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Oscillating decorated interfaces in parametrically driven systems
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Macroscopic systems forced by the temporal modulation of their parameters exhibit complex interfaces between
symmetric states. Here we investigate the origin of the transition from a flat to an oscillating decorated interface.
Based on a model that describes a magnetic plane under the influence of an oscillating magnetic field and an
extended Josephson junction under the influence of an alternating current, we derive a simple model that accounts
for the interface dynamics. Analytically this model allows us to reveal that this transition is a parametric resonance
between the frequencies of interface modes and the forcing. Numerical simulations of magnetic systems, extended
Josephson junctions, and our simplified model show quite good agreement.
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I. INTRODUCTION

Macroscopic systems under the influence of injection and
dissipation of energy usually exhibit coexistence of different
states [1–3]. As results of the inherent fluctuations of macro-
scopic systems, they are characterized by exhibiting spatial
domains with different equilibria. These domains are separated
by interfaces or domain walls or fronts [3]. Depending on the
relative stability of the equilibria, these interfaces usually move
in a way to minimize the free energy of the system under
study and give rise to a rich spatiotemporal dynamics [4].
This phenomenon is known as front propagation. However, the
previous scenario changes when domain walls separate two
symmetric states. This type of interface is commonly called
a kink [5]. The propagation mechanism of these domains is
mediated by the curvature of the interface. This propagation
phenomenon is known as the Gibbs-Thomson effect [2], which
usually leads to a flat and motionless stable interface. In the
case of nonvariational systems, when they present a sponta-
neous breaking of symmetry, the front between symmetric
states becomes propagative [6–8]. The velocity of the interface
is determined by the symmetry-breaking parameter and its
curvature. The above phenomenon is well known as the non-
variational Ising-Bloch transition [6]. Interfaces that connect
symmetric states are generically observed in parametrically
driven systems, namely, systems forced by mean of temporal
modulation of their parameters. These interfaces exist because
the parametric forcing generates oscillatory solutions, which
may be in phase or out of phase with respect to the forcing. In a
large range of parameters, these interfaces are motionless and
flat domain walls. However, by changing the parameters these
interfaces can undergo transverse instabilities, which can cause
the emergence of spatial structures along them. In the context
of vertically driven granular media this type of interface has
been observed and is called a decorated interface [9,10]. Like-
wise, magnetic systems subjected to external magnetic fields
are characterized by the display of domains walls between
symmetrical magnetic states [11]. Numerical simulations of
a magnetic plane subjected to an oscillatory magnetic field
show that this system can also exhibit oscillating decorated
interfaces, as illustrated in Fig. 1(a). Hence, the transition

from flat to decorated interfaces is a robust phenomenon of
parametrically driven systems.

II. DECORATED INTERFACES

The purpose of this article is to understand the transition
from flat to oscillating decorate interfaces in parametrically
forced systems. Numerical simulations of a magnetic plane
with a strong anisotropy driven by an oscillating magnetic
field show a transition from a flat to a decorated interface.
Based on the continuous description of the magnetic plane,
i.e., the Landau-Lifshitz-Gilbert equation [12], we derive the
parametrically driven sine-Gordon equation for the azimuthal
angle of magnetization. This model also describes the dynam-
ics of the phase difference of an extended Josephson junction
under the influence of an alternating current [13]. A schematic
representation of this device is shown in Fig. 1(b). Numerical
simulations of the parametrically driven sine-Gordon model
also exhibit a transition from a flat to an oscillating decorated
interface [see the inset in Fig. 1(b)]. In the conservative limit,
this model has an analytic solution, the 2π kink. By using the
inverse scattering method and perturbative theory, we derive a
simple model that accounts for the dynamics of the interface.
This model corresponds to a parametrically forced wave
equation. This model allows us to reveal analytically that this
transition is a parametric resonance between the frequencies
of interface modes and of the forcing. Numerical simulations
of magnetic systems, extended Josephson junctions, and our
simplified model show quite fair agreement.

Let us consider a ferromagnetic plane under the influence
of an oscillatory magnetic field, as illustrated in Fig. 1(a).
Ferromagnetic films are described by a magnetization M(T ,R),
which can vary over time T and along the in-plane coordinates
R. Introducing the dimensionless quantities, m = M/Ms , t =
T/τ , and r = R/lex, where {Ms,lex,τ } are the magnetization
norm, the exchange length, and the characteristic time scale,
respectively. For example, for permalloy Ms = 800 kA/m,
lex = 5.7 nm, and τ = 6 ps. The magnetization dynamics obeys
(the dimensionless Landau-Lifshitz-Gilbert equation [12])

∂tm = −m × [hex − βmzez + ∇2m − α∂tm], (1)
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FIG. 1. Decorated interfaces in parametrically driven systems.
(a) Domain wall in a parametrically driven magnetic plane obtained
from numerical simulation of Eq. (1) with h(t) = H0 + h0 cos(ωt),
H0 = 1, h0 = 0.4, ω = 2.94, β = 6, and α = 0.1. (b) Schematic
representation of an extended Josephson junction, which is composed
of two superconductors separated by an insulating strip under the
influence of an alternating superconducting current. The inset shows
a numerical simulation of Eq. (2) with ω0 = 1, γ = 0.4, ω = 1.6,
β = 1, and μ = 0.1.

where {ex,ey,ez} are the unit vectors along the respective
Cartesian axes in the magnetization space and h is the di-
mensionless intensity of the external magnetic field, which
is along the ex axis. For h > 0, the stable equilibrium of the
system is the magnetization pointing along the magnetic field
m = ex . The parameter β > 0 accounts for the anisotropy of
the film and it favors configurations where the magnetization
lies on the xy plane. The Laplacian of the magnetization
∇2m ≡ (∂xx + ∂yy)m stands for the ferromagnetic exchange
interaction and it favors smooth magnetic states. The term
proportional to α is a Rayleigh-like dissipation function known
as Gilbert damping [12] and it accounts for energy dissipation.
Typical values are in the range 10−3 � α � 5 × 10−2 and
can be enhanced significantly by doping the film with heavy
magnetic atoms. Numerical simulations of this system with
an external oscillatory magnetic field h(t) = H0 − h0 sin(ωt)
exhibit oscillating decorated interfaces [cf. Fig. 1(a)]. To
describe this phenomenon, one can introduce a spherical repre-
sentation of the magnetization vector m = sin(θ )[cos(φ)ex +
sin(φ)ey] + cos(θ )ez, where θ (t,r) and φ(t,r) are, respectively,
the polar and azimuthal angles. In the limit of large magnetic
anisotropy, most of the magnetization vector lies in the xy

plane and the external magnetic field acts in the same manner
as gravity for coupled mechanical oscillators [14,15]. Consid-
ering the scaling |θ − π/2| ∼ α ∼ h ∼ ∇2φ ∼ 1/β � 1 and
φ ∼ ∂tφ ∼ 1, one gets at leading order that θ ≈ π/2 + ∂tφ/β

and φ satisfies (the parametrically driven damped sine-Gordon
model)

∂ttφ + ω2
0 sin(φ) + β∇2φ = γ sin(ωt) sin(φ) − μ∂tφ, (2)

0

0.6

1.2
γ

ω/ω0

1:2
1:1

Decorated interface

Flat interface

1 1.5 2

FIG. 2. Stability diagram of the domain walls or 2π kinks for
the sine-Gordon model (2) for μ = 0.1 and β = 1. The horizontal
and vertical axes represent, respectively, the frequency and amplitude
of the forcing. Regions 1:2 and 1:1 account for the Arnold tongues
(parametric resonances). The dashed (solid) bottom curve represents
the supercritical (subcritical) transition from a flat to an oscillating
decorated interface.

where ω0 ≡ √
H0β is the natural frequency, γ ≡ h0β is

the amplitude of the parametrically forcing, and μ = αβ

is the dissipation coefficient. This model (2) accounts also for
the dynamics of the phase difference of an extended Josephson
junction under the influence of an alternating current [13,16].
Notice that Eq. (1) is invariant under the renormalization
(h,β,t,r) → (hβ−1,1,βt,β1/2r) and then the same solutions
as for strong-anisotropy films can persist in systems with
moderate anisotropy. For materials such as permalloy, we have
β ≡ 1 and the sine-Gordon model is obtained from Eq. (1)
using the scaling |θ − π/2|2 ∼ α2 ∼ h ∼ ∇2φ ∼ ∂ttφ ∼ ε �
1, where ε is a small expansion parameter. Thus, without loss
of generality, we can consider the temporal and spatial units
in the natural frequency and the anisotropy length, so one can
choose ω0 = β = 1 in Eq. (2).

The model (2) has domain walls connecting the zero to the
2π state. As a result of parametric forcing, these kinks are
characterized by emitting evanescent nonlinear waves [15].
For the two-dimensional systems, one expects these domain
walls to be flat. Figure 2 shows the bifurcation diagram of
2π -kink solutions. For small forcing amplitudes, one finds
that these interfaces are flat, namely, if one disturbs the flat
interface it evolves so that it is flattened again. However, as
the forcing amplitude is increased, these interfaces exhibit a
transverse instability that results in oscillating decorated inter-
faces. Figure 3(a) depicts an oscillating decorated interface and
its spatiotemporal evolution. Indeed, the interface oscillates
with the forcing frequency. Numerically, we can extract the
interface position P (y,t), which is a one-dimensional scalar
field. This field allows us to characterize the interface dynamics
[see the right panel of Fig. 3(a)]. Depending on the frequency,
the transition can be of supercritical or subcritical type (cf.
Fig. 2).

III. UNIVERSALITY OF DECORATED INTERFACES

To understand the rich interface dynamics, we consider the
nearly integrable limit, that is, μ ∼ γ � 1. Then the terms on
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FIG. 3. Spatiotemporal dynamics of decorated interfaces. (a)
Decorated interface at a given time and spatiotemporal diagram of the
interface position P (y,t) for the sine-Gordon model (2) for ω0 = 1,
γ = 0.4, ω = 1.2, β = 1, and μ = 0.1. (b) Left panel shows the
profile and spatiotemporal diagram of the interface position P (y,t) of
Eq. (6) for μ = 0.05, γ = 0.3, and ω = 1.8. Right panel illustrates the
relation between the interface wave number and the forcing frequency.

the right-hand side of Eq. (2) are of perturbative nature. In
the conservative limit, the sine-Gordon model has a family of
analytical propagative solutions for 2π kinks. We consider the
ansatz for a two-dimensional 2π kink

φ(x,y,t) = 4 arctan

[
exp

(
− x − P (y,t)√

1 − v(y,t)2

)]
, (3)

where P = P (y,t) and v(y,t) are, respectively, the position
and the speed of the interface. Using the inverse scattering
transform and perturbative theory [17], one obtains the set of
equations

∂tv = −μv(1 − v2) + (1 − v2)∂yyP + v∂yv∂yP, (4)

∂tP = v − γ

2
v(1 − v2) sin ωt

+ v

2

[
(∂yP )2 − π2

6
[v∂yyv + (∂yv)2]

]
. (5)

In the conservative (μ = γ = 0) and uniform (∂yP = ∂yv =
0) limits, Eq. (5) reduces to the relation v = ∂tP . To compute
the corrections to this limit, we apply the temporal derivative
of Eq. (5), use Eq. (4), and consider only the dominant order
terms

∂ttP = ∂yyP − μ∂tP − γω

2
∂tP cos ωt + ∂tP ∂yP ∂tyP

− γ

2
(μ∂tP + ∂yyP ) sin ωt + (∂yyP − μ∂tP )(∂yP )2.

(6)

Hence, the interface position satisfies a parametrically driven
damped nonlinear wave equation. In the case that the forc-
ing is ignored (γ = 0), Eq. (6) corresponds to a dissipative

wave equation, which exhibits a flat interface as a unique
equilibrium. When increasing the forcing amplitude γ , the
flat state becomes unstable showing an oscillatory solution.
Hence, this reduced model for the interface position accounts
for the observed dynamics (cf. Fig. 2). As γ increases, the
system exhibits a parametric resonance [18]. Note that wave
equation (6) does not have an intrinsic natural frequency.
However, each linear mode of wave number k has a frequency
k. Therefore, the system can exhibit a resonance when the
forcing frequency satisfies ω ∼ ±k/2 [18] [see Fig. 3(b)]. This
resonance is responsible for the transition from a flat to an
oscillating decorated interface. Figure 3(b) shows the profile
and the spatiotemporal diagram of interface position P (y,t)
when the model (6) has a parametric resonance. The right panel
of this figure illustrates the relation between the wave number
and the forcing frequency. Note that the wave number increases
with forcing frequency. This function, in general, is not linear,
which shows that to give a better account of the resonance
one must include higher dispersive terms (such as ∂yyyyP )
in the nonlinear wave equation (6). Since the amplitudes of
the decorated interface are more commonly found near the
natural frequency ω0 and the linear condition for parametric
instability is valid near this region, our approximation of the
wave equation (6) will be valid in this region.

To study this parametric resonance analytically close to
natural frequency ω0, we consider the slowly varying en-
velope method [19]. Let us consider the ansatz P (y,t) =
A(t) cos(kny)eiωt + w(A,y,t) + c.c., where A is the envelope
of standing wave, w is a small correction function, c.c. denotes
the complex conjugate, and ω = 2kn + ν, with ν the detuning
parameter between the frequencies of interface modes and of
the forcing. The wave number kn = 2πn/L is compatible with
boundary conditions, n = {1,2,3, . . .}, and L is the system
width. Introducing this ansatz into Eq. (6), linearizing in w,
and imposing the solvability conditions, one gets

∂tA = −iνA − μ

2
A + γ

8
(2kn + ν)Ā − i

4
k3A|A|2. (7)

This equation has a trivial equilibrium A = 0, which corre-
sponds to a flat quiescent interface. This state becomes unstable
through a stationary instability at


n ≡ γ 2(2kn + ν)2/64 − ν2 − μ2/4 = 0, (8)

which is a subcritical and a supercritical bifurcation for
negative and positive detuning, respectively. These curves, in
the context of parametric instabilities, are often called Arnold
tongues. Note that the constraint ω ≈ ω0 sets a maximum
n index for our approximation. Figure 4 shows the insta-
bility curve 
n in the frequency and the amplitude of the
forcing space. These parametric instabilities give rise to the
equilibria A = Reiφ , where cos(2φ) = 4μ/γ (2kn + ν)9 and

R =
√

[−ν ±
√

γ 2(2kn + ν)2/4 − 4μ2]/k3
n. These solutions

account for decorated interfaces, which correspond to standing
waves for the interface of frequency ω and amplitude R,
as illustrated in Fig. 3. From the formula of R, one can
infer that the decorated interfaces appear or disappear by
a saddle-node bifurcation at the curve �0 ≡ γ 2ω2/4 − 4μ2.
Hence, in the region in the space of parameters between
the 
0 curve and the last stable Arnold tongue, we observe
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FIG. 4. Bifurcation diagram of the amplitude equation (7). The

k represent the Arnold tongues, whereas the solid and dashed curves
represent the numerical and analytical tongues, respectively. The
solid and dashed curves stand for the subcritical and supercritical
bifurcations of the flat interface, respectively. The bottom solid
curve �0 represents the saddle-node bifurcation of the decorated
interface. The 1:2 region accounts shows parametric instability of
the parametrically driven sine-Gordon model (2).

oscillatory decorated interfaces. The colored region of Fig. 4
shows the area where one expects to find oscillating decorated
interfaces from the amplitude equation (7). It is important to
note that the bifurcation diagram obtained with the amplitude
equation (7), close to the natural frequency (ω ∼ ω0), is similar
to that obtained from the parametrically driven sine-Gordon
equation (2) (cf. Figs. 2 and 4). All the corrections ignored to
obtain the amplitude equation modify the Arnold tongues [20]
(see the analytic and numerical curves of Arnold tongues
shown in Fig. 4).

The bifurcation diagram in Fig. 2 shows that for small
forcing amplitude there is a transition from a flat to an
oscillatory decorated interface. When increasing the forcing
amplitude, the decorated interface becomes unstable by means
of the asymptotic state undergoing a spatial instability. Indeed,
one expects to find a rich morphology of decorated interfaces.
Figure 5 shows an oscillating decorated interface between two
waves. In vertically driven granular media, decorated interfaces

x

y φ

2π

0.1

FIG. 5. Oscillating decorated interface of the parametrically
driven sine-Gordon model (2) for ω0 = 1.0, β = 1.0, ω = 1.12,
γ = 1.46, and μ = 0.2.

are observed between oscillating hexagonal patterns [10].
Understanding these interfaces is an open problem.

IV. CONCLUSIONS

In conclusion, we have characterized the origin of the
transition from a flat to an oscillating decorated interface in
parametrically driven systems. This transition is a parametric
resonance between the frequencies of interface modes and
of the forcing. A magnetic plane under the influence of an
oscillating magnetic field and an extended Josephson junction
under the influence of an alternating current exhibit this
transition. Likewise, this phenomenon has been observed in
vertically driven granular media, however, there is not a
satisfactory explanation in this context. An extension of the
theory presented here for strongly dissipative systems could
explain these observations.
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