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Aspects of diffusion in the stadium billiard

Črt Lozej and Marko Robnik
CAMTP - Center for Applied Mathematics and Theoretical Physics, University of Maribor, Mladinska 3,

SI-2000 Maribor, Slovenia, European Union

(Received 10 August 2017; published 12 January 2018)

We perform a detailed numerical study of diffusion in the ε stadium of Bunimovich, and propose an empirical
model of the local and global diffusion for various values of ε with the following conclusions: (i) the diffusion is
normal for all values of ε (�0.3) and all initial conditions, (ii) the diffusion constant is a parabolic function of the
momentum (i.e., we have inhomogeneous diffusion), (iii) the model describes the diffusion very well including
the boundary effects, (iv) the approach to the asymptotic equilibrium steady state is exponential, (v) the so-called
random model (Robnik et al., 1997) is confirmed to apply very well, (vi) the diffusion constant extracted from
the distribution function in momentum space and the one derived from the second moment agree very well. The
classical transport time, an important parameter in quantum chaos, is thus determined.
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I. INTRODUCTION

Billiard systems are very important model systems in
classical and quantum chaos. One of the most studied billiards
is the stadium billiard introduced by Bunimovich [1] in 1979,
where it was proven to be rigorously ergodic and mixing. It is
also a K system, as its maximal Lyapunov exponent is positive.
In Fig. 1 we show and define the geometry and our notation of
the stadium.

The radius of the two half circles is unity, while the length
of the straight line is ε. By α we denote the angle of incidence,
which is equal to the angle of reflection at the collision
point. The phase space is defined by the Poincaré-Birkhoff
coordinates (s,p), where s is the arclength parameter defined
counterclockwise from s = 0 to L = 2π + 2ε (L is the length
of the boundary), and the canonically conjugate momentum
is p = sin α. As s = 0 and s = L are identified, we have
a phase cylinder with the borders p = ±1. We assume that
the billiard particle has unit speed. The discrete bounce map
of the billiard �, connecting two successive collisions, � :
(s,p) → (s ′,p′), is area preserving (see, e.g., [2]). For the circle
billiard ε = 0 the momentum p, which is also the angular
momentum, is a conserved quantity, while for small ε > 0
we observe slow chaotic diffusion in the momentum space p.
The maximal Lyapunov exponent is positive for all values of
ε > 0. A systematic study of the Lyapunov exponents in some
representative chaotic billiards, including the stadium billiard,
was published by Benettin [3], who has shown by numerical
calculations that for small ε the Lyapunov exponent goes as
∝√

ε. The diffusion regime of slow spreading of an ensemble
of initial conditions in the momentum space has been observed
in Ref. [4] and confirmed for ε � 0.3 in the present work. For
larger ε > 0.3 the diffusion regime is hardly observable, as the
orbit of any initial conditions quickly spreads over the entire
phase space, already after a few ten collisions.

The characteristic time scale on which transport phenomena
occur in classical dynamical systems is termed the “classical
transport time” tT . This is the typical time that an ensemble

of particles needs to explore the available phase space. In
classical chaotic billiards the characteristic diffusion time in
momentum space is the relevant estimate for tT . The present
work was motivated by the study of chaotic billiards in the
context of quantum chaos [5,6], in order to obtain good
estimates of the characteristic times tT which must be related
or compared to the Heisenberg time tH for the purpose
of assessing the degree of quantum localization of chaotic
eigenstates. The Heisenberg time is an important time scale in
any quantum system with a discrete energy spectrum, defined
as tH = (2πh̄)/�E, where �E is the mean energy level
spacing, i.e., the mean density of states is ρ(E) = 1/�E.
If tH /tT is smaller than 1, we observe localization, while
for values larger than 1 we see extended eigenstates and the
“principle of uniform semiclassical condensation” (PUSC)
of Wigner functions applies. (See Refs. [7,8] and references
therein.) Therefore a detailed investigation of the diffusion
in the stadium billiard is necessary if the localization of the
Wigner functions or Poincaré-Husimi functions should be
well understood. This analysis is precisely along the lines
of our recent works [8–10] for mixed type chaotic billiards,
where the regular and (localized) chaotic eigenstates have
been separated and the localization measure of the chaotic
eigenstates has been introduced and studied. It was shown that
the spectral statistics is uniquely determined by the degree
of localization, which in turn is expected to be a unique
function of the parameter tH /tT . This kind of analysis has
been performed also for the quantum kicked rotator [11–14] by
Chirikov, Casati, Izrailev, Shepelyansky, Guarneri, and further
developed by many others. It was mainly Izrailev who has
studied the relation between the spectral fluctuation properties
of the quasienergies (eigenphases) of the quantum kicked
rotator and the localization properties [14–16]. This picture
has been recently extended in [17–20] and is typical for chaotic
time-periodic (Floquet) systems. A similar analysis in the case
of the stadium as a time independent system is in progress [21].

The study of diffusion in the stadium goes back to the early
works of Casati and co-workers [4,22]. An excellent review
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FIG. 1. The geometry and notation of the stadium billiard of
Bunimovich.

of classical and quantum chaotic billiards was published by
Prosen [23] with special interest in the quantum localization.
Some of the analytic results about the diffusion constant have
been obtained by the study of an approximate map [4], or of
more general periodic Hamiltonian maps [24], along with the
special case of the sawtooth map [25]. However, quite often
not only the pointwise orbits but even the statistical properties
of conservative dynamical systems exhibit extremely sensitive
dependence on the control parameters and on initial conditions,
as exemplified, e.g., in the standard map by Meiss [26]. The
aforementioned studies used approximations of the stadium
dynamics in order to obtain analytical results. Here we want
to perform exact analysis of diffusion in the stadium billiard,
which unavoidably must rest upon the numerical calcula-
tions of the exact stadium dynamics. Fortunately, the simple
geometry of the stadium enables us to calculate the dynamics
using analytical formulas subject only to round-off errors.

Thus far the study of momentum diffusion in the stadium
billiard was, to the best of our knowledge, limited to the regime
where ensembles are still narrow and far from the border of the
phase space at p = ±1. The momentum diffusion there is nor-
mal and homogeneous and no border effects can be observed.
In this work we extend this to include the global aspects of
diffusion taking into account the finite phase space and the
specifics of the billiard dynamics. As the stadium billiard is an
archetype of systems with slow ergodicity many of our findings
should be applicable to other systems sharing this trait.

The structure of the paper is as follows. In Sec. II we show
that the chaotic diffusion is normal, but inhomogeneous, in
Sec. III we do a detailed analysis of the variance of the distribu-
tion function and explore its dependence on the shape parame-
ter ε and the initial conditions, in Sec. IV we examine the coarse
grained dynamics and compare our results for the stadium with
some preliminary results on a mixed type billiard defined in
[27], and in Sec. V we discuss the results and conclude.

II. DIFFUSION IN THE STADIUM BILLIARD
AND THE MATHEMATICAL MODEL

The study of diffusion in the stadium billiard was initiated
in [4], where it was shown that for small ε we indeed see
normal diffusion in the momentum space for initial conditions
p = 0 and uniformly distributed on s along the boundary.
For sufficiently short times (number of bounces), so that the
spreading is close to p = 0, the diffusion constant can be

considered as p independent. Consequently the effects of the
boundaries at p = ±1 are not yet visible. Moreover, it has
been found [22] that the diffusion constant is indeed a function
of the angular momentum, which for small ε coincides with
p. Therefore we have to deal with inhomogeneous normal
diffusion.

Our goal is to elaborate on the details of this picture.
We begin with the diffusion equation for the normalized
probability density ρ(p,t) in the p space

∂ρ

∂t
= ∂

∂p

(
D(p)

∂ρ

∂p

)
. (1)

The time t here is the continuous time, related to the “discrete
time” N , the number of collisions, by t = Nl, where l is the
average distance between two collision points and the speed
of the particle is unity. In agreement with [22] the diffusion
constant is assumed in the form

D(p) = D0(ε)(1 − p2), (2)

where D0(ε) is globally an unknown, to be determined,
function of the shape parameter ε. Note that in Ref. [22] the
dependence of D0(ε) on the angular momentum was studied,
while here we consider the dependence on p. It is only known
that for sufficiently small ε, smaller than a characteristic value
εc ≈ 0.1 determined in the present work, or sufficiently larger
than εc, we have the power law D0 = γ εβ , where the exponent
β is 5/2 or 2 correspondingly, while our γ is a numerical
prefactor, γ ≈ 0.13 and 0.029, respectively, also to be analyzed
later on. In the transition region, ε ≈ εc ≈ 0.1, we have no
theoretical predictions and also the numerical calculations are
not known or well established so far.

As we see in Eq. (1), the diffusion constant D is defined in
such a way that the probability current density j is proportional
to D and the negative gradient of ρ, that is j = −D ∂ρ/∂p.
Thus, the diffusion equation (1) is just the continuity equation
for the probability (or number of diffusing particles), as there
are no sources or sinks. For p ≈ 0 and at fixed ε we can regard
D as locally constant D ≈ D0. However, for larger |p| we
must take into account the dependence of D on p. Due to the
symmetry the lowest correcting term in power expansion in p

is the quadratic one, with the proportionality coefficient ν. For
larger |p|, close to 1, the diffusion constant should vanish, so
that near the border of the phase space cylinder p = ±1 there is
no diffusion at all. These arguments lead to the assumption (2),
which will be a posteriori justified as correct in our detailed
empirical model.

Let us first consider the case of locally constant D at p

around p0, without the boundary conditions, i.e., the free
diffusion on the real line p. Assuming initial conditions in the
form of a Dirac δ distribution ρ(p,t = 0) = δ(p − p0) peaked
at p = p0, we recover the well known Green function

ρ(p,t) = 1

2
√

πDt
exp

(
− (p − p0)2

4Dt

)
(3)

according to which the variance Var(p) is equal to

〈(p − p0)2〉 =
∫ ∞

−∞
ρ(p,t)(p − p0)2dp = 2Dt. (4)

This model is a good description for small ε and short times t .
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However, for times comparable with the transport time
the boundary conditions must be taken into account. There
we assume that the currents on the boundaries p = ±1 must
be zero, i.e., ∂ρ/∂p = 0, so that the total probability in the
momentum space is conserved and equal to unity. This will
ultimately lead to the asymptotic equilibrium distribution
ρ(p,t) = 1/2, with the variance Var(p) = 1/3. The solution
of the diffusion equation with these boundary conditions reads
[28]

ρ(p,t) = 1
2 +

∞∑
m=1

Am cos

(
mπ

2
(p + 1)

)

× exp

(
− Dm2π2t

4

)
. (5)

Thus, the approach to the equilibrium ρ = 1/2 is always
exponential. We will refer to this as the “homogeneous normal
diffusion” model.

In the case of a δ function initial condition ρ(p,t =
0) = δ(p − p0), we find by a standard technique Am =
cos[mπ

2 (p0 + 1)]. In the special case p0 = 0 we have

ρ(p,t) = 1

2

∞∑
−∞

cos(mπp) exp(−m2π2Dt), (6)

with the variance

Var(p) = 〈p2〉 = 1

3
+ 4

∞∑
m=1

(−1)m

m2π2
exp(−m2π2Dt), (7)

which approaches exponentially the equilibrium value
Var(p) = 1/3 at large time t ,

Var(p) ≈ 1

3
− 4

π2
exp(−π2Dt), (8)

where the higher exponential terms m > 1 have been ne-
glected.

Next we want to understand the behavior of the diffusion
when the full general expression for the p-dependent diffusion
constant D, defined in (2), is taken into account. We find the
solution (see also [29]) in terms of the Legendre polynomials
Pl(p) as follows:

ρ(p,t) =
∞∑
l=0

AlPl(p) exp[−l(l + 1)D0t], (9)

where the expansion coefficients Al expressed by the initial
conditions at time t = t0 are

Al = 2l + 1

2

∫ 1

−1
Pl(p)ρ(p,t = t0)dp. (10)

It can be readily verified that the solution (9) satisfies the
diffusion equation (1) with D = D0(1 − p2) as in (2). It
also satisfies the boundary conditions of vanishing currents
at p = ±1, since D = 0 there. Because the set of all Legendre
polynomials is a complete basis set of functions on the interval
−1 � p � 1, an arbitrary initial condition may be satisfied.
Therefore (9) is the general solution. From (9) we also see
that ρ(p,t) approaches its limiting value A0 exponentially, and
moreover, in (10) that for any normalized initial condition we

have A0 = 1/2. We will refer to this as the “inhomogeneous
normal diffusion” model.

For a general diffusion constant D(p) that is an even
function of p, which in our case is due to the physical p-
inversion symmetry in the phase space, we can derive a general
equation for the moments and variance of p. Starting from
Eq. (1) and using the boundary conditions we first show that the
total probability is conserved. Second, for the centered initial
condition p0 = 0, that is ρ(p,t = 0) = δ(p), we find that the
first moment vanishes 〈p〉 = 0, and for the time derivative of
the variance we obtain

d〈p2〉
dt

= −4ρ(1,t)D(1) + 2
∫ 1

−1
ρ(p)

d[pD(p)]

dp
dp. (11)

In the special case D = D0(1 − νp2) we get the differential
equation

d〈p2〉
dt

= −4ρ(1,t)D(1) + 2D0(1 − 3ν〈p2〉). (12)

This is an interesting quite general result. In our system we
have ν = 1, therefore D(1) = 0, and we find for the variance
the explicit result by integration

〈p2〉 = 1
3 [1 − exp(−6D0t)]. (13)

Thus, again, the approach to equilibrium value Var(p) = 1/3
is exponential, with the important classical transport time tT =
1/(6D0). If this equation is rewritten in terms of the discrete
time N (the number of collisions), then t = Nl, and we find

〈p2〉 = 1

3

(
1 − exp

(
− N

NT

))
, (14)

where “the discrete classical transport time” NT is now defined
as

NT = 1

6D0l
. (15)

Here l is the average distance between two successive collision
points. We also define the discrete diffusion constant as Ddis =
D0l. In the case of ergodic motion the mean free path l as a
function of the billiard area A and the length L is known to be
[30]

l = πA
L = π (π + 2ε)

2π + 2ε
≈ π

2
. (16)

Thus, by measuring Ddis we determine NT , which plays an im-
portant role in quantum chaos when related to the Heisenberg
time [9,10], tH /tT = 2k/NT = 2

√
E/NT , as discussed in the

Introduction. Here E = k2 is the energy of the billiard particle.
It is well known that the bouncing ball modes (the

continuous family of period two periodic orbits), within
s ∈ (π/2,π/2 + ε) and s ∈ (3π/2 + ε,3π/2 + 2ε) and p = 0
present sticky objects in the classical phase space, as illustrated
in Fig. 2. If we choose initial conditions inside these bouncing
ball areas, we find a centrally positioned δ peak which never
decays. Moreover, even orbits close to these bouncing ball
areas stay inside for very long times, because the transition
times for exiting (and also entering) these regions are very
large. Such correlations have been studied in Refs. [31,32].

Therefore in studying the diffusion in the momentum space
emanating from ρ(p,t = 0) = δ(p − p0) we have used the
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FIG. 2. The phase space of the stadium for ε = 1, with 104

bounces along an orbit emanating from (s = π/4,p = 0), showing
the avoidance of the bouncing ball areas.

initial conditions p0 = 0 and uniformly distributed over the
s excluding the two intervals s ∈ (π/2 − ε,π/2 + 2ε) and
s ∈ (3π/2,3π/2 + 3ε), to exclude the slowly decaying peak
in the distribution located at p = 0. The result for ε = 0.1
is shown in Fig. 3. As we see, the model of the inhomo-
geneous diffusion Eq. (9) is a significant improvement over
the model of homogeneous diffusion Eq. (6) and works very
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FIG. 3. The distribution function ρ(p,N ) after N = 100 colli-
sions (a), N = 300 collisions (b), and N = 700 collisions (c). The
105 initial conditions at p0 = 0 are as described in the text. ε = 0.1.
The blue full line is the theoretical prediction for the inhomogeneous
diffusion (9), the dashed red curve corresponds to the homogeneous
diffusion (6).
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FIG. 4. The distribution function ρ(p,N ) after N = 100 colli-
sions (a), N = 300 collisions (b), and N = 700 collisions (c). The
105 initial conditions at p0 = 0.25 are uniformly distributed over
s ∈ [0,L), and are taken at N = 100 collisions. ε = 0.1. The blue full
line is the theoretical prediction for the inhomogeneous diffusion (9),
the long-dashed red curve corresponds to the homogeneous diffusion
(6), while the short-dashed black line is the theoretical prediction
of the inhomogeneous diffusion starting from the initial δ spike
ρ(p,t = 0) = δ(p − p0) rather than from the delayed histogram of
(a).

well. The results are the same if we take the ensemble of
initial conditions randomly and uniformly spread in a thin strip
p0 ∈ [−0.01,0.01].

Although we shall study the dependence of statistical
properties on initial conditions in Sec. III, we should explore
the time evolution of the diffusion in the momentum space
for nonzero initial conditions p0 �= 0 already at this point,
starting from ρ(p,t = 0) = δ(p − p0), where now the 105

initial conditions are uniformly distributed over all s ∈ [0,L).
It turns out that there is some transient time period, where the
diffusive regime is not yet well established, which we demon-
strate for ε = 0.1 in Figs. 4–6 for p0 = 0.25, 0.50, and 0.75,
correspondingly. The black short-dashed curve corresponds
to the theoretical prediction based on the inhomogeneous
diffusion model (9) starting with the initial δ spike ρ(p,t =
0) = δ(p − p0), and the initial conditions are uniform on all
s ∈ [0,L). The red long-dashed curve corresponds to the ho-
mogeneous diffusion model (6), the blue full line corresponds
to the inhomogeneous diffusion model (9). In both latter cases
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FIG. 5. As in Fig. 4 but with p0 = 0.50.

the initial conditions were taken from the histogram at the time
of 100 collisions, and the coefficients in Eqs. (5), (6), (9), and
(10) were determined. The delay of 100 collisions has been
chosen due to the initial transient behavior where the diffusion
is not yet well defined. Nevertheless, the time evolution of
the diffusion excellently obeys the inhomogeneous law (9) for
longer times.

In these plots we observe qualitatively good agreement with
the theory, except for some visible deviation of the numerical
histogram from the theoretical prediction, around p ≈ 0 in
Figs. 5 and 6. We believe that these effects are related to
sticky objects around the bouncing ball areas whose existence
is demonstrated in the phase space plot of Fig. 2, and is
thus a system-specific feature, which would disappear in a
“uniformly ergodic” system. However, it must be admitted
that chaotic billiards often have such continuous families of
marginally stable orbits [33].

III. ANALYSIS OF THE VARIANCE
OF THE DISTRIBUTION FUNCTION

In order to determine the value of the diffusion constant
D0 and its dependence on ε as defined in Eqs. (1) and (2) we
can use either the evolution of the entire distribution function
ρ(p,t) or of its second moment, the variance. When this was
done in special cases, agreement has been found. However,
the second moment of the distribution function is much more
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FIG. 6. As in Fig. 4 but with p0 = 0.75.

stable than the distribution function itself, so we have finally
decided to use the variance of p to extract the value of D0

from Eq. (13), where the δ spike initial condition at p0 = 0 is
assumed. This approach would be ideal, if our model of the
inhomogeneous diffusion in Eqs. (1), (2), (9), and (10) were
exact.

However, this is not the case due to the bouncing ball
regions described in the previous section and the fact that the
diffusive regime is not yet well established for short times.
Moreover, even if the model were exact, Eq. (13) does not
apply to initial conditions at nonzero p0. The variance for
the more general initial conditions ρ(p,t = 0) = δ(p − p0)
is easily obtained by calculating the first two moments of
the distribution (9). This is done by inserting the initial
conditions into Eq. (10) and using the orthogonality relations
of the Legendre polynomials. The average momentum is given
by

〈p〉 = p0 exp(−2D0t), (17)

and the variance by

Var(p) = 〈p2〉 − (〈p〉)2

= 1
3 [1 − exp(−6D0t)] + p0

2 exp(−6D0t)

−p0
2 exp(−4D0t). (18)

As we see there is no clear way to define the transport time since
two exponential functions with different exponents are present.
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ČRT LOZEJ AND MARKO ROBNIK PHYSICAL REVIEW E 97, 012206 (2018)

0 200 400 600 800 1000

N

0.00

0.05

0.10

0.15

0.20

0.25

0.30

〈p
2
〉−

〈p
〉2

0 20 40 60 80 100
0.00

0.02

0.04

0.06

0.08

FIG. 7. The variance of p as a function of the number of collisions
N for four different values of ε, starting at the initial condition
p0 = 0. From top to bottom we show the numerical results for
ε = 0.2 (magenta), ε = 0.12 (red), ε = 0.1 (green), ε = 0.08 (blue)
calculated with 105 initial conditions. The theoretical fitting curves
according to Eq. (19) are shown with black dashed lines. The inset
is a magnification of the first 100 bounces and shows the initial
nondiffusive phase.

Furthermore, as we saw earlier in Figs. 4–6 the diffusive
regime is only well established after enough time has passed.
We therefore chose to empirically generalize Eq. (14) by the
introduction of a prefactor C as follows:

Var(p) = 1

3

[
1 − C exp

(
− N

NT

)]
. (19)

As we shall see the prefactor C effectively compensates the
generalized initial conditions and allows us to estimate the
transport time.

In Fig. 7 we show the evolution of the variance as a
function of the number of collisions, for four different values of
ε = 0.08,0.10,0.12,0.20. The initial conditions are the same
as in Fig. 3 of Sec. II. The agreement with the empirical model
(19) [which in this case coincides with the theoretical predic-
tion (14) if C = 1] is excellent. The inset shows the initial
nondiffusive phase of the dynamics. The fitting procedure was
as follows: first, NT has been extracted from the best fitting of
all data, and then the fitting was repeated by excluding the first
20% of collisions, but not less than 20 of them, up to maximum
of 300 collisions, in order to be in the optimal interval for the
determination of the two fitting parameters NT and C and to
exclude the nondiffusive phase.

Finally, we take a fixed value of ε = 0.1 and observe the
variance as a function of discrete time N for various values of
the initial condition δ(p − p0), p0 = 0.,0.25,0.50,0.75, and
use the same fitting procedure. The initial conditions are the
same as in Figs. 3–6, correspondingly. Again, the agreement
with the empirical formula (19) is excellent, as is seen in Fig. 8.
The variance is well described also by the theoretical prediction
Eq. (18), particularly for larger values ofp0. From there we may
extract the value of Ddis = D0l. Note that for p0 = 0 the two
descriptions coincide. Alternatively we could also extract the
values of Ddis from the average of the momenta using Eq. (17).
This yields equivalent results for values of p0 > 0.35, but for
lower nonzero values, Eq. (17) fails to correctly describe the
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FIG. 8. The variance as a function of the number of collisions N

for ε = 0.1, starting at four initial conditions p0 = 0,0.25,0.50,0.75.
Each curve is shifted upwards by 0.1 in order to avoid the overlapping
of curves. They all converge to 1/3 when N → ∞. The dotted black
curve shows the theoretical prediction for the variance (18), while the
dashed curve shows the empirical model (19).

numerical time dependent averages. This is because the initial
nondiffusive phase significantly changes the average of the
distribution of momenta from the one predicted from the initial
δ distribution (compare the histogram with the black dashed
line in Fig. 4). This effect is diminished forp0 > 0.35, probably
because the peak of the distribution is further from the area of
phase space near the marginally unstable bouncing ball orbits
(see Figs. 5 and 6).

In Table I we present the list of values of NT at p0 = 0,
as a function of ε, extracted by the described methodology.
They are important in understanding the quantum localization
of chaotic eigenstates as previously discussed.

In Fig. 9 we show the result for the diffusion constant in
terms of the discrete time N , that is Ddis = D0l, as a function
of ε, as well as C as a function of ε, with the initial conditions
ρ(p,t = 0) = δ(p − p0) at p0 = 0.

We clearly observe the confirmation of the two limiting
power laws Ddis ∝ ε5/2 for small ε and Ddis ∝ ε2 for large ε.
In the transition region ε ≈ εc ≈ 0.1 which is about half of a
decade wide, the analytic description is unknown.

The dependence of Ddis in accordance with Eq. (18) on
the parameter p0 for the special case ε = 0.1 is shown in
Fig. 10(a). The value of Ddis is minimal at p0 = 0. This
may be because the phase space contains sticky objects near
the marginally unstable bouncing ball orbits. Here we must
understand that at larger times, asymptotically, the initial
conditions are forgotten, and we expect that Ddis tends to
a constant value which is the case. The values of Ddis at
p0 = 0.75 exhibit the same power law dependencies on ε as
those at p0 = 0. NT and C in accordance with Eq. (19) are
shown in Figs. 10(b) and 10(c). The value of NT increases for
larger values of p0. This is an effect of the local transport
being slower in the vicinity of the border p = ±1 due to
the parabolic diffusion law (2). The shortest estimate for the
classical transport time, the one at p0 = 0, is the one relevant
for the study of localization of the eigenstates of the quantum
billiard.
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TABLE I. The discrete transport time NT (number of collisions)
as function of ε as defined in Eq. (19), with initial conditions at p0 =
0, and therefore Eq. (14) also applies. The sizes of the ensembles
were 105 for ε < 0.02, 2.5 × 105 for 0.02 � ε < 0.08 and 106 for
ε > 0.08.

Transport times

ε NT ε NT

0.001 3 × 107 0.105 303
0.005 4.3 × 105 0.110 275
0.010 7.8 × 104 0.115 253
0.015 2.9 × 104 0.120 233
0.020 1.4 × 104 0.125 215
0.025 8410 0.130 299
0.030 5520 0.135 186
0.035 3750 0.140 172
0.040 2760 0.145 161
0.045 2110 0.150 150
0.050 1630 0.155 141
0.055 1340 0.160 131
0.060 1100 0.165 123
0.065 907 0.170 115
0.070 767 0.175 108
0.075 647 0.180 102
0.080 560 0.185 95
0.085 494 0.190 90
0.090 433 0.195 86
0.095 386 0.200 82
0.100 341
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FIG. 9. Ddis = D0l = 1/(6NT ) and C as functions of ε, at p0 = 0,
using the Eq. (19). The log is decadic. Ideally, C should be unity
according to Eqs. (13) and (14).
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FIG. 10. Ddis = D0l from (18), and NT with C from (19) as
functions of p0 for ε = 0.1.

IV. COMPARISON OF CHAOTIC DIFFUSION IN A MIXED
TYPE BILLIARD

In this section we study the coarse grained dynamics of the
stadium billiard. We partition the phase space into a grid of
cells and record the number of times each cell is visited by the
orbit. It is interesting to briefly discuss the observed differences
between ergodic systems like the stadium and the behavior in
the chaotic components of mixed type systems. Examples are
the billiard introduced in [27], the border of which is given by
a conformal mapping of the unit circle in the complex plane
|z| = 1,

z → z + λz2, (20)

at various shape parameter values λ and the standard map [26].
In the case of λ = 1/2 the billiard was proven to be ergodic
[34]. Because this billiard is strongly chaotic the classical
transport time is of the order of a few ten bounces. An analysis
of the diffusion along the lines of the previous sections is
therefore not possible.

The first important observation is, that the so-called random
model (Poissonian filling of the coarse grained network of cells
in the phase space) introduced in [35], works very well in
the stadium and also in other ergodic systems like λ = 1/2
billiard. In the process of filling, the cells are considered as
filled (occupied) as soon as the orbit visits them. The approach
to the asymptotic value 1 for the relative size of the filled
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FIG. 11. The filling of the cells χ (N ) for the stadium billiard
ε = 0.1 in the lin-lin plot (a), the decadic log-lin plot (b) and
the distribution of cells with the occupancy number M (c). The
black dashed curve in (a) and (b) is the random model Eq. (21).
There are 25 × 106 collisions and Nc = 106 cells, so that the mean
occupancy number μ = 〈M〉 = 25. The chaotic orbit has the initial
conditions (s = π/4,p = 0). The black full curve is the best fitting
Gaussian, while the red dashed curve is the best fitting Poissonian
distribution. The theoretical values μ and σ 2 = μb = μ(1 − a) and
their numerical values agree very well.

chaotic component χ as a function of the discrete time (number
of collisions) N is exponential,

χ (N ) = 1 − exp

(
− N

Nc

)
. (21)

where Nc is the number of cells. This is demonstrated in
Fig. 11 for the case ε = 0.1, where chaos, dependence on initial
conditions due to the large Lyapunov exponent, is strong, and
agreement with the random model is excellent, while for the
case ε = 0.01 chaos is weak, and the agreement is not so good
as seen in Fig. 12.

In both cases we show the lin-lin plot of (21) in (a), and also
the log-lin plot in (b) for 1 − χ . In (c) we show the distribution
of the occupancy number M of cells, which clearly is very
close to a Gaussian. The size of the grid of cells is L = 1000,
thus Nc = L2 = 106.

The latter observation can be easily explained by the
following theoretical argument within the Poissonian picture.
We start an orbit in one of the Nc cells of the chaotic region
and follow its evolution for a fixed number of collisions N . Let
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N ×107

0.0

0.2

0.4

0.6

0.8

1.0

χ

(a)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

N ×107

−6

−5

−4

−3

−2

−1

0

1

lo
g(

1
−

χ
)

(b)

0 10 20 30 40

M

0.00
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09

P
(M

)

(c)

FIG. 12. As in Fig. 11 but ε = 0.01. Some deviations from the
random model are seen, which are always negative due to the sticky
objects in the phase space which delay the diffusion.

a = 1/Nc be the uniform probability that at the given discrete
time N one of the cells will be visited (by the orbit), while its
complement b = 1 − a is the probability that the cell will not
be visited. As we assume absence of any correlations between
the visits, the calculation of the distribution of the occupancy
M of the cells is easy: The probability P (M) to have a cell
containing M visits is simply the binomial distribution

PB(M) =
(

N

M

)
aMbN−M, (22)

which has the exact values for the mean and variance

μ = 〈M〉 = Na, σ 2 = 〈(M − μ)2〉 = Nab = μb. (23)

For sufficiently large N this can be approximated by the
Gaussian with the same μ and σ 2,

PG(M) = 1√
2πσ 2

exp

(
− (M − μ)2

2σ 2

)
. (24)

In the Poissonian limit a → 0 and N → ∞, but μ = aN =
const, we find the Poissonian distribution

PP (M) = μMe−μ

M!
. (25)

We see that the mean value and the variance agree with
the theoretical prediction μ = N/Nc = 25 and σ 2 = μb ≈
μ = 25, so that the standard deviation σ = 5, in the case of
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FIG. 13. As in Fig. 11 but for the mixed type billiard [27] with
λ = 0.15, for an orbit with 108 collisions. The asymptotic value of
χ is χA = 0.80, as we see in (a). Large deviations from the random
model are seen also in (b), which are always negative due to the
sticky objects in the phase space which delay the diffusion. In (c)
we see the distribution of cells at time N = 5 × 107 according to
the occupancy M , which now consists of the the Gaussian bulge
corresponding to the cells of the largest chaotic region, and the δ

peak at M = 0 corresponding to the regular and other smaller chaotic
regions. The initial condition (using the standard Poincaré-Birkhoff
coordinates) is (s = 4.0, p = 0.75).

ε = 0.1. However, in the case ε = 0.01 we see a quantitative
discrepancy with the random model prediction in Fig. 12(a),
but nevertheless the approach to the asymptotic values is
exponential with a slightly different coefficient (b). Due to the
sticky objects the filling of the cells is slower. The variance of
the distribution in (c) is 38, which is larger than the predicted
value μb = 25, meaning that the relative fraction of more
and of less richly occupied cells is larger than expected by
the binomial distribution. Note that the Poisson distribution
with the same μ (dashed red) significantly deviates from the
histogram.

In the chaotic components of mixed type systems things are
different. The random model does not work well, the approach
to the equilibrium value is not exponential, but instead is
perhaps a power law as reported by Meiss [26], or even
something else as observed in our work [36]. Here we just show
for comparison in Fig. 13 the time dependence of the relative
fraction of occupied cells χ (N ) for the billiard introduced in

6.0 6.5 7.0 7.5 8.0

logN

−6

−5

−4

−3

−2

−1

0

lo
g(

χ
A
−

χ
)

FIG. 14. As in Fig. 13(b) but now in decadic log-log plot to show
that the approach to the asymptotic value χA is neither an exponential
function nor a power law. The curves correspond to three different ini-
tial conditions, (s,p) = (4.0,0.75), (2.5,0.75), (2.5,0.15), in green,
blue, and red correspondingly.

[27] with the shape parameter λ = 0.15 (a slightly deformed
circle), in analogy with Figs. 11 and 12.

It is clear that the random model is not good, and the
approach to the asymptotic value χA ≈ 0.80 is neither expo-
nential nor a power law, but something different to be studied
further [36], as one can see in the lin-lin plot (a) and in the
log-lin plot in (b) of Fig. 13, and also in Fig. 14 for three
different initial conditions. The selected initial conditions are
well separated yet yield very similar results. We therefore
expect an ensemble average would not change the overall shape
of the curve.

One should note that the measured χ (N ) is always below
the prediction of the random model, which is due to the sticky
objects in the phase space, that delay the diffusion process,
and occasionally also cause some plateaus on the curve (due to
temporary trapping). Also the cell occupancy numbers shown
in (c) are different from the simple binomial distribution for the
cells. Clearly, the empty cells at M = 0 represent the regular
part of the phase space, and all chaotic components not linked
to the largest one. These cells remain permanently empty for
all N . There is an approximately Gaussian distribution around
the mean value μ = 〈M〉 = N/Nc, where Nc = χAL2, with
L = 1000, and thus approximately μ ≈ 62.5, for L = 1000,
N = 5 × 107, and χA ≈ 0.80. The numerical value of σ 2 is
slightly larger, σ 2 = 72. In between we observe a shallow
minimum, sparsely populated. Further work along these lines
is in progress [36].

V. DISCUSSION AND CONCLUSIONS

In conclusion we may say that the major aspects of global
diffusion in the stadium billiard are well understood, and that
many aspects can be manifested in other systems with slow
ergodicity. The applicability of the random model [35] is
largely confirmed, the coarse grained phase space divided into
cells is being filled exponentially. The diffusion constant obeys
the parabolic law D = D0(ε)(1 − p2), which we may expect to
apply in other slow ergodic billiards as well. The distribution
function emanating from an arbitrary initial condition obeys
very well the inhomogeneous diffusion equation, and the
diffusion is normal for all ε and initial conditions p0. The
boundary effects in the evolution of ρ(p,t) are correctly
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described by the model. The approach to uniform equilibrium
distribution ρ = 1/2 with the variance Var(p) = 1/3 is always
exponential, for all ε and all initial conditions p0. The diffusion
constant D0 has been calculated for many different values of
ε. At small ε � εc ≈ 0.1 D0 ∝ ε5/2, while for larger ε � εc ≈
0.1 it goes as ∝ε2, in agreement with the previous works [4,22],
but in between there is no theoretical analytical approximation,
so we have to resort to the numerical calculations performed
in this work. The value of the classical transport (diffusion)
time NT , in terms of the discrete time (number of collisions),
has been determined for all values of ε � 0.2, which plays
an important role in the quantum chaos of localized chaotic
eigenstates [9,10,21].

In the mixed type systems, exemplified by the billiard
introduced in the Ref. [27], with the shape parameter λ = 0.15,
we have shown that the behavior is quite different from ergodic

fully chaotic systems, which is in agreement with the report of
Meiss [26] on the standard map.

Further work along these lines is important for the
understanding of classical and quantum chaos in billiard
systems as model systems, but the approach should also be
applicable to other smooth Hamiltonian systems, such as, e.g.,
the hydrogen atom in a strong magnetic field [37–40], or the
helium atom, etc.
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