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Breathing pulses in the damped-soliton model for nerves
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Unlike the Hodgkin-Huxley picture in which the nerve impulse results from ion exchanges across the cell
membrane through ion-gate channels, in the so-called soliton model the impulse is seen as an electromechanical
process related to thermodynamical phenomena accompanying the generation of the action potential. In this
work, account is taken of the effects of damping on the nerve impulse propagation, within the framework of
the soliton model. Applying the reductive perturbation expansion on the resulting KdV-Burgers equation, a
damped nonlinear Schrödinger equation is derived and shown to admit breathing-type solitary wave solutions.
Under specific constraints, these breathing pulse solitons become self-trapped structures in which the damping
is balanced by nonlinearity such that the pulse amplitude remains unchanged even in the presence of damping.
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I. INTRODUCTION

The action potential is most commonly described as a
propagating form of the voltage difference across the nerve
membrane [1–11]. This voltage difference traveling along the
nerve axon as an electrical pulse, originates from unbalanced
distributions of negative and positive ions on either side of
the membrane. In past years a lot of effort has been devoted
to understanding the mechanism underlying the generation
and propagation of the action potential. Exploiting Bernstein’s
pioneer idea [5] of a key role held by membrane’s permeability
in ions flow across the nerve cell membrane, Hodgkin and
Huxley suggested that the membrane contains proteins that
selectively conduct sodium and potassium ions [1]. In the
so-called Hodgkin-Huxley model [1–3] the nerve axon is
treated as an electrical circuit in which proteins are represented
as resistors, while the membrane is treated as a capacitor. In
this picture, ion currents flowing through the membrane create
a voltage pulse which propagates along the nerve axon.

The main characteristic feature of the Hodgkin-Huxley
model is the propagation equation for the action potential,
which is derived using Kirchhoff’s laws and thus depends
only on electrical parameters. Although the electrical-circuit
representation describes rather satisfactorily several aspects
of the action potential related to the electrical activities of the
nerve, it has been unable to provide answers to mechanical and
thermal responses accompanying the generation of the action
potential. In fact, the mechanical and heat signatures in the
generation of the action potential suggest that the nerve pulse
should be an adiabatic and reversible phenomenon, reminiscent
of a propagating mechanical wave.

The soliton model of the nerve impulse was proposed as an
alternative to the electrical model, in which the action potential
is described as an electromechanical process for which both
mechanical and thermodynamical phenomena contribute. In
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this model the nerve impulse is associated with the change
in the nerve membrane density and thus is a density pulse
propagating along the membrane. Following its proposal, a
great deal of theoretical interest has been devoted to the model;
in particular, distinct types of solitonlike structures associated
with the density change have been investigated. Namely, Heim-
burg and Jackson [12–14] obtained numerically bright soliton
solutions to the model, while Contreras et al. [15] obtained
analytically two forms of solutions for the density equation.
In this last work the authors established that in the gel state of
the nerve, the soliton model admits bright solitons, whereas in
the liquid states they admit dark solitons [15]. Vargas et al.
[16] observed that the dark and bright solitons previously
proposed do not explain some important experimental features
such as the hyperpolarization, the refractory periods, and stable
periodic wave trains. Instead they investigated periodic wave
trains under the assumption that the nerve density, as well
as the overall length of the nerve, remain unchanged as the
impulse propagates. As pointed out by Vargas et al. [16],
such assumption is inconsistent in real nerves where the law
of mass (and hence density) conservation does not hold, and
the length also is not conserved because of the stretching and
compression of the muscles attached to the nerve, which can
drastically affect profiles of the propagating wave trains. The
inconsistency of this assumption actually puts into evidence the
need for a better description of the generation of soliton wave
trains in the nerve, one possible route being the phenomenon
of self-modulational instability. The phenomenon of self-
modulational instability was proposed for the soliton model
by Larios et al. [17], within the framework of the bifurcation
analysis. On the other hand, studies of soliton collisions [18]
in biomembranes and nerve have shown that an initial large-
amplitude pulse introduced in the nerve will decay into a series
of soliton pulses. These soliton pulses spread out, displaying an
undershoot, hence suggesting that the modulational-instability
phenomenon might be responsible for the formation of periodic
pulse trains observed during nerve experiments, including the
undershoot and refractory periods.
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More recently, theoretical studies have predicted that the
propagating solitons contain two modes, namely, a transverse
mode and a longitudinal mode. The transverse mode is charac-
terized by the swelling and relaxation of the biomembrane and
has a beating or symmetric wave profile, while the longitudinal
mode is of a dark or bright-shape soliton type [19,20]. However,
most works have focused only on the longitudinal solution of
the Heimburg model of nerve. Also the physical context of
a thick axon nerve, and of a myelinated nerve having a high
conduction speed compared to a thin nerve as evidenced by
the ions channel model, has not been considered within the
framework of the Heimburg model. Last, the phenomenon of
nerve signal blockage too has not been considered within the
framework of the Heimburg model.

In this work, we address the above issues by considering
the Heimburg nerve model with friction. We obtain analytical
expressions for the breathing soliton modes, and show that the
modulational-instability phenomenon in the nerve is associ-
ated with the changes in viscosity and might be responsible
for stable periodic wave trains observed during experiments.
The obtained damped breathing soliton is relevant for it
encompasses all the mechanical changes occurring during the
propagation of the action potential, including the nerve signal
blockage and the high conduction speed due to changes in
the thickness (viscosity) of the nerve. To obtain the breathing
solution we shall use the method of multiple-scale expansion,
combined with the reductive perturbation [21,22], which will
enable us to obtain the evolution equation for the nerve impulse.

II. MODEL AND DAMPED NONLINEAR
SCHRÖDINGER EQUATION

The soliton model describes mechanical processes that
occur in biomembranes. The model is based on the assumption
that the nerve axon, seen as a cylindrical biomembrane, under-
goes a phase transition from fluid to gel states at a temperature
slightly below the body temperature. Heimburg and Jackson
[12] observed that close to the melting transition, the speed of
the propagating density pulse depends both on the membrane
density and the propagation frequency. From this observation
they suggested that the presence of nonlinearity, characterized
by a density dependence on the speed of the density pulse,
and of the dispersion resulting from the frequency dependence
on density pulse, would introduce the possibility for localized
excitations with soliton features. The phase transition can be
initiated either by the propagation of action potential along
the axoplasm [19], by a local cooling, or by mechanical
perturbations [12]. They proposed that the density change
responsible for the nerve impulse, as well as the associated
mechanical responses, could be described by the following
equation [12]:

∂2�ρA

∂t2
= ∂

∂x

([
c2

0 + α�ρA + β(�ρA)2] ∂�ρA

∂x

)

+ ν
∂2

∂x2

(
∂�ρA

∂t

)
− h

∂4�ρA

∂x4
. (1)

Explicitly, Eq. (1) is a Heimburg model with a damping
term added to the system. It describes the propagation of an
area density pulse �ρA through the nerve axon after taking

into account the effect of damping. The equation assumes a
propagation of the nerve impulse by compression and rarefac-
tion of lipid molecules through a nerve axon, where x is the
impulse position at time t . h and ν are parameters that measure
the dispersion and friction of the nerve axon, respectively,;
�ρA = ρA − ρA

0 is the change in area density of the nerve axon
between the gel-state density (ρA) and the fluid-state density
(ρA

0 ); KA
s accounts for a lateral compressibility of the axon

while c2
0 = 1

KA
s ρA

0
, α = − 1

KA
s (ρA

0 )2 , and β = 1
KA

s (ρA
0 )3 .

While in most previous works the effect of friction has
not been taken into consideration, in real membranes the
movement of the muscle attached to the nerve can cause
nerve compression, nerve stretching, and nerve friction, all
of which affect the nerve impulse profile. Also the nerve
membrane is not homogeneous, thus the composition of lipids
and protein should vary and therefore the elastic constant
of the nerve is expected to vary locally [12–14]. Since we
consider the membrane as a viscous elastic fluid, the aspect of
internal frictions due to vibrations of fluid particles cannot be
neglected. The interaction between systems usually introduces
the phenomena irreversibility and dissipation. There are nu-
merous approaches in the literature that take into account these
interactions [23–26]. The generalization of irreversible pro-
cesses based uniquely and without additional assumptions or
approximations on the nonlinear equation of motion, recently
proposed by Baretta as the dynamical principle of quantum
thermodynamics, as well as their possible adaptation to phys-
ical and nonphysical problems, can be found in Refs. [24,25].
Note also that in [23], the Heisenberg-Langevin equation was
used to derive a Schrödinger equation for a Brownian particle
interacting with a thermal environment. In the following, we
apply the methods of reductive perturbation and multiple-
scale expansion on Eq. (1), to obtain a damped nonlinear
Schrödinger equation assumed to describe the dynamics of the
amplitude of envelope solitons propagating within the nerve in
the presence of friction. Consider the dimensionless variables
u, z, and τ , defined as

u = �ρA

ρA
0

, z = c0x√
h

, τ = c2
0t√
h

. (2)

With these new variables, we obtain the following dimension-
less density-wave equation:

∂2u

∂τ 2
= ∂

∂z
[(1 + pu + qu2)uz] − ∂4u

∂z4
+ μ

∂3u

∂z2∂τ
, (3)

where

μ = ν√
h

, q =
(
ρA

0

)2

c2
0

β, p = ρA
0

c2
0

α.

As we are interested in weakly nonlinear and weakly dissi-
pative solution to Eq. (3), we apply the method of reductive
perturbation. In this goal we introduce a small parameter ε

(ε � 1), and proceed with the substitutions p → ε2p, q →
ε2q, μ → εμ, into (3). This leads to the following nonlinear
damped equation for the nerve impulse in a one-dimensional
cylindrical axon

∂2u

∂τ 2
= ∂

∂z
[(1 + ε2pu + ε2qu2)uz] − ∂4u

∂z4
+ εμ

∂3u

∂z2∂τ
.

(4)
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Next consider the variable changes

y = ε(z − τ ), s = ε3τ, (5)

where ε and ε3 are chosen in such a way to balance the effects
of nonlinearity and damping. Using this transformation, terms
of order ε4 give

∂u

∂s
+ 1

2
(apu + a2qu2)uy − 1

2

∂3u

∂y3
= a2 μ

2

∂2u

∂y2
, (6)

which is the Burgers-Korteweg–de Vries (BKdV) equation.
Note that in Eq. (6) we proceeded with the substitutions u →
au and μ → a2μ, after setting terms of order ε4 to zero. It
is also important to note here that this transformation did not
fundamentally affect the structure of the system. Actually the
choice of the order of perturbation a is such that nonlinearity
and damping are not balanced in the BKdV equation (6).

In the present work, we are looking for solitons made
up of carrier waves modulated by envelope signal, which
is called breathing pulses or solitons. This type of soliton
appears naturally for most weakly nonlinear systems which
are described by a wave equation in the small amplitude limit.
Since we are studying low amplitude nonlinear excitations
in a weakly dissipative soliton model, it is adequate to use
a multiple-scale expansion method. The multiple-scale ex-
pansion is a perturbation technique in which both the carrier
waves and the amplitude are treated in the continuum limit
[21,22]. It is thus incumbent on us to use this technique to
obtain the evolution equation of the BKdV equation, when
nonlinearity and damping are now balanced. The method
involves introducing two time and spatial scales, i.e., the fast
time and spatial scales for the oscillations and the slow time
and spatial scales for the envelope amplitude. This method has
been used to derive the nonlinear Schrödinger equation from
the KdV equation in Ref. [21]. Proceeding with calculations,
we introduce new time scale si = ais and space scale yi = aiy,
and assume a solution of the form

u(y,s) =
∞∑
i=0

aiu(s0,s1,s2,y0,y1), (7)

where each value of si and yi is treated as an independent
variable. This leads to a perturbation series of operators from
all independent variables

∂

∂s
= ∂

∂s0
+ a

∂

∂s1
+ a2 ∂

∂s2
. (8)

An important feature of the multiple-scale method is the fact
that the solution of the original problem will only be obtained,
if a multidimensional space is generated by the new sets of
variables of si and yi that come from the physical line

s0 = s, s1 = as, s2 = a2s,

and

y0 = y, y1 = ay, y2 = a2y.

Proceeding similarly, we obtain the operator for the spatial
scale

∂

∂y
= ∂

∂y0
+ a

∂

∂y1
. (9)

Next we replace the above operators into the different terms of
the BKdV equation, and then group terms of the same order
of a to obtain a system of equations. Each of these equations
will correspond to each approximation having harmonics of a
specific order. But one of the major difficulties of this method
lies in the choice of the ansatz used, since the ansatz varies with
the model. Thus one usually guesses the appropriate form of
the ansatz for a given model; in our specific case we pick the
following operators:

∂2

∂y2
= ∂2

∂y2
0

+ 2a
∂2

∂y0∂y1
+ a2 ∂2

∂y2
1

. (10)

According to the multiple-scale expansion method, the ansatz
for the solution u must be consistent with the series expansion
of differential operators in powers of the small parameter
a [21,22] adopted in (10). Let us therefore write u as a
perturbative series, and consider only terms to the first order
in a, i.e.,

u = Aeiθ + A∗e−iθ + a(C + Be2iθ + B∗e−2iθ ), (11)

where θ = (ky0 − ωs0) and the amplitudes A, B, and C

correspond, respectively, to (s1,y1,y2). We then substitute
equations (8), (9), (10), and (11) into (6), and look for relations
between terms of same orders in a with terms in e±iθ , e±2iθ

without an exponential dependence set to zero. To the order a0,
the annihilation of terms in e±iθ gives the dispersion relation
of linear waves, i.e.,

ω = k3

2
. (12)

To the order a1, the cancellation of terms in e±iθ gives

∂A

∂s1
+ vg

∂A

∂y1
= 0, (13)

where vg is the group velocity defined as

vg = ∂ω

∂k
= 3k2

2
. (14)

Setting terms in e±2iθ to zero gives

B = − pk

6k3
A2. (15)

To the second order in the perturbation, terms with zero
exponential dependence yield

∂C

∂s1
− p

2

∂|A|2
∂y1

= 0. (16)

Now consider the transformation y = (y1 − vgs1) and τ = s1,
and comparing the result with (13) we obtain the relation

C = p

3k2
|A|2. (17)

To the second order in the perturbation, terms of order e±iθ

give the damped nonlinear Schrödinger equation

i
∂A

∂s2
+ P

∂2A

∂y2
1

+ Q|A|2A + iRA = 0, (18)

which describes the evolution of the envelope amplitude of the
density pulse u in the one-dimensional cylindrical nerve axon.
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Here the nonlinearity or (self-trapping), the damping and the
dispersive coefficients Q, R, and P , respectively, are real and
are defined in terms of membrane parameters as

Q =
(

ρA
0

2c0

)2(
α2

3c2
0k

2
− kβ

)
, P = 3k

2
, R = νk2

2
√

h
.

(19)

The imaginary term in the nonlinear Schrödinger equation
causes the damping of the amplitude and shows the irreversibil-
ity of the time evolution but not any effect of dissipation of
energy. A similar Schrödinger equation with an imaginary
(even nonlinear) added term was proposed by Beretta [25],
introducing irreversible time evolution toward a state of max-
imum entropy, but without dissipation of energy.

Remark that in Ref. [9], it was shown that the evolution of
nerve signal in the Hindmash-Rose model can be described by
a similar equation but with complex coefficients then referred
to as complex Ginzburg-Landau equation. Electrical solitons in
dendrites and axons rely not on nonlinear inductance or capaci-
tance, but on an active membrane. This result suggested that the
brain may actively work not only in time domain but also effec-
tively use the spatial dimension for information processing. In
the present case, the damped nonlinear Schrödinger equation
obtained from the Heimburg soliton model in neuroscience,
clearly indicates that information encoding and transmission in
the form of an electromechanical wave traveling along the axon
can also emerge as modulated structures, and not only in the
form of nerve pulse as observed in Refs. [12–18]. A biophysical
model for the mechanical action waves that accompanies action
potential with a similar profile was also proposed by Hady and
Machta [20].

III. LOCALIZED PERIODIC WAVE TRAINS
IN THE NERVE: MODULATIONAL INSTABILITY

Before seeking for soliton solutions to the damped nonlinear
Schrödinger equation (18), it is useful to first examine the
stability of plane waves in the system. With this goal in
mind, we carry out a modulational-instability analysis [9,27] of
small-amplitude impulse signals propagating in the dissipative
nerve. As shown by Benjamin and Feir [28] in the context of
fluids dynamics, such instability can be a precursor of localized
periodic wave trains in systems exhibiting weak nonlinearity.

The plane-wave solution to the damped nonlinear
Schrödinger (18) can be written in the general form

A = A0e
i(ξy1−ϕs2)e−Rs2 , (20)

where ξ is the wave number, ϕ is the frequency, and A0 is the
amplitude of the plane wave. The dispersion relation associated
with the plane wave (20) is given by

ϕ = Pξ 2 − QA2
0e

−Rs2 . (21)

Now consider small perturbations a1(y1,s2) and φ(y1,s2) on
the amplitude and phase, respectively, of the plane wave such
that the solution (20) can be rewritten

A(y2,s1) = [A0 + a1(s2,y1)]ei(ξy1−ϕs2)+φ(s2,y1)e−Rs2 . (22)

Replacing (22) in the damped nonlinear Schrödinger equation
(18), and retaining only linear terms in the perturbations,

a separation of real part from imaginary part leads to the
following two coupled linear differential equations:

∂a1

∂s2
+ 2ξP

∂a1

∂y1
+ PA0

∂2φ

∂y2
1

= 0 (23)

and

−A0
∂φ

∂s2
+P

∂2a1

∂y2
1

−2ξA0P
∂φ

∂y1
+ (

2QA2
0 − ξ 2 + ϕ

)
a1 = 0.

(24)

Suppose the solutions to the system (23) and (24) are

a1 = a0e
i(Ky1−�s2) (25)

and

φ = φ0e
i(Ky1−�s2), (26)

where a0 and φ0 are constants, and K and � are the modulation
wave vector and frequency, respectively. Substituting (25) and
(26) into (23) and (24) gives rise to

i(−� + 2PKξ )a0 − 2PA0K
2φ0 = 0, (27)( − PK2 + 2QA2

0 − ξ 2P + ϕ
)
a0 + iA0(� − 2PξK)φ0 = 0.

(28)

Equations (27) and (28) can be represented as a 2 × 2 ma-
trix, for which the two possible eigenvalues are two distinct
dispersion relations for the perturbations, i.e.,

�(K) = 2PξK ±
√

P 2K4 + QA2
0K

2P (e−Rs2 − 2). (29)

For the plane wave to be modulationally unstable the modula-
tion frequency � must be a complex function. We define the
modulation gain as G = 2Im[�(K)] [29]; it follows then that
a plane wave will be unstable if

P 2K4 + QA2
0K

2P (e−Rs2 − 2) < 0. (30)

For the ideal Heimburg model, where there is no damping, i.e.,
R = 0, the condition (30) reduces to

Q

P
>

K2

A2
0

. (31)

For very large values of A0 the relation (31) reduces to

PQ > 0, (32)

which is the Benjamin-Feir instability criteria for the nonlinear
Schrödinger equation, or the ideal Heimburg model [9,21].
When this condition is fulfilled, the amplitude of perturbation
grows exponentially and plane waves are therefore unstable.
In Fig. 1, we plotted the modulation gain G as a function of the
modulation wave number K for different values of the viscosity
ν [Fig. 1(a)], and as a function of both the modulation wave
number and the viscosity [Fig. 1(b)].

We observe that changes in the nerve viscosity affect the
modulation gain in the system; in fact, G is seen to grow with
an increase in the viscosity meaning that the viscosity increases
the modulational instability in the nerve. As a consequence
the plane-waves solution to the damped nonlinear Shrödinger
equation become unstable, and will eventually break up into
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FIG. 1. (a) Gain spectrum for different values of viscosity.
(b) Three-dimensional representation of the gain. Parameters chosen
are ξ = 40 and a = 0.0002, A0 = 0.2, and t = 10−4.

filaments of stable periodic wave trains. Note that the stability
of solitons in the presence of dissipations in the Heimburg-
Jackson model has been studied numerically [18]. It was shown
that large-amplitude solitons decay into a series of several
pulses in the presence of damping effects [18]. This result
has been obtained from a generalization of the Boussinesq
equation, proposed to be relevant for pulse propagation in
biomembranes and nerves. They found that solitons retain
their characteristic properties even in the presence of relatively
strong damping. On the contrary, for low-amplitude soliton
solutions obtained after reducing the Boussinesq equation into
the nonlinear Schrödinger equation, the presence of damping
increases the amplitude of the perturbation growth rate.

IV. SOLITON SOLUTIONS TO THE
ENVELOPE EQUATION

A. General soliton solutions

We now turn to large-amplitude nerve impulse signals.
In general, the damped nonlinear Schrödinger equation (18)
admits several distinct types of nonlinear traveling-wave so-
lutions, including dark and bright soliton solutions. These
solutions depend on the sign of coefficients P and Q, which are
functions of k and of the system parameters α, β, and h. When
PQ > 0, Eq. (18) admits an envelope soliton solution which
has a vanishing amplitude as |y1| → ∞, and corresponds to a
small-amplitude breathing pulse. However, if PQ < 0, a dark
(envelope hole) soliton will propagate with finite amplitude
as |y1| → ∞. In this section, we shall be interested in a

solitary-wave solution to Eq. (18), obtained under the condition
PQ > 0.

It is well known [21] that when PQ > 0, the nonlinear
Schrödinger equation (18) without the damping term admits a
modulated pulse-shaped solitary-wave solution of the form

A(y1,s2) = A0 sech[B(y1 − ues2)]e−i(k0y1−ωs2), (33)

where the pulse amplitude A0, inverse width B, velocity ue, and
modulation wave vector k0 and frequency ω, are all constant
both in time and space. It should be noted here that this ansatz is
valid for trivial boundary conditions (i.e., y1 → ∞, then A →
0 and dA

dy1
= 0). Let us postulate that in the presence of a weak

damping, the pulse shape is preserved but its characteristic
parameters (in particular the pulse amplitude and width) can
vary. In terms of this assumption, we consider the solution of
Eq. (18) to be of the following general form [30–32]:

A(y1,s2) = A1sech(τ )e−i(k0y1−ωs2), (34)

where A1 is the pulse amplitude, and τ = B(y1 − ues2) with
B = 1/le (le is the pulse width to be defined below). Substitut-
ing the general pulse solution (34) into leads to the following
more explicit solution to the damped nonlinear Schrödinger
equation

A = A1sech

⎧⎪⎪⎪⎩(y1 − ues2)

√
Q

2P
A1e

−Rs2

⎫⎪⎪⎪⎭
× i(ue/2P )(y1 − ucs2), (35)

where the pulse amplitude A1, the pulse width le, and the carrier
speed uc are given, respectively, by

A1 =
√

u2
e − 2ueuc

2PQ
e−Rs2 , (36)

le = 2Pc0√
h
(
u2

e − 2ueuc

) , (37)

and

uc = 4P 2 − 2u2
e l

2
e

2uele
. (38)

It follows from Eqs. (36) and (37) that for the width and
amplitude of the damped soliton to be real, the velocities and
the nonlinear and dispersion coefficients must satisfy

uc <
ue

2
, PQ > 0. (39)

Figure 2 displays time evolutions of the amplitude A1

[Fig. 2(a)], the width le [Fig. 2(b)], and the carrier speed uc

[Fig. 2(c)], for some values of the damping coefficient ν.
As expected, when ν = 0 (corresponding to an ideal

nerve) the three characteristic parameters are constant in time.
However, for nonzero values of ν the envelope amplitude
decays exponentially while its width grows exponentially in
time. The carrier speed grows with time and saturates at a
finite threshold value which is increased as viscosity (i.e.,
the damping) increases. The latter observation is reminiscent
of the well-established fact that the conduction velocity of
the nerve impulse depends on the size of an axon, and on
the thickness (and hence the viscosity) of its myelin sheath
[33,34]. In Ref. [34] it was pointed out that the speed of the
action potential also depends on the stiffness of the axolemma.
Furthermore, the myelinization of an axon by a tight wrapping

012211-5



FONGANG ACHU, MOUKAM KAKMENI, AND DIKANDE PHYSICAL REVIEW E 97, 012211 (2018)

(c)

(b)

(a) V=0
V=5000
V=6000

8

FIG. 2. Time variations of the amplitude A1 (a), width le (b), and
carrier speed ue of the envelope soliton (c) for a = 0.2 and k = 1.
Parameters are taken from the works of Heimburg and Jackson on
unicellular DPPC vesicles [12].

of Schwann cells around the axon in a spiral manner, is aimed
at increasing the rigidity of the axon membrane and therefore
will increase the conduction speed if the viscosity of the nerve
is assumed constant. However, temperature changes have been
shown to affect the viscosity, and consequently the speed of
propagation of the impulse. It should be noted that the viscosity
increases with a decrease in temperature [35]; an increase in
the viscosity means a damping of the electromechanical waves
at all frequencies and consequently an increase in the speed of
the action potential [34].

B. Breathing-mode solitons

The damped nonlinear Schrödinger equation (18) does not
govern the spatiotemporal evolution of the nerve impulse, but
rather of the amplitude of one term in the series representing
the overall solution to Eq. (1). To find the general solution rep-
resenting the wave form associated with the nerve impulse in
the soliton-model picture, we need to substitute (35) into (11).
Proceeding with and transforming into original coordinates,
we obtain

�ρA = (
2aρA

0 A1
)
sech ε

(
x − Vet

le

)
cos(Kx − �t)

+
(

a2ρA
0 pA2

1

2vg

)
sech2ε

(
x − Vet

le

)

−
(

a2ρA
0 pA2

1

2ω

)
sech2 ε

(
x − Vet

le

)
cos2(Kx − �t),

(40)
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FIG. 3. Evolution of the breathing soliton (�ρA) along the nerve
(x), at different times. Parameters were chosen as ε = 0.02, le = 0.8,
a = 0.0001, k = 0.008, ue = 100, uc = 10, ν = 0.05, h = 2.22.

where

Ve = ac0(1 + aεue), (41)

K = c0√
h

(
k + aue

2P

)
, (42)

and

� = c2
0√
h

(
k + ε2ω + aue

2P
+ ueuca

2ε3

2P

)
. (43)

The solution formula (40) represents a breathing soliton dis-
playing two important physical features, namely, the hyperpo-
larization and the refractory periods, observed in experiments.
Figure 3 represents the evolution of the solution (40) along
the nerve at different times. In the figure, the undershoot
characterizing the two features is manifest through a phe-
nomenon by which part of the nerve input signal goes below
zero. Note that throughout this work, we used experimental
values of the parameters proposed by Heimburg and Jackson
[12] and given by c0 = 176.6 m/s, α = −16.6c2

0/ρ
A
0 , β =

79.5c2
0/(ρA

0 )2, ρA
0 = 4.035 × 10−3 g/m3.

It is worthwhile stressing that the solution found in the
present work [i.e., in (40)] is quite different from the Bell
solitons proposed by Heimburg and Jackson [12], in which the
features of hyperpolarization and refractory periods were not
accounted for. To highlight the consistency of the breathing-
soliton solution (40) with experimental observations, let us
explore some of its relevant profiles for specific parameter
sets. Consider first of all the effect of varying the magnitude of
the perturbation parameter a, on the breathing-soliton profile.
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FIG. 4. Evolution of the breathing soliton (�ρA) along the nerve
(x), for different values of the perturbation parameter a and for
t = 0.1, le = 0.8, ε = 0.02, k = 0.008, ue = 100, uc = 10, ν = 0.05,
h = 2.22. The profile (a) represents a typical breathing mode soliton
while (b) and (c) are typical longitudinal and transverse profiles,
respectively.

Figure 4 shows changes in the spatial profile of the impulse as
a is changed, suggesting a great variety of shape profiles for
the nerve impulse when the perturbation parameter is varied
(but remaining small).

The second feature reflected by the analytical solution (40)
is the phenomenon of nerve-impulse blockage, associated with
an increase of viscosity. In Fig. 5 we represented profiles
of the impulse signal along the nerve at different times, for
different values of the damping coefficient ν. As one can see,
the breathing pulse soliton is highly sensitive to changes in the
viscosity of the nerve. Namely, when changes in the viscosity
are very large the impulse signal becomes completely damped,
as illustrated in Fig. 5. This phenomenon, reflecting a blockage
of the nerve signal due to changes in the viscosity, is very useful
in the development of mechanical anesthesia. Such mechanical
anesthesia might be advantageous to conventional chemical
anesthesia in that it can easily be reversible, by reducing
external pressure on the nerve. Although no change in the
chemical composition of the nerve is expected, high pressure
may, however, cause nerve damage. Nerve-signal blockage
has been observed using different models of the nerve. For
instance, in Ref. [36] Shneider and Pekker have shown, using
the Hodgkin-Huxley model, that an increase in the perturbation
amplitude will lead to initiation of the action potential. They
stressed that a further increase may cause blockage of the
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FIG. 5. Evolution of the nerve impulse nerve with changes in
viscosity at different time intervals. The nerve impulse is completely
damped due to an increase in the viscosity. Parameters were chosen
as ε = 0.02, le = 0.8, a = 0.0001, k = 0.008, ue = 100, uc = 10,
ν = 0.05, h = 2.22.

nerve impulse in a region of depleted channel density. In [37],
Novacek et al. used the Fitzhugh-Nagumo neuron model in a
numerical study showing that an application of high-frequency
stimulations on the nerve leads to nerve blockage, whereas low-
frequency simulations of the nerve would favor propagation of
the nerve impulse.

In general, viscosity is related to how thick a fluid is; it
reflects a resistance of the fluid against its flow or motion. A
number of factors can change the viscosity of a fluid, as for
instance the change in temperature: the nerve is more viscous
at low temperature than at high temperature. High pressure
on the nerve also can change the internal friction (viscosity),
leading to nerve-impulse blockage.

C. Self-trapping solitons

During experiments on the nerve, external fields such as
ultrasound, microwave [36], pressure, or electrical signals [38]
are usually utilized to excite the nerve. In general, these signals
are periodic, of high amplitudes and unstable. In the nerve,
they are trapped and propagate along with the solitons. To be
able to stabilize these unstable external fields the nerve must
possess certain properties, and the resulting stable signals can
be referred to as self-trapped signals.

For self-trapping to occur in a nonlinear system such as
the damped nonlinear Schrödinger equation, the nonlinearity
coefficient Q must be greater than zero. This condition implies
that the nonlinearity coefficient Q has the main stabilizing
effect on the breathing pulse signal, which can be overcome
only when the frequency of the input signal is sufficiently large
[39,40]. Applying the condition Q > 0 to our problem, with
Q defined in (19), yields the condition α2 > 3c2

0k
3β for the

trapping and propagation of periodic waves along the nerve.
On this same issue, Tappert and Varma [39] suggested an-

other condition for self-trapping in the nonlinear Schrödinger
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FIG. 6. (a) Amplitude of the soliton envelope at different times t .
(b) Three-dimensional propagation of the nerve impulse for ε = 0.02,
le = 0.8, a = 0.0001, k = 0.008, ue = 100, uc = 10, ν = 0.05, h =
2.22. The signal propagates with constant profile without dissipation
of energy.

equation. According to them, for a pulse of width le to
undergo self-trapping its amplitude |u|2 = 2ε2a2|A|2 must
exceed some critical threshold, i.e.,

|u2| > |u2|c = rh2

Ql2
e

, (44)

where r is a perturbation parameter and h is the dispersion
coefficient. Once the condition (44) is satisfied, the damped
nonlinear Schrödinger equation admits stationary solution.
Stationary solutions are solutions in which the dispersion and
nonlinearity are exactly balanced; such solutions are called
envelope solitons [39] and these are strictly the types of waves
described by Heimburg and Jackson in Ref. [12]. Expressed in
terms of the original coordinates, the envelope sSoliton in this
case can be written

|(�ρA)|2 = 2a2ε2A2
1

(
ρA

0

)2
sech2ε

(
x − Vet

le

)
. (45)

More precisely, Eq. (45) is the amplitude of the self-trapping
solution of the damped nonlinear Schrödinger equation. This
solution shows that periodic unstable external stimulations
can propagate as stable envelope soliton pulses, moving with
constant profile even in the presence of damping. The self-
trapping soliton solution is plotted in Fig. 6, where it is seen
to be similar (the modulus) to that obtained numerically by
Heimburg and Jackson [12] on one hand, and to the bright
soliton obtained analytically by Contreras et al. in [15] without
considering the damping, on the other hand.

V. DISCUSSION AND CONCLUSION

The propagation of action potential along the nerve can be
accompanied by important mechanical responses, such as the

change in the axonal radius, the change in nerve pressure, and a
shortening of the axon. These mechanical responses have been
predicted and well accounted for by the so-called Heimburg
model of the nerve [12], in which the nerve impulse generation
is regarded as a thermodynamic phenomenon related to char-
acteristic properties of lipid membranes. The model considers
the nerve as a long and narrow cylinder, in which ions flow
across the membrane and the motion of the density difference
on the two sides of the membrane is typical of long-wavelength
(i.e., soundlike) waves.

In this work we considered the Heimburg model in the
presence of damping, the aim being to investigate the effects
of viscosity on soliton propagation along the nerve. We
established that in the regime when nonlinearity and dispersion
are balanced, the nerve-impulse propagation is described by
the KdV-Burgers equation. A multiple-scale expansion method
on the KdV-Burgers equation led to a damped nonlinear
Schrödinger equation, whose solution was found to be a
modulated pulse with a damped amplitude and time-varying
width. It was shown that under specific constraints these
breathing-type solitons could become self-trapped structures
in which the damping is balanced by nonlinearity, such that
the pulse amplitude and width remain unchanged even in the
presence of damping.

The breathing-soliton solution found in this work reveals a
number of interesting features which would provide relevant
insight into a better understanding of the propagation of the
nerve impulse in a damped nerve. Namely, we obtained that
the breathing soliton oscillates while changing profile as the
result of changes in the perturbation parameters, assumed to
represent the soliton interaction with its environment. The
breathing soliton does not break down into a series of sinusiodal
waves in the presence of damping. However, at large values of
the damping coefficient, corresponding to a relatively strong
viscosity effect, the breathing soliton will be completely
damped. This behavior is relevant in the development of a
possible mechanism for mechanical anesthesia.

Although typically assumed to degrade performance, ran-
dom fluctuations or noise can sometimes improve information
processing in nervous system. Understanding the constructive
role of noise in the context of neuronal oscillations in the
brain using the soliton model for nerves can facilitate our
mastering of signal processing in the neural system [41]. In
the present work, we have studied the dynamics of a simple
damped soliton model for nerves pulse without considering
the effect of noise. However, there is a possibility of adding a
noise term to the partial differential equation, describing the
dynamics of the nerve pulse in the framework of the soliton
model. A stochastic KdV-Burgers equation may be derived
by employing some suitable transformations. Such stochastic
KdV-Burgers equation was a subject for much research in
recent years [42,43]. For example, the invariance of white
noise under the flow of a stochastic KdV-Burgers equation,
and the local and global well-posedness of the stochastic
KdV-Burgers equation with white noise was analyzed by
Richards in [42,43]. The effect of thermal fluctuations and/or
noise sources on the formation and propagation of solitons
on long Josephson junctions was also analyzed in [44–46]. In
the context of nervous systems, however, the issue of noise in
the nerve-impulse dynamics requires a lot of caution: noise in
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the nerve system can come from several and distinct origins
and a proper identification of its nature would be necessary
before embarking on its treatment. An external stress, for
instance, will not be treated the same way we would treat
a disturbance in the nerve-impulse propagation caused by
chemical reactions between enzymes, or between the ionic

species flowing across the membrane and substances “foreign”
to the neuronal environment. Noise will be considered in
our future work in the framework of the soliton model for
biomembranes and nerves after a proper identification of the
nature of noise likely to affect the nerve-impulse propagation
and the results obtained will be published in due time.
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