]0 = 0, and d = 0.1. Consistent with the
previous subsection, when ε is small, each phase of the burst
is elongated due to the smaller traversal rate; note the different
t scales in the three panels. Moreover, as ε increases, the faster
traversal of the same path in the ([Ca],[Na]) plane yields less
attenuation of the voltage oscillations during the depolarization
block phase of each burst cycle. As is particularly clear in
Fig. 5(a), a slower traversal intensifies this attenuation.

We dig deeper into the source of quantitative differences in
patterns by next considering the time intervals between spikes
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FIG. 5. The same path in the ([Ca],[Na]) plane can yield quantita-
tive differences in bursting features, depending on the speed at which it
is traversed. Shown are the time courses of v for the four-dimensional
driven system (3)&(4) resulting from the same imposed elliptic path
with speeds ε = 0.002 in (a), ε = 0.006 in (b), and ε = 0.01 in (c).
The other parameters for the path are [Ca]c = 0.15, [Na]c = 5.85,
[Ca]0 = 0, and d = 0.1.

in stage (ii) of a DB bursting pattern, during which repetitive,
high-amplitude voltage spikes occur. These spikes arise from
a family �0 of stable periodic orbits of the fast subsystem
that exist in the ([Ca],[Na]) region between the bifurcation
curves SNIC and AH. The time intervals between spikes
can vary significantly across successive spike pairs within a
bursting solution, and the time until emergence of the first
spike after the second crossing of SNIC can differ appreciably
across parameter values and paths. Our hypothesis is that these
quantitative features observed in stage (ii) of DB bursting
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FIG. 6. Interspike intervals of the DB bursting pattern are sig-
nificantly affected by the different periods of the periodic orbits in
the family �0 of the fast subsystem that are encountered along the
imposed path. (a) Shows SNIC and AH in the ([Ca],[Na]) plane
along with contours (gray) of equal period for periodic orbits in
�0. Overlaid are a vertically wide path (blue) with [Ca]c = 0.15,
[Na]c = 5.2, d = 0.1, and [Ca]0 = 0 and a horizontally elongated
path (red) with [Ca]c = 0.1, [Na]c = 5.1, d = 1, and [Ca]0 = −0.1.
The corresponding time courses of v over the first half period are
shown in (b) and (c), respectively; their crossings of the curves SNIC
and AH are marked with black and green circles, respectively.

are controlled by characteristics of the ([Ca],[Na])-dependent
family �0.

Specifically, we note that each periodic orbit in �0 has
a well-defined period that depends on the choice for [Ca]
and [Na]. The periods encountered along a path P are de-
termined by the location of this imposed path in the region
bounded by SNIC and AH. We find that the progression of
periods encountered alongP strongly shapes the time intervals
between spikes in stage (ii) of the resulting DB bursting
pattern. Figure 6(a) shows the curves SNIC and AH in the
([Ca],[Na]) plane together with contours of equal period for
the periodic orbits of the family �0. The periods associated
with the contours progressively decrease as we move farther
from SNIC, starting from 40 for the curve closest to SNIC,
although close to AH some nonmonotonicity sets in (e.g., note
the turning point for the labeled contour with period 10.1).
This panel also includes two elliptic paths with ε = 0.009:
the vertically extended path (blue) is given by [Ca]c = 0.15,
[Na]c = 5.2, d = 0.1, and [Ca]0 = 0, and the horizontally
elongated path (red) by [Ca]c = 0.1, [Na]c = 5.1, d = 1, and

[Ca]0 = −0.1. The corresponding time traces of v over the
first half period are shown in Figs. 6(b) and 6(c), respectively.
The filled black and green circles indicate the moment when
the solutions cross SNIC and AH, respectively.

The vertically extended path (blue) crosses SNIC roughly
orthogonal to the period contours and thus progresses quickly
to a region with relatively short periods. The interspike inter-
vals in the corresponding time trace of v, shown in Fig. 6(b), are
relatively short, with little change over the period of the burst.
In contrast, the horizontally elongated path (red) crosses SNIC
in a direction that is aligned with the high-period contours
close to the curve SNIC. Correspondingly, there is a longer
delay from the crossing (black circle) to the first spike in the
time trace of v, shown in Fig. 6(c), and the first few interspike
intervals are longer than any of the ones shown in Fig. 6(b),
with a gradual compression of spike times over the course of
the burst. Note that we selected parameter values such that the
overall times from the start (black circles) to the end (green
circles) of the active phase, between SNIC and AH, are quite
similar for both DB bursts, so the longer interspike intervals in
Fig. 6(c) are not simply due to a slower passage through stage
(ii) of the DB bursting pattern.

Next, we turn to stages (iv) and (v) of the DB bursting
pattern and quantify the approaches towards and away from
the depolarization block state of steady, elevated voltage, which
occur after the first and second crossings of AH, respectively.
The observed rate of contraction (expansion) is related to the
stable (unstable) eigenvalues obtained from the linearization
of the fast subsystem about the equilibria associated with
this elevated state. Near the curve AH of Andronov-Hopf
bifurcations, these equilibria all have complex-conjugate pairs
of eigenvalues. Their real parts are negative to the right of AH
and positive to the left of it. Figure 7(a) shows 15 contours
in the ([Ca],[Na]) plane of these real parts Re(λ), uniformly
distributed from −0.05 to 0.09; the curve AH corresponds to
the contour Re(λ) = 0. We select three elliptic paths that are
all centered at [Ca]c = 0.19 and [Na]c = 5.75 and use [Ca]0 =
0.04 and ε = 0.004. The only difference in these contours
is in their aspect ratios, which are d = 0.1 (blue, outermost
ellipse), d = 0.2 (purple, central ellipse), and d = 0.4 (red,
innermost ellipse). Their intersections with AH are marked
with squares and triangles, indicating the first and second
crossings, respectively. The corresponding time courses for
v are shown in Fig. 7(b), where time is shifted so that the
first crossing occurs at t = 0 (marked by a vertical line with a
green square on it). Here, the burst with d = 0.2 (purple, top)
is plotted in actual coordinates, while the ones with d = 0.1
(blue, bottom) and d = 0.4 (red, middle) have been shifted
down by 200 and 100 mV, respectively.

As shown in Fig. 7(b), stage (iv) of the DB bursting
patterns is rather similar across these parameter values, even
though the times until the second crossing of AH (triangles)
are different. Observe that the times between AH crossings
for the bursts with d = 0.2 (purple, top) and d = 0.4 (red,
middle) are similar, while the burst with d = 0.1 (blue, bottom)
exhibits a significantly longer stage (iv). Figure 7(a) illustrates
that the burst with d = 0.4 (red, innermost ellipse) does not
cross the contour Re(λ) = −0.05, which indicates that the
net contraction towards the depolarization block state is not
as strong as for the other two bursts. Consequently, even
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FIG. 7. Contraction to and expansion away from the depolariza-
tion block state depends on the real part Re(λ) of the eigenvalues of
the associated equilibria in the fast subsystem that are encountered
along the imposed path. (a) Shows SNIC and AH in the ([Ca],[Na])
plane along with contours (gray) of Re(λ). Overlayed are paths
with [Ca]c = 0.19, [Na]c = 5.75, [Ca]0 = 0.04, and ε = 0.004, and
varying d = 0.1 (blue, outermost ellipse), d = 0.2 (purple, central
ellipse), and d = 0.4 (red, innermost ellipse). The corresponding time
courses of v are shown in (b) with time shifted so that the first crossing
occurs at t = 0 (green square on the vertical line at t = 0), and voltage
shifted down by 200 and 100 mV for the time courses with d = 0.1
(blue, lowermost trace) and d = 0.4 (red, middle trace), respectively;
the second crossing of AH is marked with triangles.

though the bursts with d = 0.2 (purple, central ellipse) and
d = 0.4 (red, innermost ellipse) spend about the same time
to the right of AH, the time needed to expand away from the
depolarization block state is shorter for the burst with d = 0.4
(red, innermost ellipse), resulting in a shorter time until the
onset of stage (v); see Fig. 7(b). Note further that the longer
time spent to the right of AH for the burst with d = 0.1 (blue,
outermost ellipse) results in a stronger contraction towards the
depolarization block state and subsequent slower expansion
away from it. Hence, this case includes no additional spikes
before the voltage drops to initiate the silent phase at the end
of stage (v).

In fact, the times spent between crossings of bifurcation
curves and the rates of contraction and expansion encountered
during these times, as indicated by the contours in Fig. 7(a),
combine in such a way that the total number of additional
spikes exhibited in stage (v), before the return to the silent

phase, depends nonmonotonically on the aspect ratio of the
imposed elliptic path. The time courses in Fig. 7(b) are ordered
to emphasize this nonmonotonicity; they reveal that the largest
number of additional spikes occur for the (purple, central)
elliptic path with d = 0.2. Although these spikes start earlier
within the burst for larger d, such as d = 0.4 (red, innermost
ellipse), the relatively short time from the second AH crossing
to the second SNIC crossing limits the number of spikes that
can occur within stage (v). For smaller d, such as d = 0.1
(blue, outermost ellipse), the need for additional expansion to
overcome the strong contraction from stage (iv) is so strong
that not even a full spike can be fired within stage (v) before
SNIC is crossed and the active phase ends.

V. DISCUSSION

We introduced and demonstrated a conceptual approach to
modeling and analysis of fast-slow dynamics that allows one
to determine and extract quantitative information of relevance
to the application at hand. Our approach applies to fast-slow
systems with at least two slow variables and proceeds as
follows:

(i) In the first step, the standard fast-slow decomposition
method is used to extract the possible qualitative features of
the system dynamics by determining the bifurcation structure
of the fast subsystem. From this structure, one can infer which
attracting states will be encountered by any closed path in the
space of slow variables.

(ii) Continuation along each family of states is used to
obtain additional quantitative information such as the periods
of attracting periodic orbits of the fast subsystem and the
contraction rates associated with invariant objects of the fast
dynamics. Obtaining information on the fast subsystem in the
regions that are traversed along a path in the slow-variable
space allows a characterization of the specific quantitative
features that the full system solution will exhibit when it
follows that path.

(iii) Once this information has been obtained, a path in
slow-variable space can be designed to provide a desired
set of solution features, which could be used to inform the
development of a model for slow-variable dynamics or to guide
a data fitting algorithm.

As our specific test-case example we considered depolariza-
tion block or DB bursting as displayed by a seven-dimensional
model from [20] for neurons of the respiratory brain stem.
Here, the concentrations [Ca] of calcium and [Na] of sodium in
the neuron evolve on a much slower time scale than the voltage
potential v across the cell membrane, which is the observable
in experiments. We derived a four-dimensional reduction of
that model with only two fast variables and also considered
its driven version, where the family of paths was chosen to be
ellipses in the plane of [Ca] and [Na]. DB bursting is organized
qualitatively by a curve of saddle-node bifurcations on an
invariant cycle (SNIC) and a curve of Andronov-Hopf bifur-
cations (AH) of the fast subsystem, and elliptic paths naturally
capture the crossing sequence arising in the biological model.
The bursting pattern traces a family of attracting periodic orbits
of the fast subsystem, and also exhibits contraction towards and
subsequent expansion away from the equilibrium curve along
which the Andronov-Hopf bifurcation occurs. Although there
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are some quantitative discrepancies between the dynamics
during the active phase in the seven- and four-dimensional
biological models, a key point is that by tuning imposed paths,
we can select particular quantitative features of fast-subsystem
dynamics.

More specifically, we found that the amount of time an im-
posed path spends in different regions of the ([Ca],[Na]) plane,
corresponding to passage between bifurcation curves, is only
one factor in determining timing-related quantitative features
of the resulting bursting pattern. In fact, the periods of the peri-
odic orbits of the fast subsystem that are encountered along the
path play a crucial role in shaping the spike frequency within
the bursts; this relation can be analyzed by computing contours
of equal period in the region where (attracting) periodic orbits
of the fast subsystem exist. Moreover, we found that abrupt
transitions from slow spikes (at the onset of spiking) to faster
spikes can be predicted this way. Similarly, the eigenvalues
of the equilibria of the fast subsystem that are encountered
along the path are responsible for the observed contraction
and expansion rates associated with the depolarization block
state of DB bursting; details can be analyzed by computing
contours of equal real parts of such eigenvalues in the relevant
regions of the ([Ca],[Na]) plane. These contours explain an
apparent and initially counterintuitive nonmonotonicity in the
number of spikes that arise at the end of the DB phase,
just before the onset of the silent phase, with respect to the
aspect ratio d of the imposed elliptical path in the ([Ca],[Na])
plane. We find similar results (not reported here) with the
models proposed in [21,22]. Given their connection to the
well-established relationship between bifurcation structures
of the fast subsystem and qualitative features of the bursting
pattern, we believe that our ideas will naturally extend to
models with different underlying bifurcation diagrams of their
associated fast subsystems; for example, our approach might be
of use for modeling and analysis of the sound patterns produced
by songbirds [25,26].

The linkage that we have established between quantitative
bursting features and path of traversal through the ([Ca],[Na])
plane opens the door to designing an imposed path for the
slow variables [Ca] and [Na] to achieve a particular quantitative
outcome. This ability to control solution features is very useful
from the perspective of model development, especially in
situations where it is advantageous to work with a lower-
dimensional model reduction that must be tuned to capture
complicated dynamics. The design of paths can guide model
development and, moreover, it may be useful for parameter
estimation and fitting for the slow dynamics, which may be
particularly helpful in light of difficulties in experimentally
measuring quantities associated with slow variables in neural
models. Once a family of paths has been chosen, the path
or paths with the most suitable quantitative features can be
selected. We used ellipses here, but other, more complicated
paths would often be more natural to consider; in our example,
such paths would likely allow a closer fit between the voltage
dynamics of the reduced four-dimensional model and the target
seven-dimensional model. An important point is that the family
of paths is specified by a reasonably low number of parameters.
Interestingly, paths giving similar quantitative features within
the fast dynamics may be nonunique, and observations of
such nonuniqueness may be useful either to guide design of

TABLE I. Parameter values used for the functions in the seven-
dimensional model (1)&(2).

Conductances Reversal Half
(nS) potentials (mV) activations

gL = 3.0 EL = −60.0 θh = −30.0 mV
gNa = 150.0 ENa = 85.0 θm = −36.0 mV
gK = 30.0 EK = −75.0 θn = −30.0 mV
gsyn = 2.5 Esyn = 0.0 θs = 15.0 mV
gCAN = 4.0 ECAN = 0.0 kCAN = 0.9 μM

Slopes Time
(mV or μM) constants (ms) Scaling constants
σh = 5.0 th = 15.0 kNa = 10.0 mM
σm = −8.5 tm = 1.0 [Na]b = 5.0 mM
σn = −5.0 tn = 30.0 kCa = 22.5 ms−1

σs = −3.0 τs = 15.0 [Ca]b = 0.05 μM
σCAN = −0.05 kIP3 = 1200 μMms−1

Other
C = 45.0 pF k = 1.0 rpump = 200.0 pA
ε = 7 × 10−4 α = 6.6 × 10−5 mMpA−1ms−1

experiments that can select the most suitable paths or to confirm
that a model features the dynamic robustness that allows
some biological systems to maintain function across variable
conditions [27–29]. In addition to exploring identifiability of
slow dynamics from observations of fast-variable features,
another natural direction for future work is to consider the
utility of our proposed approach for parameter estimation of
fast-slow bursting models by coupling it with optimization
techniques. One challenge is to define suitable functions that
encapsulate, in terms of relevant quantitative features, the
distance of a given (periodic) output from the dynamics under
consideration; in applications, the latter may be generated
by an actual experiment, rather than a higher-dimensional
mathematical model.
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APPENDIX

For completeness, we provide here the precise definitions of
the functions used in system (1)&(2); the parameters are given
in Table I. Recall that system (1)&(2) is the same model of DB
bursting in neurons of the respiratory brain stem as described
in [20] and full details can also be found there.

The equation for voltage v in system (1) includes the
following currents:

IL(v) = gL (v − EL),

IK(v,n) = gK n4 (v − EK),

INa(v,m,h) = gNa m3 h (v − ENa),

Isyn(v,s) = gsyn s(v − Esyn),
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TABLE II. Parameter values used for the functions in the two-
dimensional fast subsystem (3) that are different from those used in
the five-dimensional fast subsystem (1).

gK = 15.0 nS θs = 10.0 mV
gCAN = 10.0 nS kCAN = 0.25 μM
σs = −8.0 mV kCa = 60.0 ms−1

k = 10.0 kIP3 = 1700 μMms−1

ε = 0.005 rpump = 1500.0 pA

ICAN(v,[Ca]) = gCAN (v − ECAN)

1 + exp[([Ca] − kCAN)/σCAN]
,

Ipump([Na]) = rpump [φ([Na]) − φ([Na]b)],

where

φ([Na]) = [Na]3

[Na]3 + k3
Na

.

The equations for n, m, h, and s all have a similar form, with

X∞(v) = 1.0

1.0 + exp[(v − θX)/σX]
,

where X ∈ {n,m,h,s}, and

τX(v) = tX

cosh
(

v−θX

2 σX

) ,

where X ∈ {n,m,h}; the time scale τs(v) = τs for s is taken
constant. There are many parameters in this model, and their
values as used in this paper are listed in Table I.

The reduced two-dimensional fast subsystem (3) is obtained
from the five-dimensional fast subsystem (1) by taking quasi-
steady-state assumptions for m and s and setting h = 1–1.08 n.
We use the same parameter values as in Table I, except
those specified in Table II, which were adapted to recover the
bifurcation structure of the fast subsystem and general slow
subsystem behavior as in system (1)&(2).
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