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Dynamical localization phenomena of monochromatically perturbed standard map (SM) and Anderson map
(AM), which are both identified with a two-dimensional disordered system under suitable conditions, are
investigated by the numerical wave-packet propagation. Some phenomenological formula of the dynamical
localization length valid for wide range of control parameters are proposed for both SM and AM. For SM the
formula completely agree with the experimental formula, and for AM the presence of a new regime of localization
is confirmed. These formula can be derived by the self-consistent mean-field theory of Anderson localization on
the basis of a new hypothesis for the cut-off length. Transient diffusion in the large limit of the localization length
is also discussed.
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I. INTRODUCTION

In one-dimensional quantum systems, strong localization
phenomena have been observed due to large quantum interfer-
ence effect when disorder exists in the system. A quite similar
localization phenomenon occurs in classically chaotic dynam-
ical systems which exhibit chaotic diffusion in the classical
limit. A typical example of the former is one-dimensional
disordered systems (1DDS) [1,2], and the latter one is the
quantum standard map (SM) [3]. It has been shown that
the localization of the wave packet can be delocalized by
applying dynamical perturbation composed of a few number
of coherent modes [4–11]. If the number of the modes is more
than two, the delocalization takes place through a localization-
delocalization transition (LDT) accompanied by remarkable
critical phenomena as the perturbation strength is increased.
It has been explored in detail the transition process from the
localized phase for mode number more than two.

In the previous paper [12], we also investigated quantum
diffusion of an initially localized wave packet in the poly-
chromatically perturbed Anderson map (AM), which is a
time-discretized version of the Anderson model, in comparison
with the SM driven by the same polychromatic perturbation.
However, the nature of quantum diffusion exhibited by the
monochromatically perturbed AM and SM, which has been
supposed to be localized, have not still been well-investigated,
except for early stage studies on SM [13].

Experimentally, Manai et al. observed the critical phe-
nomenon of the LDT for Cesium atoms in an optical lattice
[6], which is an experimental implementation of the perturbed
SM, and the observed results were successfully interpreted as
a three-dimensional LDT based on the equivalence between

SM and multi-dimensional disordered lattice by the so-called
Maryland transform [14]. Their results are also interpreted by
the self-consistent theory (SCT) of the weak localization in
three-dimensional disordered system (3DDS) [4–11]. Further,
they recently observed the localization phenomenon in the
SM driven by coherent monochromatic perturbation [15]. This
work is a very important experimental contribution in the sense
that it first succeeded in realizing the two-dimensional disor-
dered system (2DDS) as a monochromatically perturbed SM in
the optical lattice. To confirm the presence of localization, very
long time-scale data must be examined, which is very difficult
in real experiment but is much easier in numerical simulation.
After the early report suggesting the presence of localization
[13], there has been no work of numerical simulation for the
monochromatically perturbed SM.

The experimental results should be examined by reliable
numerical simulation taking sufficiently long time steps, which
will be done in the present paper. We note also that there
have been several studies on the localization of the coupled
SM, which can be identified with the 2DDS by the Maryland
transform [16,17], but no definite quantitative results have been
established, because long time-scale simulation of coupled
rotors is much more difficult than the monochromatically
perturbed SM.

There are two main purposes in the present paper. One
is to explore systematically the localization characteristics
of the monochromatically perturbed SM with the numerical
and theoretical methods. We focus our investigation on the
quantum regime in which the coupling strength is smaller
than a characteristic value decided by the Planck constant,
and we reexamine the validity of the experimentally observed
result of the Manai et al. in a wide parameter range of the
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quantum regime. Our results are interpreted by the SCT of the
localization based on a newly proposed hypothesis.

Another purpose is to report the characteristics of mono-
tonically perturbed AM in comparison with the perturbed SM
mentioned above, whose localization property has not been
fully investigated. The AM is close to the original model
of random lattice proposed by Anderson in a sense that
randomness is explicitly included, and has its own physical
origin quite different from the SM. Note that there have
been some publications for numerical results of AM [18–20],
and the presence of localization phenomenon for unperturbed
and monochromatically perturbed AM was stressed, but the
present paper is the first detailed quantitative exploration of
the dynamical localization length and the scaling properties
for the monochromatically perturbed AM. The parameter
dependence of the localization length on the disorder strength
and perturbation strength are given numerically, and it is
theoretically interpreted based on the SCT of the localization.

Our main concern is whether or not the above-mentioned
two models with quite different physical origin share common
features of the dynamical localization phenomenon. The out-
line of the paper is as follows. In the next section, we introduce
model systems, monochromatically perturbed SM and AM,
examined in the present paper. The numerical results of scaling
properties of the localization length in the perturbed SM and
AM are given in Secs. III and IV, respectively, and some
empirical formula representing the localization characteristic
are proposed. In particular, the existence of two different
regimes of the localization is confirmed for AM. In Sec. V,
these formula are consistently derived by the SCT of Anderson
localization for anisotropic 2DDS [21,22] by introducing some
hypothesis for the characteristic length as a cut-off in the
self-consistent equation. In addition, the relation between SM
and AM is made clear by the Maryland transform [14]. In
Sec. VI, we discuss the characteristics of diffusion for both
models observed transiently on the way to the final localization.
The existence of the semiclassical regime beyond the quantum
regime is emphasized for SM. The last section is devoted to
summary and discussion. In the appendices, we give some
complementary numerical results and a simple derivation of
the Maryland transform in Sec. V.

II. MODELS

The model Hamiltonian of the periodically kicked system
driven by dynamical perturbation of with the amplitude ε and
frequency ω1 is

H (p̂,q̂,t) = T (p̂) + V (q̂){1 + ε cos(ω1t + φ0)}δt , (1)

where the system is kicked by the impulsive force of period τ ,

δt =
∞∑

m=−∞
δ(t − mτ ) = 1

τ

∞∑
m=−∞

cos

(
2π

τ
mt

)
. (2)

and it frequency 2π/τ is incommensurate with ω1

Here T (p̂) and V (q̂) represent the kinetic and potential
energies, respectively, and p̂ and q̂ being the momentum
and positional operators, respectively. The evolution for the
unit time interval [sτ,(s + 1)τ ] is represented by the unitary

operator,

U (s,φ0) = e−iT (p̂)τ/h̄e−iV (q̂){1+ε cos(ω1τs+φ0)}/h̄, (3)

which is “nonautonomus” depending explicitly upon the step
s ∈ Z.

Instead of Eq. (1), we introduce an autonomous representa-
tion: consider the periodically kicked system perturbed by the
oscillator represented by the angle φ̂ and acton Ĵ = −ih̄d/dφ

operators, which we call hereafter the “J -oscillator”:

Htot(p̂,q̂,Ĵ ,φ̂,t) = T (p̂) + ω1Ĵ + V (q̂)(1 + ε cos φ̂)δt , (4)

where ω1Ĵ means the harmonic oscillator like energy of the J -
oscillator. Then the corresponding unitary evolution operator
for the time interval [0,sτ ] is expressed by Eq. (3) as

Utot(τs) = T e−i
∫ s

0 Htot(s ′)ds ′/h̄

= e−iω1Ĵ τ s/h̄T e−i
∫ s

0 dt
′
[T (p̂)τ+V (q̂)(1+ε cos(ω1t

′+φ̂))]/h̄

= e−iω1Ĵ τ s/h̄U (s,φ̂)U (s − 1,φ̂)...U (1,φ̂), (5)

where T is the time ordering operator. Let us take the action
eigenstate |J = 0〉 as the initial state of the J oscillator. It is
represented by the Fourier sum over the angle eigenstates as
|J = 0〉 = 1√

J

∑J
j |φj 〉, where φj = 2πj/J . Then, applying

Eq. (3), the wave-packet propagation by Utot from the state
|J = 0〉 ⊗ |�0〉, where |�0〉 is an initial state of the kicked
oscillator, is achieved by applying the periodically perturbed
evolution operator U (t,φ0) of Eq. (3) to the initial state |φ0〉 ⊗
|�0〉 and next summing over φ0. Summation over φ0 can be
replaced very well by the ensemble average over randomly
chosen φ0 [23]. We can thus use the representation of Eq. (3)
for the numerical wave-packet propagation. But in theoretical
considerations we often return to the representation of Eq. (4).

In the present paper, we set T (p̂) = p̂2/2, V (q̂) =
K cos q̂ for SM, and T (p̂) = 2 cos(p̂/h̄) = (e∂/∂q + e−∂/∂q)
(hopping between nearest-neighbor sites), V (q̂) = Wv(q̂) =
W

∑
n δ(q − n)vq |q〉〈q| for AM, respectively, where on-site

potential vn takes random value uniformly distributed over the
range [−1,1] and W denotes the disorder strength.

In the autonomous representation, the Heisenberg equation
(classical equation) of motion describing the monochromati-
cally perturbed SM is

ps+1 − ps = K sin qs(1 + ε cos φs),
qs+1 − qs = ps+1τ,

Js+1 − Js = Kε cos qs sin φs,

φs+1 − φs = ω1τ,

(6)

where the Heisenberg operator is defined by Xs :=
U †(1,φ)..U †(s,φ)X̂U (s,φ)..U (1,φ). The set of equations for
the monochromatically perturbed AM can be also obtained
formally by the same way, but we should note that they have
no classical counterpart.

In the case of SM, a chaotic diffusive motion occurs in the
p space according to the mapping rule Eq. (6) in the classical
limit h̄ → 0, but the diffusion is localized if ε = 0 for finite
h̄. On the other hand, the AM has no classical counterpart, but
in the continuous limit τ → 0 with keeping W/τ ∼ O(1), it
become the Anderson model with the Hamiltonian T (p̂) +
{1 + ε cos(ω1t)}V (q̂), which exhibits localization in the q

space in the limit of ε = 0. Although the space in which the

012210-2



SCALING PROPERTIES OF DYNAMICAL LOCALIZATION … PHYSICAL REVIEW E 97, 012210 (2018)

localization occurs is different in SM and AM, the mechanism
is considered as the same [14].

We explain here the numerical wave-packet propagation
based upon the nonautonomous unitary evolution operator
Eq. (3), in which φ is taken as classical number. The local-
ization phenomena take place in the momentum (p) space
for SM and in the position (q) space for AM, respectively.
The momentum space of SM and the position space of AM
are spanned by the momentum or position eigenfunctions.
We denote the eigenfunction by |n〉, where n ∈ Z, and the
momentum and position are given as p = nh̄ for SM and q = n

for AM. Further, the periodic boundary condition is imposed on
the wave function |�〉 as 〈n + N |�〉 = 〈n|�〉 for momentum
(SM) and position (AM) representations, and suppose that the
integer value n is bounded as −N/2 � n � N/2 for a very
large positive integer N .

Let the wave packet at the step t be

|�t 〉 = U (t,φ0)U ((t − 1),φ0)....U (1,φ0)|�0〉, (7)

starting with the localized state |�0〉 = |n0〉 in the momen-
tum (SM) or in the position (AM) space. We monitor the
time-dependent mean-square displacement (MSD), m2(t) =
〈∑∞

n=−∞(n − n0)2|u(n,t)|2〉
 for the propagating wave packet
u(n,t) = 〈n|�t 〉, where 〈. . . 〉
 denotes the ensemble average
over initial condition n0 for SM and different random config-
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FIG. 1. The time-dependence of the MSD of SM and AM. (a)
Unperturbed SM for K = 3.1,5.1,8.1 with h̄ = 2π1248

215 , and for K =
8.1 with + h̄ = 2π1248

214 , 2π1248
216 . (b) Monochromatically perturbed SM

for K = 3.1 and h̄ = 0.12 with ε = 0.001 ∼ 0.01 from below. (c)
Unperturbed AM with W = 0.1 ∼ 0.7 from top. (d) Monochromati-
cally perturbed AM with some combinations of ε and W . Note that
the horizontal axes are in logarithmic scale. The system and ensemble
sizes are N = 215–216 and 10–50, respectively, thorough this paper.

uration of v(n) for AM, respectively. In addition, the average
over φ0 should be taken, but the φ0 dependence of the MSD
is much weaker compared with the dependency upon n0 (for
SM) and sample of v(n) (for AM), and the averaging is ignored
if unnecessary [24].

In this paper, we compute the localization length (LL)
of the dynamical localization, pξ = √

m2(∞) for SM and
ξ = √

m2(∞) for AM, after numerically calculating the MSD
for long-time, where m2(∞) is numerically saturated MSD.
In fact, Fig. 1 shows the time-dependence of MSD for some
unperturbed and perturbed cases in SM and AM. It is found
that the growth of time-dependence is saturated and the LL
becomes larger values as the perturbation strength becomes
larger.

Note that it is difficult to get the accurate LL as the pertur-
bation strength increases for cases with the larger K/h̄ in SM
and smaller W in AM because of explosive increase of MSD.
Then we also use the time-dependent diffusion coefficients to
characterize the transient behavior before reaching the LL as
will be discussed in Sec. VI.

III. LOCALIZATION PHENOMENA IN
MONOCHROMATICALLY PERTURBED QUANTUM SM

In this section, we show the localization characteristics of
the monochromatically perturbed SM with changing the three
parameters K , h̄, and ε in a wide range. We focus on the results
of numerical experiments in the “quantum regime” where ε is
smaller than a certain characteristic value dependent upon h̄,
which will be discussed later. On the other hand, it has been
numerically and experimentally observed that, if h̄ is small
enough, then classical diffusion of coupled SMs, which can
be identified with 2DDS, is restored over a long time scale.
Problems related to the classical diffusion will be discussed in
Sec. VI.

As was already demonstrated in the experiments by Manai
et al., a remarkable feature of the SM with monochromatic
perturbation is a definite exponential growth of the localization
length with respect to the perturbation strength ε [15], namely,

pξ = Dexp{εA}, (8)

where the constants A, D are determined by K and h̄. The
experiment of Manai et al. was done for h̄ greater than unity,
i.e., in a strong quantum regime.

Figure 2 shows ε dependence of the localization length pξ

for some h̄’s and K’s. All the plots tell that Eq. (8) works quite
well. Validity of Eq. (8) was confirmed for all values of K and
h̄ we examined. The ε dependence has already been suggested
in several papers [13,16,17]. In the following, we discuss the
K dependence and the h̄ dependence of the coefficients A,
D, by the intercept and the slope numerically determined by
the semilog plot of Fig. 2. The details of the technical process
for determining coefficients A and D in Eq. (8) are given in
Appendix A.

As a result, we plot the coefficients A and D in Fig. 3 as a
function of K/h̄ fixing h̄ at two significantly different values
h̄ = 0.56 and 3.1 and changing K . The coefficients A and D

are not only proportional to (K/h̄)2, but the two curves of A

and of D overlap by extrapolation.
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FIG. 2. Localization length pξ as a function of the relatively small
perturbation strength ε in the quantum regime (ε = 1 × 10−3 ∼ 30 ×
10−3). (a) K = 3.1 for h̄ = 2π435

212 , 2π435
213 , 2π435

214 from below. (b) K =
12.0 for 2π1741

212 , 2π1741
213 , 2π1741

214 from below. Note that the horizontal
axes are in logarithmic scale.

Accordingly, the localization length of monochromatically
perturbed SM is represented by

pξ ∝
(

K

h̄

)2

exp

[
const.ε

(
K

h̄

)2
]

(9)

in the quantum regime. Note that in a limit of ε → 0, pξ

becomes the localization length of the unperturbed SM pξ ∝
( K

h̄
)2 first proposed by Casati et al. [3].
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FIG. 3. (K/h̄) dependencies of the coefficients A and D when
varying the combination of K and h̄ variously. Note that the axes are
in logarithmic scale. The heavy line shows a straight line with slope
of 2 corresponding to the (h̄/K)2.

The results obtained above agree entirely with the ex-
perimental results of the Manai et al. They explained their
results by applying self-consistent mean-field theory (SCT)
to the monochromatically perturbed SM, and they obtained
A ∝ ( K

h̄
)2, but D ∝ K

h̄
, which is inconsistent with Eq. (9). A

modified version of SCT of the localization naturally leading
to the result Eq. (9) will be presented in Sec. V B. The
modification is essential for the theoretical prediction of the
localization length discussed in the next section.

IV. LOCALIZATION PHENOMENA IN
MONOCHROMATICALLY PERTURBED AM

In this section, we show the numerical results for the lo-
calization characteristics of the monochromatically perturbed
AM. The scaling properties of LL is explored by varying the
disorder strength W and perturbation strength ε.

A. W dependence

It has been analytically found that in 1DDS the W de-
pendence of the LL of eigenstates behaves like W−2 for
weak disorder limit W � 1 by perturbation theory [25,26]
and it decreases obeying 1/ log W in the strong disorder limit
W 
 1 [27,28]. Therefore, if the LL is almost the same as
the dynamical localization length, we can expect the time-
dependent spread of the initially localized wave packet is
suppressed around the LL, and the W dependence of the
saturated MSD behaves like m2(t)(=ξ 2

0 ) ∼ W−4 in the weak
disorder limit.

Based on these facts, we investigate the localization prop-
erties of the wave packet in the monochromatically perturbed
AM. Figure 4 shows the W dependence of the LL in the system
for various perturbation strength ε. First, let us focus on the
unperturbed case (ε = 0) for which a typical situation of the
localization in AM is expected to occur. It follows that the LL
ξ0 of the unperturbed case decreases like W−2 in the weak
disorder regime as expected, but the decrease ceases around a
certain value denoted by W ∗, that is,

ξ0 �
{

c0W
−2 (W < W ∗)

ξ ∗
0 (W > W ∗)

, (10)

where c0 is a constant and ξ ∗
0 = ξ0(W ∗). The result is consistent

with the perturbation theory only for the limit W � 1, as
mentioned in Sec. II. Its reason is reconsidered with the
Maryland transform in the next section, but very intuitively we
can explain the presence of the characteristic value W ∗ above
which the ξ0 ∼ W−2 behavior changes to ξ0 ∼ const by the
periodic nature of the dynamical perturbation Eq. (2) in Sec.
II. Equation (1) together with Eq. (2) allows us to interpret
the original Hamiltonian of AM (set ε = 0 for simplicity)
as the Anderson model Hamiltonian T (p̂) + V (q̂)/τ to which
the dynamical perturbation (2/τ )

∑∞
m=1 cos(2πmt/τ ) of the

period τ is added. The latter induces a transition between
the localized eigenstates of the Anderson model if the typical
energy width W of the localized states exceeds the minimal
quantum unit h̄2π/τ of the periodic perturbation. Accordingly,
it is expected that the δ function weakens the localization effect
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FIG. 4. Localization length of the monochromatically perturbed
AM as a function of disorder strength W for various perturbation
strength ε. The unperturbed case (ε = 0) is denoted by a thick line
with large circles. Note that the axes are in the logarithmic scale.

when W exceeds the characteristic value

W ∗ � 2π

τ
h̄. (11)

Taking h̄ = 1/8, τ = 1, the above formula yields W ∗ ∼ 0.8,
which is consistent with the characteristic value of Fig. 4, above
which the monotonous decrease obeying the W−2 law ceases.
Indeed, we have confirmed the change of the value W ∗ obeys
Eq. (11) by varying the period τ .

The curves of the LL for various values of the perturbation
strength ε is over-plotted in Fig. 4. For W < W ∗, the W−2-
dependence is stably maintained even for ε �= 0, but the LL
increases with increase in the perturbation strength ε at least
in the weak perturbation limit ε � 1. On the other hand, for
W > W ∗, the LL grows up as the disorder strength W increases
if ε �= 0. In the next subsection, we look into the details of the
ε dependence of the LL for the two regions, i.e., W < W ∗ and
W > W ∗, to clarify their characteristics.

B. ε dependence

Figures 5(a) and 5(c) show the result of the ε dependence
in the the monochromatically perturbed AM for W < W ∗
and W > W ∗, respectively. It is obvious that the LL grows
exponentially as the perturbation strength ε increases in the
both cases. Therefore, in the same way as the case of SM the
LL can be expressed as

ξ � Dexp{Aε}. (12)

The coefficient D should be the LL at ε = 0 and so D =
ξ0, whose characteristics are given as Eq. (10). The most
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FIG. 5. Localization length of the monochromatically perturbed
AM as a function of perturbation strength ε for (a) W < W ∗, (c)
W > W ∗, where W ∗ = 0.8. (b) Plot of ξW 2 as a function of ε for
W < W ∗. (d) Plot of ξ as a function of εW for W > W ∗. Note that
the all the vertical axes are in the logarithmic scale. The inset in panel
(c) shows the plot of the coefficient A as a function of W , which are
estimated by linear fitting for data in the panel.

interesting point is the W dependence of the coefficient A in
the two characteristic regions, W < W ∗ and W > W ∗. For
W < W ∗ the coefficient A is almost independent of W , and
ξW 2 ∝ ξ/ξ0 = ξ/D as a function of ε overlaps each other as
shown in Fig. 5(b). As a result, we can obtain the relation
ξ ∼ c0W

−2exp{c1ε}, where c0 and c1 are certain constants.
On the other hand, in the region W > W ∗ peculiar to AM,

there is a trend that the coefficient A increases with W as seen
in Fig. 5(c). The inset in Fig. 5(c) shows the slope (coefficient
A) of the data in the Fig. 5(c) determined by fitting in the range
of 0.01 < ε < 0.08 using the method of least squares. The W

dependence of the slope increases almost linearly. Indeed, all
the plots of the LL as a function of Wε overlap as shown in
Fig. 5(d) for Wε � 1. The same scaling behaviours have been
observed for the cases with different frequency ω1 as given in
Appendix B.

As a result, the LL ξ of the monochromatically perturbed
AM can be summarized as follows:

ξ �
{
c0W

−2exp{c1ε} (W < W ∗)
ξ ∗

0 exp{c2Wε} (W > W ∗)
, (13)

where c0,c1,c2 are numerical constants and ξ ∗
0 is the saturated

LL of the unperturbed case.
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The W dependence of the coefficient A is very different
from those in SM, although the exponential growth with respect
to ε is common.

Beyond W ∗ the transition between the localized states due
to the dynamical perturbation play the role of stopping the
decrease of LL as is exhibited by Eq. (10). Recalling that
the dynamical part of perturbation potential in AM is given
by εWv(n) cos(ω1t), it is interesting to see the fact that the
perturbation amplitude Wε does not influence the LL until
W exceeds W ∗, which means that the effect of dynamical
perturbation fully works only after the transition channel
opens. Interpretation of Eq. (13) by SCT of the localization
will be presented in next section.

V. THEORETICAL EXPLANATION

In this section, we first confirm the relationship among
SM, AM, and 2DDS by the Maryland transform [14]. Next,
we give a theoretical explanation for the scaling properties
obtained numerically in the last two sections is given based on
the self-consistent mean-field theory (SCT) of the Anderson
localization in 2DDS [22].

A. autonomous representation and Maryland transformation

We return to the two degrees of freedom unitary-evolution
operator

Ûtot = e−iω1Ĵ τ/h̄e−iT (p̂)τ/h̄e−iV (q̂)(1+ε cos φ̂)/h̄, (14)

which takes the monochromatic dynamical perturbation into
account by the J oscillator in an autonomous way. It can be
written as

Ûtot = e−iÂe−iB̂e−iĈ , (15)

where

e−iÂ = e− i
h̄

[T (p̂)+ω1Ĵ ]τ , (16)

e−iB̂ = e− i
h̄
εV̂ (q) cos φτ , (17)

e−iĈ = e− i
h̄
V (q̂)τ . (18)

τ = 1 in this paper. We consider an eigenvalue equation,

Ûtot|u1〉 = e−iγ |u1〉, (19)

whereγ and |u1〉 are the quasi-eigenvalue and quasi-eigenstate,
respectively. This eigenvalue problem can be mapped into the
tight-binding form by the Maryland transform, which provides
with the foundation for applying the analysis developed for the
2DDS to our systems. This formulation further gives rise to
some remarks about our approach.

For the SM, the eigenvalue equation we take the rep-
resentation using eigenstate |m〉(m ∈ Z) of momentum p̂

and the action eigenstate |j 〉(j ∈ Z) of the J -oscillator as
u1(m,j ) = (〈m| ⊗ 〈j |)|u1〉. Then by applying the Maryland
transform, Eq. (19) is transformed into the eigenvalue equation
of the following two-dimensional lattice system (tight-binding
model) with aperiodic and singular on-site potential for newly
defined eigenfunction |u〉 related to the original one |u1〉 with

an appropriate transform shown in Appendix C:

tan

[
h̄2m2/2 + jω1h̄

2h̄
τ − γ

2

]
u(m,j )

+
∑
m′,j ′

〈m,j |t̂ |m′,j ′〉u(m′,j ′) = 0, (20)

where the transfer matrix element is

〈m,j |t̂ |m′,j ′〉 = 1

(2π )2

∫ 2π

0

∫ 2π

0
dqdφe−i(m−m′)qei(j−j ′)φ

× tan

[
K cos q(1 + ε cos φ)

2h̄
τ

]
. (21)

This is the Maryland transformed eigenvalue equation in-
cluding the additional degree of freedom contributing as the
monochromatic perturbation in the monochromatically per-
turbed SM. The details of the derivation is given in Appendix C.
In particular, note that in the semiclassical limit h̄ → 0 the
potential term become singular. Indeed, under the condition
|Kτ/h̄| > π the transfer matrix element becomes the Fourier
coefficient of a function having poles on the real axis and the
transfer matrix element does not decay as |m − m′| → ∞ and
so the analogy with the normal 2DDS is lost.

On the other hand, for the AM, we use the representation
u(n,j )(=(〈n| ⊗ 〈j |)|u〉) based on the eigenstates |q = n〉 of
the site operator n̂ and the eigenstates |j 〉 of the operator Ĵ ,
and the Maryland transformed eigenvalue equation becomes

tan

[
Wvn + jω1h̄

2h̄
τ − γ

2

]
u(n,j )

+
∑
n′,j ′

〈n,j |t̂ |n′,j ′〉u(n′,j ′) = 0, (22)

where

〈n,j |t̂ |n′,j ′〉 = 〈n,j |i e
−iεWv(q̂) cos φτ/h̄ − ei2 cos(p̂/h̄)τ/h̄

e−iεWv(q̂) cos φτ/h̄ + ei2 cos(p̂/h̄)τ/h̄
|n′,j ′〉.

(23)

In the case of ε �= 0, the evaluation of matrix elements is not
easy since the stochastic quantity vn is contained in addition
to both operators q̂ and p̂.

If we take ε = 0 as the simplest case of the hopping term
in the transformed equation of AM, it becomes

〈n,j |t̂ |n′,j ′〉 = 1

2π

∫ 2π

0
dpei(n−n′)p tan

[
cos(p/h̄)

h̄
τ

]
,

(24)

where p = 2πh̄k/N . In the small τ limit the above equation
results in an eigenvalue equation of the Anderson model with
the nearest-neighboring hopping because tan(x) � x. On the
other hand, as W increases such that τW/2h̄ exceeds π/2, the
range of the on-site potential of Eq. (22) covers the maximal
range beyond which the distribution of the on-site potential do
not change. This is an alternative explanation for the saturation
of the localization length beyondW ∗, which has been discussed
in Sec. IV A.

Furthermore, from the Maryland transformed Eqs. (20) and
(22), with ε = 0 the relationship between AM and SM can
also be roughly estimated. In the case of nearest-neighboring
hopping for AM, the disorder strength increases with W/h̄. On
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the other hand, the hopping strength increases with increase of
K/h̄ for K/h̄ � 1 in the case of SM. If the hopping strength
is normalized to be unity, the disorder strength becomes
proportional to h̄/K . Accordingly, we can also see that the
correspondence is roughly given as

W

h̄
⇔ h̄

K
. (25)

B. Interpretation of the scaling properties based on
self-consistent theory of the localization

Using the self-consistent theory of the mean-field approxima-
tion for the localization in the anisotropic 2DDS, we interpret
the scaling characteristics on the numerical results for SM
obtained in Sec. III and AM in Sec. IV, respectively.

Let Dμ(ω) be the dynamical diffusion constant in the μ

direction (μ = 1,2). It is modified from the bare diffusion
constant D(0)

μ due to the destructive quantum interference
induced by the backward scattering process of potential and
is determined by the following self-consistent equation:

Dμ(ω)

D
(0)
μ

= 1 − 1

πρ

Dμ(ω)

D
(0)
μ

∑
q1,q2

1

−iω + ∑2
ν=1 Dν(ω)q2

ν

. (26)

The second term in the right-hand side indicates the reduction
by the quantum interference effect. (ρ is the density of states.)
In the localized phase, the ω-dependent diffusion coefficient
has a form Dμ(ω) ∝ −iω and is related to a scale of the length
ξ (ω) in the infinite system as follows:

ξμ(ω)2 = Dμ(ω)/(−iω), (27)

which indeed becomes the localization length ξ (ω = 0) [or
pξ (ω = 0)], in the limit ofω → 0. Here the summation over the
wave number qμ is done up to the upper cutoff decided by the
inverse of the characteristics length �μ’s, which are important
parameters discussed below in detail. Then, Eq. (26) in the μ

direction is rewritten by an integral form,

ξμ(ω)2

�2
μ

(−iωtμ)

= 1 − ξμ(ω)2tμ

�2
μ

1

ξ1(ω)ξ2(ω)
�

[
ξ1(ω)

�1
,
ξ2(ω)

�2

]
, (28)

where tμ = �2
μ/D(0)

μ means the localization time, and

�

[
ξ1(ω)

�1
,
ξ2(ω)

�2

]

= c̃

∫ ξ1(ω)/�1

0

∫ ξ2(ω)/�2

0
dQ1dQ2

1

1 + Q2
1 + Q2

2

, (29)

where c̃ is an appropriate numerical factor of O(1). Here, the
characteristic length �μ of the integration range is usually taken
as the mean free path, but in this paper we will propose different
characteristic length as shown below.

Taking the case of SM as an example, we show the
difference of the length proposed in this paper (maximum
distance) from the ordinary length (minimum distance) as
the characteristic length �μ. Let the kicked system with the
characteristic length �1 be the main system and the J oscillator
with the characteristic length �2 the subsystem. The ordinary
selection for �μ is the minimum distance given as the hopping

length p(s + 1) − p(s) = K sin qs for a single-step evolution
from Eq. (6). The mean-square values are

(�1h̄)2 = K2〈sin2 qs〉 = K2/2, (30)

(�2h̄)2 = K2ε2〈cos2 qs〉 sin2 φs = K2ε2/4. (31)

Here, 〈...〉 indicates the quantum mechanical average with
respect to the initial state. These correspond to the so-called
mean free path. Another candidate is the maximum distance
reachable in an infinite time scale represented by the total
hopping length p(∞) − p(0) = lims→∞ K

∑
s ′<s sin qs ′ . Now

we are considering the weak perturbation limit of ε in which the
kicked system is decoupled from the subsystem and maintains
the diffusive motion as m2(s) = 〈(ps − p0)2〉 = Dcls, where
Dcl is the classical diffusion constant, until the localization
time which should coincides with the number of states in the
maximum length, i.e., �1 of the main system. (This corresponds
to the so-called Heisenberg time, and precisely a numerical
factor must be multiplied, but we ignore it.)

On the other hand, the J oscillator (the color degrees of
freedom) also exhibits a passive diffusive motion up to

t2 = t1 = �1, (32)

being driven by the same force as the main system [see Eq. (6)].
From Eq. (6) the MSDs are expressed:

lim
s→∞〈(ps − p0)2〉 = lim

T →∞

∑
s�T

D1s , (33)

lim
s→∞〈(Js − J0)2〉 = lim

T →∞

∑
s�T

D2s , (34)

where the time-dependent diffusion constants D1s and D2s are
defined by

D1s = K2[〈sin2 qs〉 + Re
∑
s ′<s

〈sin qs ′ sin qs〉] (35)

D2s = K2ε2

[
〈cos2 qs〉 sin2 φs

+Re
∑
s ′<s

〈cos qs ′ cos qs〉 sin φs ′ sin φs

]
. (36)

As the maximum diffusion lengths, �1 and �2, are proposed,

�2
1h̄

2 = lim
s→∞〈(ps − p0)2〉, (37)

�2
2h̄

2 = lim
s→∞〈(Js − J0)2〉. (38)

The time-dependent diffusion constants are a given as D1s =
D

(0)
1 h̄2 = Dcl and D2s ≡ D

(0)
2 h̄2 ∼ Dclε

2/2 until t1 = t2 = �1,
but both collapse to zero beyond it. Then Eqs. (33)–(37) lead
to

�2
1 = D

(0)
1 �1, (39)

�2
2 = D

(0)
2 �1. (40)

This is a general relation applicable to the case of AM as
will be used later. If we suppose the Markovian limit that
the autocorrelation function of the force term coming from
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the main system is given by 〈cos qs cos qs ′ 〉 = 〈sin qs sin qs ′ 〉 =
δs,s ′/2, then D

(0)
1 = Dcl/h̄

2 = K2/2h̄2, D
(0)
2 = ε2D

(0)
1 /2, and

�1,2 is given as

�1 = D
(0)
1 = Dcl

h̄2 ,

(41)
�2 = ε√

2
D

(0)
1 .

As the fundamental distance �1, �2, we use these “maximal
distance” rather than the “minimal distance” taken by Manai
et al. [15]. We further remark that one can easily check the
one-dimensional version of Eq. (28) can give the localiza-
tion length of the standard map Dcl

h̄2 only by assuming �1 =
D

(0)
1 = Dcl

h̄2 .

Under the above setting, Eq. (28) tells that the factor ξμ(ω)2

�2
μ

tμ

is independent of μ, which means that

ξ1(ω)

�1
= ξ2(ω)

�2
, (42)

because tμ = t1 from Eq. (32). Carrying out the integral in the
right-hand side of Eq. (28) for μ = 1, using the above relation,
one has

ξ1(ω)2

�2
1

(−iω�1) = 1 − c̃

�2
log

[
1 + ξ1(ω)2

�2
1

]
. (43)

Taking a limit ω → 0 and organizing the expressions, the
localization length ξ1(0) becomes

ξ1(ω = 0) ∼ �1e
�2/2c̃, (44)

where �1 = Dcl

h̄2 = K2

2h̄2 and �2 = εDcl√
2h̄2 = ε K2

23/2 h̄2 are two se-
lected characteristic lengths, and c̃ is a suitable constant.
This corresponds to the localization length in SM under
the monochromatic perturbation in the previous sections.
We remark that in the case of typical isotropic 2DDS the
characteristic length �1 = �2(=�) can be identified with the
mean free path �mfp and Eq. (44) yields the well-known result
ξ2dds ∼ �mfpeπ�mfp/2.

We can straightforwardly apply the above analysis to the
perturbed AM. In a similar way as in the case of SM, the dif-
fusion length of the J oscillator is obtained by replacing the
term Kε cos qs sin φs in Eq. (6) coming from the interaction
potential Kε cos qs cos φs by the term Wεv(qs) sin φs in the
interaction potential of the AM as

�2
2h̄

2 ∼ W 2ε2
∑
s,s ′

〈v(qs)v(qs ′ )〉〈sin φs sin φs ′ 〉. (45)

Since the diffusion time of the kicked system is given by �1,

�2
2h̄

2 ∼ W 2ε2�1/2. (46)

Accordingly, in the case of AM

�1 �
{

1/W 2 (W < W ∗)
1/W ∗2 (W > W ∗)

. (47)

Therefore,

�2 ∼ ε
√

W 2�1/2 �
{
ε/

√
2 (W < W ∗)

εW/
√

2 (W > W ∗)
. (48)

It follows that when these are used for Eq. (44), results are
consistent with that obtained by the numerical calculation in
the previous sections.

In the SM, it also means that what Manai et al. used
to explain the experimental results could be derived directly
from the theoretical considerations by our selection for the
characteristic lengths as the cutoff of the integral of SCT of
the localization. Our hypothesis Eq. (37) is more vital in SM
dynamically perturbed by more than two colors, in which a
localization-delocalization transition occurs [11]. Indeed, it
predicts precise parameter dependence of the critical value of
ε numerically observed [12].

VI. DIFFUSION CHARACTERISTICS

Up to the previous section, we investigated localization
characteristics in a relatively small perturbation regime in
which the LL can be decided numerically. The exponential
growing rate of the localization length is enhanced by decreas-
ing h̄ or by increasing W for SM and AM, respectively. It
is quite interesting to see the transient behavior on the way
to the final localization in the large limit of the exponentially
enhanced LL. In the case of AM, the region W > W ∗ is focused
on because it is an essentially new region peculiar to the
quantum map in which the quantum hopping is assisted by
the kick perturbation. On the other hand, in the case of SM
the limit h̄ → 0 is of interest because it is the semiclassical
limit in which the LL is much enhanced, and classical chaotic
diffusion may be observed at least in the transient process, as
has been first examined in coupled SM [29].

Figures 6(a) and 6(b) show the time-dependence of the
MSD obtained for SM and AM by increasing the perturbation
strength ε, where h̄ is fixed at a sufficiently small value for
SM, and W is fixed to a large value such that W 
 W ∗
for AM. It becomes localized if ε is small, but as ε is
increased larger, a diffusive behavior emerges over a long time
scale, which is apparently different from the monotonically
localizing behavior typically seen in the Fig. 1 in Sec. II.

To observe the diffusive behavior qualitatively the time-
dependent diffusion coefficient defined by

D(t) = dm2(t)

dt
(49)

is convenient, where m2(t) indicates a smoothed curve over
a sufficiently long section of time including t . Figures 6(c)
and 6(d) show the time-dependence of D(t) for the SM and
AM, respectively. The time-dependent diffusion coefficient
decreases with time being accompanied with fluctuation, but
for sufficiently large ε the decrease of D(t) is so slow that its
variation is detectable only in the logarithmic time scale. In
the early stage it seems to decreases linearly in logarithmic
time scale. We remark that in the case of SM, D(t) agrees
with the classical diffusion coefficient Dcl in the very initial
stage, reflecting the quantum-classical correspondence within
the Ehrenfest time.

Next we characterize the ε dependence of the time-
dependent diffusion coefficient D(t). Consider the time evolu-
tion up to t = T . As is shown in Fig. 6 D(t) takes the minimum
value at t = T , and D(T ) = 0 means that the wave packet
have localized until t = T . We are concerned with D(t) after
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FIG. 6. The time dependence of the MSD and the diffu-
sion coefficient D(t) for relatively large perturbation strength.
(a) Monochromatically perturbed SM for K = 3.1 with ε =
0.016,0.032,0.064,0.09,0.256 from below. (b) Monochromatically
perturbed AM for W = 1.0 with ε = 0.15,0.2,0.3,0.4,0.5 from
below. (c, d) The D(t) of the SM and the AM, respectively. Note
that the horizontal axes of the D(t) are in logarithmic scale.

a very long time evolution, but we cannot now specify the
scale of T on which the dynamics of localization process is
characterized. At present, we tentatively take the time scale T

as long as our numerical run time allows, and we represent the
minimum value D(T ). T is fixed at 5 × 105–106 steps. The
results are plotted as the function of the perturbation strength
ε for three values of W (AM) and h̄ (SM) in Figs. 7(a) and
8(a), respectively. For the SM we also plot D(0), which is the
maximum value of D(t) and mimics the classical diffusion
constant Dcl , in order to show explicitly the range scanned by
D(t) in the time interval 0 � t � T . We plot also the classical
diffusion coefficient Dcl as a function of ε. It follows that both
in SM and AM the D(T ) gradually rise with ε, and later it
increases rapidly.

In the AM, the D(T ) curve as a function of ε shifts upward
with W , which is consistent with the dependence of LL on ε

and W as discussed in the Sec. IV. In fact, taking the parameter
Wε instead of ε the curves of diffusion coefficient D(T ) in
Fig. 7(a) are all well-overlapped, as shown in Fig. 7(b) if εW

is not too large. Recalling the result of the previous Sec. IV that
the single parameter Wε controls the LL, it is quite natural that
the diffusion coefficients are also decided only by the combined
parameter Wε.
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FIG. 7. (a) The time-dependent diffusion coefficient D(T ) at T =
1 × 106 as a function of ε in the monochromatically perturbed AM
with W = 1.0,1.2,1.5. (b) The D(T ) as a function of Wε. Note that
the horizontal axes are in logarithmic scale.

Finally we discuss the very important feature of SM which
is not seen in AM. It is the existence of the semiclassical regime
which emerges for small h̄, as was shown in coupled SM
[29]. As mentioned above, D(0) mimics the classical diffusion
coefficient, however, D(t) decreases as is shown in Fig. 6(c),
and the decaying rate in log t scale decreases with ε, and
there exists a characteristic value εc beyond which the decay
becomes extremely small and so D(T ) ∼ D(0) ∼ Dcl. Indeed,
Fig. 8(a) exhibits that with increase in ε, D(T ) increases
rapidly, and beyond a certain ε = εc it forms a plateau on which
D(T ) keeps almost constant level. On the plateau the difference
D(T ) − D(0)(∼ Dcl) is small, and D(T ) approaches closer
to Dcl as h̄ → 0. Thus we call the plateau as the “classical
plateau” of the time-dependent diffusion coefficient. With
further increase of ε, the classical diffusion rate is enhanced
and D(T ) takes off from the plateau following the enhanced
Dcl closely. Evidently, the classical plateau and the threshold
εc shift toward smaller side of ε as h̄ decreases. In the plots of
D(T ) as the function of the scaled parameter ε/h̄2 shown in
Fig. 8(b), the left edges of the plateaus for different h̄s coincide,
which means that εc ∝ h̄2. Figure 8(b) also implies that D(T )
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FIG. 8. (a) The time-dependent diffusion coefficient
D(T )/(K2/2) at T = 4 × 105 as a function of ε in the
monochromatically perturbed SM with h̄ = 2π1234

216 , h̄ = 2π1234
217 ,

h̄ = 2π1234
218 . Here K = 3.1 for all data. (b) The D(T ) as a function of

ε/h̄2. Note that the horizontal axes are in logarithmic scale.

is controlled by ε/h̄2, as is the case of the localization length
of Eq. (9). Thus, the quantum regime we introduced without
definition previously should be

ε < εc(=C × h̄2), (50)

where the constant C depends on K such as C ∝ K2, but we
have not confirmed it yet. The localization characteristics of
the SM discussed in the previous sections have been confirmed
only in the quantum regime. It is still open to question whether
or not the localization characteristics represented by Eq. (9) is
valid in the semiclassical regime.

The dynamical problems related to the localization process
such as the existence of characteristic time leading to the
localization and/or the existence of dynamical scaling property
are still an interesting unclarified issue, particularly when the
LL is extremely large for εW 
 1 in AM with W > W ∗ and
for h̄ → 0 in SM, respectively.

VII. CONCLUDING REMARKS

We investigated the dynamical localization of the SM and
the AM, which are dynamically perturbed by a monochromati-
cally periodic oscillation, and the parameter dependence of the
dynamical localization length has been clarified by extensive
numerical simulation and theoretical considerations. Under
the suitable conditions such systems could be identified with
a 2DDS (two-dimensional disordered system) by using the
so-called Maryland transform.

The dynamical localization length (LL) was determined by
the MSD computed by the numerical wave-packet propaga-
tion. We emphasize that the SM is treated in the quantum
regime, where the perturbation strength ε is smaller than
a characteristic value proportional to h̄2. The LL increases
exponentially with respect to ε in both perturbed SM and
AM. It was further scaled by using the dynamical localization
length of the unperturbed system in the case of SM, which
is consistent with experimental results. On the other hand,
in the case of AM, it was scaled by the disorder strength
W . There exists the threshold of the disorder strength W ∗ at
which a marked change of W dependence of the dynamical
localization length occurs. In the region,W < W ∗, the ordinary
localization in 1DDS occurs, whereas new region, W > W ∗,
peculiar to the quantum map emerged, where the localization
length increases with the disorder strength W due to the kicked
perturbation.

Next, we showed that all the numerically observed scaling
characteristics mentioned above can be reproduced in a unified
manner by the self-consistent mean-field approximation theory
developed for the localization of the 2DDS by introducing a
new fundamental characteristic length for the cutoff length.
This fact strongly suggests that the monochromatically per-
turbed SM and AM have essentially the same physical origin
for the exponentially enhanced localization length.

Finally the transient diffusive behavior toward the dy-
namical localization was investigated in the large limit of
localization length. In both cases of SM and AM, the transient
diffusion coefficient also follows the same scaling rule as the
localization rule, but in the case of SM the “classical plateau”
exists in the semiclassical regime, in which the compatibility
of the quantum localization with the classical chaotic diffusion
is quite interesting. Indeed, different type of localization which
can not be captured by the above mentioned “unified picture”
may emerges in the semiclassical regime. These are interesting
problems still open to question.

The Anderson map asymptotically approach to the original
Anderson model in the limit of τ → 0 as mentioned in Sec. II.
Whether or not the result in this paper is true even in the time-
continuous version (Anderson model) is also an interesting
future problem.
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APPENDIX A: DETERMINATION OF THE COEFFICIENTS
A AND D OF EQ. (8)

In this appendix, the details of the h̄ dependence and K

dependence of the coefficients A and D in Eq. (8) are given.
First, we show the variation of the coefficient A and coeffi-

cient D for the change of K with fixing the ratio K/h̄ ≡ κ . It
is shown in Fig. 9(a) for the three values κ = κ0,κ0/2, κ0/4,
where κ0 = 18. Obviously, it turns out that the variation in the
value of the coefficient A maintains a nearly constant value
when the ratio κ is constant if some irregular variations are
ignored. These facts means that A and D, which is a function of
κ and K , should be a function of κ only. Next, we change h̄ for
various fixed values of K , which is shown in Fig. 10(a). Appar-
ently, for all values of K the dependence A ∝ h̄−2 is observed.
Since A depends only on κ , the following relation should hold:

A = const.

(
K

h̄

)2

∝ κ2. (A1)

Actually, the prediction is confirmed by the fact that the scaled
coefficient A/κ2 is almost constant for different K and κ (and
so K and h̄) as is shown in Fig. 9(c).

On the other hand, the (K/h̄) dependence of another
coefficient D is shown in Figs. 9(b) and 10(b). It is expected
that the coefficients D and A should show a similar behavior
except for numerical prefactors, i.e., D ∼ A. However, the K

dependence of the coefficient D is less definite and it is often

140

120

100

80

60

40

20

0

A

161284
K

(a)
κ0

2κ0

4κ0

200

150

100

50

0

A
*

161284
K

(c)

400

300

200

100

0

D
*

161284
K

(d)

400

300

200

100

0

D

161284
K

(b)

FIG. 9. K dependence of the coefficients (a) A and (b) D of SM
with a fixed κ(≡ K/h̄). The three cases for κ = κ0, 2κ0, 4κ0 (κ0 =
18) are shown from below. The scaled coefficients A∗ = A/(κ2/κmax)
and D∗ = D/(κ2/κmax), where κmax = 4κ0, are shown for κ = κ0, 2κ0

and 4κ0 in (c) and (d) of the lower panels, respectively. The three
curves almost overlap.
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FIG. 10. (a) (h̄/K) dependence of the coefficients (a) A and (b) D

for some K’s. Three cases of κ = κ0, 2κ0, 4κ0 (κ0 = 18) are shown
in the straight lines. Note that the axes are in logarithmic scale. The
heavy line shows a straight line with slope of −2 corresponding to
the (h̄/K)−2.

accompanied by some irregular fluctuation. This fluctuation
becomes more pronounced as the κ is larger, in other words, the
smaller h̄ enhances fluctuation, as recognized from Fig. 10(b).
This phenomenon is caused by the so-called acceleration
modes which are peculiar to the classical dynamics of SM.
Actually, in the values of K = 2nπ , where the classical
acceleration mode exists, the classical diffusion coefficient Dcl

increases explosively, and also reflects the localization length
of the quantum system as shown in the peak around K = 7.
Increasing the perturbation strength ε reduces the effect of
the acceleration modes. The acceleration modes existing with
zero measure in the classical system plays very complicated
roles, but it is not essential to the discussion of the quantum
localization phenomenon, so we will not discuss it in detail in
this paper. If we ignore the fluctuation, the dependence of the
coefficient D on K and h̄ in Figs. 9(b) and 10(b) exhibits very
similar behavior to the coefficient A, and we conclude that

D = const.

(
K

h̄

)2

∝ κ2. (A2)

This prediction is confirmed also by the plot of the scaled
coefficient D/κ2 in Fig. 9(d) in a way parallel to Fig. 9(c).

APPENDIX B: OTHER NUMERICAL DATA THE
PERTURBED AM

Figure 11 displays the localization length as a function of
scaled perturbation strength εW in the monochromatically
perturbed AM with the frequencies ω

(2)
1 = √

2 − 1, ω
(3)
1 =

1 + 1/
√

17 different from one in the text. At least the scaling of
the localization length is a stable result even for the frequencies.
It follows that for W > W ∗ the scaled ε dependence is
overlapping with each other. Also, although not shown here,
for W < W ∗ the W dependence of the localization length in
the cases also behaves similarly to that in the text.
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FIG. 11. The localization length as a function of scaled pertur-
bation strength εW in the monochromatically perturbed AM for ε =
0.01, 0.02, 0.03, 0.04 with perturbation frequencies ω

(2)
1 = √

2 − 1,
ω

(3)
1 = 1 + 1/

√
17. All are displayed together.

APPENDIX C: AUTONOMOUS REPRESENTATION AND
MARYLAND TRANSFORM

The eigenvalue problem Eq. (19) can be mapped into
the tight-binding form by Maryland transform through the
following states |u2〉, |u1〉 and Hermite matrices t̂ , ŵ:

|u2〉 = e−iB̂e−iĈ |u1〉, (C1)

|u1〉 = e−i(Â−γ )|u2〉, (C2)

1 − it̂

1 + it̂
= e−iB̂e−iĈ , (C3)

1 − iŵ

1 + iŵ
= e−i(Â−γ ). (C4)

That is,

t̂(q̂,p̂,φ) = −i
1 − e−iB̂e−iĈ

1 + e−iB̂e−iĈ
, (C5)

ŵ(p̂,Ĵ ) = −i
1 − e−i(Â−γ )

1 + e−i(Â−γ )
= tan

[
(Â − γ )

2

]
. (C6)

Then the tight-binding form of the eigenvalue problem be-
comes (

tan

[
(Â − γ )

2

]
+ t̂(q̂,φ)

)
|u〉 = 0, (C7)

where

(1 + it̂)−1|u1〉 = (1 − it̂)−1|u2〉
= (1 − it̂)−1ei(Â−γ )|u1〉
≡ |u〉, (C8)

and

|u〉 = (|u1〉 + |u2〉)/2. (C9)

t̂ = tan[Ĉ/2] when ε = 0. We can select a convenient rep-
resentation for the eigenvalue Eq. (C7). In this case, we
dealt with the monochromatic perturbation in the autonomous
representation, but the extension to the case of multicolor
perturbation can be easily done.

For the SM, the eigenvalue equation in the representation
by u(m,j ) = 〈m,j |u〉 based on the eigenstates |m,j 〉 = |m〉 ⊗
|j 〉 of p̂ and Ĵ , respectively, is given by the following two-
dimensional lattice system with aperiodic and singular on-site
potential:

tan

[
h̄2m2/2 + jω1h̄

2h̄
τ − γ

2

]
u(m,j )

+
∑
m′,j ′

〈m,j |t̂ |m′,j ′〉u(m′,j ′) = 0, (C10)

where the transfer matrix element is given by Eq. (21) in the
main text.

On the other hand, for the monochromatically perturbed
AM, using

Â = (Wv(q̂) + ω1Ĵ )τ/h̄, (C11)

B̂ = εWv(q̂)(cos φ)τ/h̄, (C12)

Ĉ = 2 cos(p̂/h̄)/h̄, (C13)

the eigenvalue Eq. (C7) is established as it is, then

(
tan

[
(Ŵ (q̂) + ω1Ĵ − γ )τ

2

]
+ t̂(p̂,q̂,φ)

)
|u〉 = 0.

(C14)

If we use the representation u(n,j )(=(〈n| ⊗ 〈j |)|u〉) based on
the eigenstates |q = n〉 of the site n̂ and |j 〉 of the Ĵ , it becomes

tan

[
Wvn + jω1h̄

2h̄
τ − γ

2

]
u(n,j )

+
∑
n′,j ′

〈n,j |t̂ |n′,j ′〉u(n′,j ′) = 0, (C15)

where

〈n,j |t̂ |n′,j ′〉 = 〈n,j |i e
−iB̂ − eiĈ

e−iB̂ + eiĈ
|n′,j ′〉

= 〈n,j |i e
−iεWv(q̂) cos φτ/h̄ − ei2 cos(p̂/h̄)τ/h̄

e−iεWv(q̂) cos φτ/h̄ + ei2 cos(p̂/h̄)τ/h̄
|n′,j ′〉.

(C16)

This is the Maryland transformed eigenvalue equation includ-
ing degrees of freedom of the monochromatic perturbation in
the case of the AM.
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