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Transmission coefficient from generalized Cantor-like potentials and its multifractality
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We study the scattering problem at generalized Cantor-like potentials characterized by the expansion rate a

and duplication number N , and derive an exact formula of transmittance. It was found that the transmittance
is expressed with Chebyshev polynomials of the second kind, and the multifractality of the reflectance varies
depending on a and N .
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I. INTRODUCTION

The scattering and localization of electromagnetic waves
and quantum mechanical waves in fractal media are an interest-
ing topic [1,2]. Theoretically, several researchers studied elec-
tronic states and quantum localization in Sierpinski’s gasket
[3,4]. Experimentally, Takeda et al. reported the localization
of electromagnetic waves when electromagnetic waves were
irradiated to the Menger sponge [5]. As a simplest topic, many
researchers studied the scattering process in the Cantor set by
the transfer matrix method [6–16]. Using a recurrence relation,
Sato et al. derived an exact formula for the reflectance of elec-
tromagnetic waves by the Cantor set [17]. The present authors
derived a formula for the reflectance of quantum waves using
the recurrence relation. Furthermore, they discussed a scaling
law of the reflectance and the multifractality of the scaling
function [18]. In this paper, we extend the results to generalized
Cantor-like potentials. We show that the transmittance can be
expressed using Chebyshev polynomials of the second kind,
the scaling function is expressed by a finite product of the Laue
function, and the multifractality depends on the shape of the
generalized Cantor-like potentials.

II. TRANSMITTANCE FOR A PERIODIC ARRAY OF
POTENTIAL BARRIERS

In this section, we briefly review the scattering problem by
a periodic array of potential barriers [19]. The dimensionless
Schrödinger equation is expressed as

−d2ψ

dx2
+ U (x)ψ = εψ, (1)

where U (x) = 2mV (x)/h̄2, ε = 2mE/h̄2. First, we consider
a case of a potential barrier of height U0 in the interval
[0,L]. The wave function of this system is represented by
ψl = Al exp(ikx) + Bl exp(−ikx) (x < 0), ψr = Ar exp(ikx)
(x > L). The relationship between Al , Ar , and Bl can be
expressed as (

Al

Bl

)
= S(0,L)

(
Ar

0

)
(2)

using the transfer matrix S. S is written as

S(0,L) =
(

s11e
ikL s∗

21e
−ikL

s21e
ikL s∗

11e
−ikL

)
, (3)

s11 = cos(qL) − i cosh(v) sin(qL), (4)

s21 = − sinh(v) sin(qL), (5)

where k = √
ε, q = √

ε − U (x), v = ln(k/q), and v takes
the principle value −π/2 < Im m(v) < π/2. Reflectance and
transmittance are defined asR = |s21/s11|2,T = |1/s11|2 using
the components of the transfer matrix. The transmittance is
explicitly written as

T =
{[

1 + (
k2−q2

2kq

)2
sin2 qL

]−1
(k < q),[

1 + (
k2+q2

2kq

)2
sinh2 qL

]−1
(k > q).

(6)

Next, we consider a more general case where N potential
barriers of height Uj locate at intervals [xj ,xj + dj ] (j =
1,2, . . . ,N ), as shown in Fig. 1(a). The wave function of
this system is denoted as ψ0 = A0 exp(ikx) + B0 exp(−ikx)
(x < x0), ψj = Aj exp(ikx) + Bj exp(−ikx) (xj < x < xj +
dj ), ψN+1 = AN+1 exp(ikx) + BN+1 exp(−ikx) (x > xN +
dN ). The relation (

Aj

Bj

)
= Sj+1

(
Aj+1

Bj+1

)
(7)

is satisfied between the j th and (j + 1)th wave functions.
Considering that the transmitted wave of the j th potential
becomes the incident wave of the (j + 1)th potential, the
relationship between (A0,B0) and (AN,BN ) is expressed by
the product of each transfer matrix Sj ,

(
A0

B0

)
= S(N)

(
AN+1

BN+1

)
≡

N∏
j=1

Sj

(
AN+1

BN+1

)
, (8)

S(N) =
(

s
(N)
11 eikL s

(N)
21

∗
e−ikL

s
(N)
21 eikL s

(N)
11

∗
e−ikL

)
. (9)

Reflectance and transmittance of this system can be defined

by R = |s(N)
21 /s

(N)
11 |2, T = |1/s

(N)
11 |2. If the heights and widths
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FIG. 1. (a) An array of N potential barriers. (b) A periodic array
of potential barriers.

for potential barriers take the same values Uj = U0 and dj =
L for all j and the interval between neighboring potential
barriers takes the same value xj+1 − (xj + dj ) = � as shown
in Fig. 1(b), the components of the transfer matrix S are
expressed as

s
(N)
11 = uN−1(t)s11 − uN−2(t)eik�,

s
(N)
21 = uN−1(t)s21, (10)

where uj are Chebyshev polynomials of the second kind which
satisfy the recurrence formula

uj (t) = 2yuj−1(t) − uj−2(t) (j = 0,1, . . . ,N), (11)

and

uj−1(t) = sin(j t)/ sin(t),

t = cos−1[|s11| cos(k� − θ )],

y = |s11| cos(k� − θ ),

θ = arg(s11).

Using these relations, the transmittance is written as

T = [
1 + sinh2(v) sin2(qL)u2

N−1(t)
]−1

(k > q). (12)

If the wave number k of the wave function is large enough, the
transmittance can be approximated at

T � 1 −
(

U0

2k

)2

sin2(kL)

(
sin[Nk(L + �)]

sin[k(L + �)]

)2

, (13)

because sinh(v) ∼ U0/2k, |s11| ∼ 1, |s21| ∼ 0, θ ∼ −kL.
Figure 2 shows the transmittance calculated by Eq. (14) for
N = 4, 32, 264, and 1024. The other parameters are L = 1,
� = 1, U0 = 100.

III. TRANSMITTANCE FOR N-DIVIDED CAnTOR-LIKE
POTENTIAL USING RECURRENCE RELATION

The well-known 3-adic Cantor set is constructed by recur-
sively repeating the operation of removing the central portion
after dividing the line into three equal parts. The pre-Cantor
sets of the nth stage are recursively expressed as follows,

C(3)
n = C

(3)
n−1

3
∪

(
2

3
L + C

(3)
n−1

3

)
, C

(3)
0 = [0,L]. (14)

We define a generalized Cantor set by the following operation.
First, divide the basic line segment L equally 2N − 1. Next,
remove the line segments so that the line segments and the
gaps alternate. Finally, the remaining line segment is multiplied
by 1/a of the line segment before division and place them

FIG. 2. Transmittance of a wave function incident on N number
of equally spaced potentials. (a) N = 4. (b) N = 32. (c) N = 264.
(d) N = 1024. The other parameters are L = 1, � = 1, U0 = 100.

at equal intervals � = (a − N )L/[a(N − 1)]. We construct
a pre-Cantor set of the nth stage by repeating the above
operation. Schematic figures for the generalized Cantor set are
shown in Fig. 3. The operation is expressed as follows,

C(N)
n =

N−1⋃
j=0

[
a − 1

a(N − 1)
jL + C

(N)
n−1

a

]
, C

(N)
0 = [0,L], (15)

where 2 � N < a, a ∈ Q, N ∈ N. We study this generalized
Cantor set of reduction rate 1/a and duplication number
N . In this paper, we call this Cantor set the (2N − 1)-adic
Smith-Volterra (SV) Cantor set, because a generalized Cantor
set of N = 2 and a 	= 3 is called the Smith-Volterra Cantor set
and another generalized Cantor set of a = 2N − 1 is called
the (2N − 1)-adic Cantor set. The original 3-adic Cantor set
corresponds to a = 3 and N = 2. The feature of this set is
that the number of elements is Nn and the length is (N/a)n

at generation n. The fractal dimension of this Cantor set is
ln(N )/ ln(a).

FIG. 3. Schematic diagram of the Cantor-like potentials in the
n = zeroth, first, and second stage. (a) 3-adic Cantor-like potential
barrier. (b) (2N − 1)-adic SV Cantor-like potential barrier for a = 4,
N = 2. (c) (2N − 1)-adic SV Cantor-like potential barrier for a = 4,
N = 3.
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Here, we consider the scattering problem of a quantum
mechanical particle incident into the generalized Cantor-like
potential U (x). A schematic figure of generalized Cantor-like
potentials of several stages is shown in the Fig. 3.

The potential is located within an interval [0,L] and takes
a constant value U0 on the (2N − 1)-adic SV Cantor sets
x ∈ C(N)

n . The number of elements of the potential is Nn at
the nth stage. The transmittance can be directly calculated
by the product of Nn transfer matrices. However, it takes
a very long time to calculate it in case of sufficiently large
n. The calculation is simplified by deriving a recurrence
relation for the transfer matrix using the self-similarity of the
(2N − 1)-adic SV Cantor set [17]. The recurrence relation on
the transfer matrix is derived as follows. The wave function
is expressed as ψl = Al exp(ikx) + Bl exp(−ikx) (x < 0) and
ψr = Ar exp(ikx) + Br exp(−ikx) (x > L). The relationship
between (Ar,Br ) and (Al,Bl) is expressed as(

Al

Bl

)
= Mn(0,L)

(
Ar

Br

)
(16)

using the transfer matrix of this system Mn. Because of the
self-similarity of the (2N − 1)-adic SV Cantor-like potential,
the transfer matrix of the gth stage is expressed with the transfer
matrix of the (g − 1)th stage as

Mg(0,L) =
N−1∏
j=0

Mg−1(jγ /a,(j + 1)γ /a) (17)

where γ = (a − 1)L/(N − 1). If the transfer matrix Mg is
expressed as

Mg(0,L) =
(

ξge
ikL η∗

ge
−ikL

ηge
ikL ξ ∗

g e−ikL

)
, (18)

the parameters ξg and ηg satisfy the recurrence relation

ξg = uN−1(tg−1)ξg−1 − uN−2(tg−1)eikwg−1 ,

ηg = uN−1(tg−1)ηg−1 = · · · = η0

g−1∏
j=0

uN−1(tj ), (19)

where g = 0,1, . . . ,n, and

tg = cos−1[|ξg| cos(kwg − θg)], θg = arg(ξg),

wg = [(a − N )L]/[(N − 1)an−g].

For k >
√

U0, the initial values of ξg and ηg are given by

ξ0 = cos(qL/an) − i cosh(v) sin(qL/an),

η0 = −i sinh(v) sin(qL/an), (20)

where q = √
ε − U0. Using these relations, the transmittance

is written as

T =
⎡
⎣1 + sinh2(v) sin2(qL/an)

n−1∏
j=0

u2
N−1(tj )

⎤
⎦

−1

. (21)

The reflectance R is given by R + T = 1.
The behavior of this transmittance (21) can be approximated

as follows at a sufficiently large wave number. If k is suffi-
ciently large and q/an 
 1, |η0| = sinh(v) sin(q/an) 
 1 and

|ξg|∼1. Therefore, ξg can be approximated at ξg � eiθg , where
θg satisfies

θg+1 = Nθg + (N − 1)wgk. (22)

The solution of this equation is θg = −(ag − 1)/an. Then,
Chebyshev polynomials of the second kind are rewritten as

ug(tg) � sin(Nγk/an−g)

sin(γ k/an−g)
. (23)

Additionally, using the relation of q ∼ k, sinh(ν) ∼ U0/2k,
sin(qL/an) ∼ kL/an, the transmittance is approximated as

T ∼ 1 −
(

U0L

2k

)2(
N

a

)2n n∏
j=1

sin2(Nγk/aj )

N2 sin2(γ k/aj )
. (24)

As a result, the transmittance is composed of three el-
ements: the first term of (U0L/k)2, the second term of
(N/a)2n derived from the length of the (2N − 1)-adic SV
Cantor set, and the third term derived from the resonance
by the gaps between the elements of the (2N − 1)-adic SV
Cantor set. In the case of the 3-adic Cantor set of a = 3
and N = 2, γ = 2L and sin2(Nγk/aj )/{N2 sin2(γ k/aj )} =
sin2(4kL/3j )/{4 sin2(2kL/3j )} = cos2(2kL/3j ). Therefore,
Eq. (24) leads to

T ∼ 1 −
(

U0L

2k

)2(
N

a

)2n n∏
j=1

cos2(2kL/3j ), (25)

which recovers our previous result [18].
Now we can calculate the transmittance using Eq. (21);

however, as increasing the stage number n, the transmittance
approaches 1 for almost all k because the second term of
Eq. (24) decreases as (N/a)2n. To investigate the characteristic
behavior of the transmittance for the (2N − 1)-adic SV Cantor-
like potential, we consider a potential which depends on the
stage number n such as U (x) = (a/N )nU0 [18]. For this
potential, the integral

∫ L

0 U (x) = U0L is constant for any n.
In these types of potentials, the transmittance T (k) converges
as n → ∞. Then, the transmittance is approximate as

T ∼ 1 −
(

U0L

2k

)2 n∏
j=1

sin2(Nγk/aj )

N2 sin2(γ k/aj )

= 1 −
(

U0L

2k

)2

G(n)(k). (26)

The reflectance is given by R = 1 − T ∼ (U0L/2k)2G(n)(k).
Figure 4 shows the transmittance calculated by Eq. (21) for the
tenth stage potential U (x) = (a/N )nU0. The parameters L =
1 and U0 = 512, and the other parameters are a = 3, N = 2
[Fig. 4(a)], a = 4, N = 2 [Fig. 4(b)], a = 4, N = 3 [Fig. 4(c)],
a = 5, N = 2 [Fig. 4(d)], a = 5, N = 3 [Fig. 4(e)], and a = 5,
N = 4 [Fig. 4(f)]. The difference in these transmittances is due
to the two parameters a and N .

The resonant scattering of this system appears in order from
those of the structure of a low generation Cantor-like potential.
The resonant scattering appears at a wave number that satisfies
the following formula,

|ξg| cos(kwg − θg) = cos[(2m − 1)π/N ], (27)
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FIG. 4. Transmittance for the tenth stage potential U (x) =
(a/N )nU0 at L = 1, U0 = 512. (a) a = 3, N = 2. (b) a = 4, N = 2.
(c) a = 4, N = 3. (d) a = 5, N = 2. (e) a = 5, N = 3. (f) a = 5,
N = 4.

where g = 0,1, . . . ,n and m is a integer other than a multiple
of N . Sharp peaks for ε/U0 < 1 correspond to the resonant
tunneling, which can be observed even in the potential of
the first generation. The number of peaks of the resonant
scattering increases with a for a fixed value of N = 2, as is
seen from Figs. 4(a), 4(b) and 4(d). The peak structure is not
always simple, but has a finer structure. It is known that double
or triple peaks appear in the transmission coefficient for the
triple or quadruple potential walls which correspond to the
potential of N = 3 or 4 in the first generation [20]. Even in
our Cantor-like potentials of N = 2, 3, and 4, double peaks
and triple peaks appear in the range of ε/U0 < 1, as shown in
Fig. 5. Figures 4(a)–4(f) are respectively the enlargement of
Figs. 5(a)–5(f) for small ranges of ε/U0 < 1.

Double peaks for N = 2 originate from the structure of gen-
eration 2. When ε/U0 becomes sufficiently large, resonance
scattering occurs at the zero point of the Laue function,

k = πa

Nγ
l, (28)

from the approximation formula of Eq. (26), where l is an
integer other than a multiple of N . At this time, the resonant
scattering occurs periodically.

The Cantor-like potential can be constructed with various
experimental protocols. In the experimental system, it is ex-
pected that it is difficult to create an ideal Cantor-like potential
because of external fields and disorders. There are some studies
that state that scaling laws in fractal lattices are sensitive to
disorder and external fields [21]. To investigate an effect of the

FIG. 5. Enlarged view of transmittance peak at ε/U0 < 1. (a) a =
3, N = 2. (b) a = 4, N = 2. (c) a = 4, N = 3. (d) a = 5, N = 2. (e)
a = 5, N = 3. (f) a = 5, N = 4.

disorder, we have calculated the transmittances for n = 10,
a = 4, N = 3 in two cases. In the first case, randomness is
added to the potential height,(

A0

B0

)
=

Nn∏
j=1

Sj (xlj ,xrj ,k,qj )

(
AN+1

BN+1

)
, (29)

where xlj and xrj are the left and right points of the j th
potential, respectively, and qj = √

ε − (a/N )nU0(1 + p1Wj ),
0 < p1 < 1, where Wj is a random number between −0.5 and
0.5. In the second case, randomness is added to the position of
the potential component,(

A0

B0

)
=

Nn∏
j=1

Sj (xlj + p2,xrj + p2,k,q)

(
AN+1

BN+1

)
,

(30)

where p2 = (a − N )/(N − 1) × L/an × Wj . It is assumed
that the width of the component of these potentials does not
change. Figure 6 shows these potentials. The transmittance
was calculated using the (1,1) component after calculating
the finite product of the transfer matrix in formulas (29) and
(30), respectively. Figure 7 shows the results of Eqs. (29) and
(30). For ε/U0 < 1, the transmittance is influenced by the
external field as compared with the case where there is no
fluctuation. On the other hand, when ε/U0 > 1, disturbance of
the peak due to fluctuation can be confirmed, but the behavior
of the transmittance is almost the same as in the case without
fluctuation.

The calculation of the transmittance using the recursive
relation can be applied even when the potential height is
not constant. Consider the (2N − 1)-adic SV Cantor set with
N = 3, as shown in Fig. 8(a). The integral of this potential∫ L

0 U (x) = U0L is constant. The difference from the previous
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FIG. 6. (a) Cantor-like potential with randomness in the heights of
elemental potential walls. (b) Cantor-like potential with randomness
in the positions of elemental potential walls.

potential is that the potential height is multiplied by (a − 2)
only for the middle line segment after dividing the line segment.
In the case of such a potential, it is difficult to formulate
an explicit mathematical expression such as Eq. (21) but a
numerical calculation is easy. Figure 8(b) is a result of Eq. (21)
at a = 4, N = 3, and Fig. 8(c) is a numerical calculation of
the potential of Fig. 8(a). Figures 8(b) and 8(c) have the same
potential integral value, but the behavior of the transmittance
is different.

IV. MULTIFRACTALITY OF THE TRANSMITTANCE

Complex behaviors appear in the transmittance owing to
the function G(k), as shown in Fig. 4. Some features of G(k)
are discussed in the following. First of all, G(k) satisfies
0 � G(k) � 1. This is because G(k) is a finite product of the
Laue function defined by L(x) = sin2(Nx)/ sin2(x) (N is an
integer). The Laue function is used in x-ray diffraction. The
Laue function takes the minimum value 0 at x = mπ/N (where
m is an integer other than a multiple of N ), the maximum value

FIG. 7. Transmittance for the tenth stage potential U (x) =
(a/N )nU0 at a = 4, N = 3, L = 1, U0 = 512. The left-hand side
shows the transmittance near the wave number showing the resonant
tunnel. The right-hand side shows the transmittance for ε/U0 > 1. (a)
Results for Eq. (21). (b) Results for Eq. (29) at p1 = 0.1. (c) Results
for Eq. (30).

FIG. 8. Cantor-like potential where the potential height is not
constant and the numerical calculation result is at L = 1, U = 512,
n = 10, a = 4. (a) Schematic diagram of the Cantor-like potential in
the n = zeroth, first, and second, where the potential height is not
constant. (b) Numerical result when the potential height is constant.
(c) Numerical result when the potential height is not constant.

N2 at x = m′π (m′ is an integer), and the submaximal value
at x that satisfies tan(Nx)/[N tan(x)] = 1.

Second, the period of the extreme values of G(k) is �k =
(a/2γ )π . This is because

sin2(mπ )

sin2(mπ/N )

sin2(mπ/a)

sin2(mπ/Na)
· · · = 0,

and therefore G(k) = 0 at k = (πa/γN )l (l is an integer other
than a multiple of N ), and G(k) takes the extreme value at
k = πa/(γ )l′ (l′ is an integer). Figure 9 plots the behavior of
G(k) for various values of a and N . G(k) takes the extreme
values periodically in a logarithmic scale. The peaks appear at
k = πaly, where l is an integer and y is a constant determined
by a,N . Table I summarizes the values of peaks and y for
various a and N .

The position of the first peak to the third peak follows the
following rule. The first peak appears at k = π × al × (N −
1)/(a − 1). The second peak appears at k = π × al × (N −
1)/a and the third peak appears at k = π × al × (a + 1)/a2.
These rules are satisfied for any a’s at N = 2, however, there
are other peaks that do not satisfy these rules at N 	= 2.

Third, the function G(k) has multifractal properties. To
examine the multifractality of G(k), we calculated G(k)q in
the interval [al−1,al] [18,22,23],

Fq(l) =
∫ al

al−1
G(k)qdk. (31)

Table II summarizes the values of rq for various values of a and
N . The function Fq(l) increases rl

q exponentially with respect
to l, and r1 = a/N for any a,N . At N = 2, r2 = (3/8) × a

for any a. Additionally, for q = 0, r0 = a, and for sufficiently
large q, rq ∼ 1.
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FIG. 9. G(k) in a semilogarithmic scale of k. (a) a = 3, N = 2.
(b) a = 4, N = 2. (c) a = 4, N = 3. (d) a = 5, N = 2. (e) a = 5,
N = 3. (f) a = 5, N = 4.

In order to characterize the multifractality, the probabil-
ity density in the interval [al−1,al] is defined as p(k) =
G(k)/

∫ al

al−1 G(k)dk = G(k)/F1(l). A partition function Zq is
defined as

Zq(l) =
∫ al

al−1
pq(k)dk =

∫ al

al−1 G(k)qdk

[F1(l)]q
= Fq(l)

[F1(l)]q
. (32)

The generalized dimension Dq is defined as

Dq = 1

q − 1

ln[Zq(l + 1)] − ln[Zq(l)]

ln(1/a)
. (33)

For sufficiently large m, the distribution function increases
according to rl

q/r
lq

1 , so the generalized dimension can be
written as

Dq = 1

q − 1

q ln r1 − ln rq

ln a
. (34)

TABLE I. The value of G(k) from the first peak to the fourth peak
for various a and N . The values in parentheses indicate y = k/πal .

a,N 1st peak 2nd peak 3rd peak 4th peak

3,2 0.2174
(

1
2

)
0.1380

(
1
3

)
0.0705

(
4
9

)
0.0635

(
7
18

)
4,2 0.4780

(
1
3

)
0.3376

(
1
4

)
0.2546

(
5
16

)
0.2361

(
21
64

)
4,3 0.0993

(
2
3

)
0.0701

(
1
3

)
0.0362

(
8

16

)
0.0144

(
40
64

)
5,2 0.6417

(
1
4

)
0.4973

(
1
5

)
0.4303

(
6
25

)
0.4176

(
31
125

)
5,3 0.2779

(
2
4

)
0.1384

(
2
5

)
0.0873

(
12
25

)
0.0794

(
62
125

)
5,4 0.0574

(
3
4

)
0.0445

(
3

10

)
0.0279

(
9

20

)
0.0131

(
75
125

)

TABLE II. rq and generalized dimension for various a,N .

a,N r0 r1 r2 D0 D1 D2

3,2 3.00000 1.50001 1.12503 1.00000 0.75722 0.63075
4,2 4.00000 2.00000 1.50000 1.00000 0.76618 0.70751
4,3 4.00001 1.33333 1.03182 1.00000 0.59925 0.39251
5,2 5.00000 2.49983 1.87497 1.00000 0.81448 0.74804
5,3 5.00000 1.67155 1.17906 1.00000 0.67147 0.53614
5,4 5.00000 1.24992 1.01242 1.00000 0.49076 0.26962

For q = 0, D0 = (−1)[− ln(a)]/ ln(a) = 1, since
r0 = a. At N = 2, D2 = [2 ln(a/2) − ln(3a/8)]/ ln(a) =
ln(2a/3)/ ln(a) for any a. For sufficiently large q,
Dq = q/(q − 1)[1 − ln(N )/ ln(a)]. Table II shows rq and
Dq (q = 0, 1, and 2) for various values of a and N . The
generalized dimension Dq takes different values depending
on a and N . This means that the function G(k) has a different
multifractality depending on a,N . In order to verify this, we
calculated the f (α) spectrum by using the relation

α(q) = d

dq
[(q − 1)Dq], f (α) = qα(q) − (q − 1)Dq.

(35)

For large q, α approaches α = [1 − ln(N )/ ln(a)], because
Dq = q/(q − 1)[1 − ln(N )/ ln(a)] for large q. Figure 10
shows the f (α) spectrum for various a and N . Figure 10(a)
compares f (α) spectra for a = 3,4,5 at N = 2. For a = 4,
the spectrum is narrower than the case of a = 3 and 5. The
width of the f (α) spectrum is narrow at N = 2 when a takes
an even number. On the other hand, Fig. 10(b) compares the
f (α) spectra for N = 2,3,4 at a = 5. There is no noticeable
difference, although the width of f (α) becomes slightly larger
with N . This trend is similarly observed at any a.

V. SUMMARY

We found that the transmittance for the generalized Cantor-
like potential can be expressed using Chebyshev polyno-
mials of the second kind, and for sufficiently large k, it
is characterized by the finite product of the Laue function
G(k), which is a natural generalization of the finite product

FIG. 10. (a) f (α) spectra at a = 3, 4, and 5 for a fixed value of
N = 2. The solid line is a = 3, the dashed line is a = 4, and the dotted
line is a = 5. (b) f (α) spectra at N = 2, 4, and 5 for a fixed value
of a = 5. The solid line is N = 4, the dashed line is N = 3, and the
dotted line is N = 2.
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of the cosine function for the 3-adic Cantor-like potential.
G(k) is derived from the width of the gap in the Cantor-like
potential of generation n, and takes peak values periodically
in a logarithmic scale of k. Furthermore, G(k) shows various
multifractal properties depending on two parameters a and N .

A function expressed with the finite product such as G(k)
might appear even in other types of nontrivial potentials such
as Fibonacci potentials. In the future, we would like to check
whether the transmittance can be characterized by functions
such as G(k) even in these potentials.

[1] S. Alexander and R. Orbach, J. Phys. (Paris) 43, 625 (1982).
[2] T. Nakayama, K. Yakubo, and R. L. Orbach, Rev. Mod. Phys.

66, 381 (1994).
[3] E. Domany, S. Alexander, D. Bensimon, and L. P. Kadanoff,

Phys. Rev. B 28, 3110 (1983).
[4] X. R. Wang, Phys. Rev. B 51, 9310 (1995).
[5] M. W. Takeda, S. Kirihara, Y. Miyamoto, K. Sakoda, and K.

Honda, Phys. Rev. Lett. 92, 093902 (2004).
[6] X. Sun and D. L. Jaggard, J. Appl. Phys. 70, 2507 (1991).
[7] V. V. Konotop, Z. Fei, and L. Vázquez, Phys. Rev. E 48, 4044

(1993).
[8] M. D. Noskov and A. V. Shapovalov, Russ. Phys. J. 36, 703

(1993).
[9] C.-A. Gurein and M. Holschneider, J. Phys. A 29, 7651 (1996).

[10] A. V. Lavrinenko, S. V. Zhukovsky, K. S. Sandomirski, and S. V.
Gaponenko, Phys. Rev. E 65, 036621 (2002).

[11] N. Hatano, J. Phys. Soc. Jpn. 74, 3093 (2005).
[12] K. Honda and Y. Otobe, J. Phys. A 39, L315 (2006).

[13] J. A. Monsoriu, F. R. Villatoro, M. J. Marin, J. Pérez, and L.
Monreal, Am. J. Phys. 74, 831 (2006).

[14] N. L. Chuprikov, J. Phys. A 33, 4293 (2008).
[15] F. R. Villatoro and J. A. Monsoriu, Phys. Lett. A 372, 3801

(2008).
[16] K. Esaki, M. Sato, and M. Kohmoto, Phys. Rev. E 79, 056226

(2009).
[17] R. Sato, K. Kaino, and J. Sonoda, IEICE Trans. Electron. E99-C,

801 (2016).
[18] H. Sakaguchi and T. Ogawana, Phys. Rev. E 95, 032214 (2017).
[19] See, e.g., D. W. L. Sprung, H. Wu, and J. Martorell, Am. J. Phys.

61, 1118 (1993).
[20] H. Yamamoto, Y. Kanie, A. Kurita, and K. Taniguchi, Jpn. J.

Appl. Phys. 34, 4529 (1995).
[21] See, e.g., X. R. Wang, Phys. Rev. B 53, 12035 (1996).
[22] H. G. E. Hentschel and I. Procaccia, Physica D 8, 435 (1983).
[23] T. C. Halsey, M. H. Jensen, L. P. Kadanoff, I. Procaccia, and

B. I. Shraiman, Phys. Rev. A 33, 1141 (1986).

012205-7

https://doi.org/10.1051/jphyslet:019820043017062500
https://doi.org/10.1051/jphyslet:019820043017062500
https://doi.org/10.1051/jphyslet:019820043017062500
https://doi.org/10.1051/jphyslet:019820043017062500
https://doi.org/10.1103/RevModPhys.66.381
https://doi.org/10.1103/RevModPhys.66.381
https://doi.org/10.1103/RevModPhys.66.381
https://doi.org/10.1103/RevModPhys.66.381
https://doi.org/10.1103/PhysRevB.28.3110
https://doi.org/10.1103/PhysRevB.28.3110
https://doi.org/10.1103/PhysRevB.28.3110
https://doi.org/10.1103/PhysRevB.28.3110
https://doi.org/10.1103/PhysRevB.51.9310
https://doi.org/10.1103/PhysRevB.51.9310
https://doi.org/10.1103/PhysRevB.51.9310
https://doi.org/10.1103/PhysRevB.51.9310
https://doi.org/10.1103/PhysRevLett.92.093902
https://doi.org/10.1103/PhysRevLett.92.093902
https://doi.org/10.1103/PhysRevLett.92.093902
https://doi.org/10.1103/PhysRevLett.92.093902
https://doi.org/10.1103/PhysRevE.48.4044
https://doi.org/10.1103/PhysRevE.48.4044
https://doi.org/10.1103/PhysRevE.48.4044
https://doi.org/10.1103/PhysRevE.48.4044
https://doi.org/10.1007/BF00559090
https://doi.org/10.1007/BF00559090
https://doi.org/10.1007/BF00559090
https://doi.org/10.1007/BF00559090
https://doi.org/10.1088/0305-4470/29/23/025
https://doi.org/10.1088/0305-4470/29/23/025
https://doi.org/10.1088/0305-4470/29/23/025
https://doi.org/10.1088/0305-4470/29/23/025
https://doi.org/10.1103/PhysRevE.65.036621
https://doi.org/10.1103/PhysRevE.65.036621
https://doi.org/10.1103/PhysRevE.65.036621
https://doi.org/10.1103/PhysRevE.65.036621
https://doi.org/10.1143/JPSJ.74.3093
https://doi.org/10.1143/JPSJ.74.3093
https://doi.org/10.1143/JPSJ.74.3093
https://doi.org/10.1143/JPSJ.74.3093
https://doi.org/10.1088/0305-4470/39/20/L04
https://doi.org/10.1088/0305-4470/39/20/L04
https://doi.org/10.1088/0305-4470/39/20/L04
https://doi.org/10.1088/0305-4470/39/20/L04
https://doi.org/10.1119/1.2209242
https://doi.org/10.1119/1.2209242
https://doi.org/10.1119/1.2209242
https://doi.org/10.1119/1.2209242
https://doi.org/10.1088/0305-4470/33/23/307
https://doi.org/10.1088/0305-4470/33/23/307
https://doi.org/10.1088/0305-4470/33/23/307
https://doi.org/10.1088/0305-4470/33/23/307
https://doi.org/10.1016/j.physleta.2008.03.002
https://doi.org/10.1016/j.physleta.2008.03.002
https://doi.org/10.1016/j.physleta.2008.03.002
https://doi.org/10.1016/j.physleta.2008.03.002
https://doi.org/10.1103/PhysRevE.79.056226
https://doi.org/10.1103/PhysRevE.79.056226
https://doi.org/10.1103/PhysRevE.79.056226
https://doi.org/10.1103/PhysRevE.79.056226
https://doi.org/10.1587/transele.E99.C.801
https://doi.org/10.1587/transele.E99.C.801
https://doi.org/10.1587/transele.E99.C.801
https://doi.org/10.1587/transele.E99.C.801
https://doi.org/10.1103/PhysRevE.95.032214
https://doi.org/10.1103/PhysRevE.95.032214
https://doi.org/10.1103/PhysRevE.95.032214
https://doi.org/10.1103/PhysRevE.95.032214
https://doi.org/10.1119/1.17306
https://doi.org/10.1119/1.17306
https://doi.org/10.1119/1.17306
https://doi.org/10.1119/1.17306
https://doi.org/10.1143/JJAP.34.4529
https://doi.org/10.1143/JJAP.34.4529
https://doi.org/10.1143/JJAP.34.4529
https://doi.org/10.1143/JJAP.34.4529
https://doi.org/10.1103/PhysRevB.53.12035
https://doi.org/10.1103/PhysRevB.53.12035
https://doi.org/10.1103/PhysRevB.53.12035
https://doi.org/10.1103/PhysRevB.53.12035
https://doi.org/10.1016/0167-2789(83)90235-X
https://doi.org/10.1016/0167-2789(83)90235-X
https://doi.org/10.1016/0167-2789(83)90235-X
https://doi.org/10.1016/0167-2789(83)90235-X
https://doi.org/10.1103/PhysRevA.33.1141
https://doi.org/10.1103/PhysRevA.33.1141
https://doi.org/10.1103/PhysRevA.33.1141
https://doi.org/10.1103/PhysRevA.33.1141



