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Scale-invariant power-law distributions for acoustic emission signals are ubiquitous in several plastically
deforming materials. However, power-law distributions for acoustic emission energies are reported in distinctly
different plastically deforming situations such as hcp and fcc single and polycrystalline samples exhibiting
smooth stress-strain curves and in dilute metallic alloys exhibiting discontinuous flow. This is surprising since the
underlying dislocation mechanisms in these two types of deformations are very different. So far, there have been
no models that predict the power-law statistics for discontinuous flow. Furthermore, the statistics of the acoustic
emission signals in jerky flow is even more complex, requiring multifractal measures for a proper characterization.
There has been no model that explains the complex statistics either. Here we address the problem of statistical
characterization of the acoustic emission signals associated with the three types of the Portevin–Le Chatelier bands.
Following our recently proposed general framework for calculating acoustic emission, we set up a wave equation
for the elastic degrees of freedom with a plastic strain rate as a source term. The energy dissipated during acoustic
emission is represented by the Rayleigh-dissipation function. Using the plastic strain rate obtained from the
Ananthakrishna model for the Portevin–Le Chatelier effect, we compute the acoustic emission signals associated
with the three Portevin–Le Chatelier bands and the Lüders-like band. The so-calculated acoustic emission signals
are used for further statistical characterization. Our results show that the model predicts power-law statistics for
all the acoustic emission signals associated with the three types of Portevin–Le Chatelier bands with the exponent
values increasing with increasing strain rate. The calculated multifractal spectra corresponding to the acoustic
emission signals associated with the three band types have a maximum spread for the type C bands and decreasing
with types B and A. We further show that the acoustic emission signals associated with Lüders-like band also
exhibit a power-law distribution and multifractality.
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I. INTRODUCTION

It is well known that the motion of dislocations is inherently
intermittent with waiting periods at junctions where they
are arrested followed by nearly free flights between them.
This feature is not reflected during the homogeneous yield
phenomenon where the stress-strain (σ -ε) curves are smooth.
However, the intermittent behavior reappears as serrations
on the stress-strain curves when the diameter of the rod
is decreased below a fraction of a micron, confirming the
inherently intermittent character of dislocation motion [1,2].
On the other hand, jerky flow or the Portevin–Le Chatelier
(PLC) effect is observed at macroscopic scales when spec-
imens of dilute alloys are subjected to constant strain rate
deformation [3,4]. The intermittent deformation manifests
itself as a series of serrations on the stress-strain curves in a
range of temperatures and strain rates. A standard explanation
is that the discontinuous flow is due to collective pinning
and unpinning of dislocations from the solute cloud. Clearly,
the underlying dislocation mechanisms must necessarily be
different in these two cases.

The acoustic emission (AE) technique has long been used
as a tool to probe the dynamics of dislocations on finer scales
in several kinds of deformation studies, in particular, in the
two cases mentioned above. For instance, AE studies on the

smooth homogeneous yield phenomenon exhibit intermittent
AE signals with its overall envelope exhibiting a peak just
beyond the elastic regime decaying for larger strains [5,6].
Recent AE studies for this case throw light on the origin of
the pulselike character of AE signals [7–10]. The smooth σ -ε
curves are then interpreted as resulting from the averaging
process of the dislocation activity in the sample.

Acoustic emission studies carried out for over five decades
have established specific correlations between the nature of the
AE signals and the nature of stress-strain curves for different
situations [5,6,11–17]. The nature of the AE signals in the case
of discontinuous flow where the stress-strain curves display
stress serrations is qualitatively different from that for the con-
tinuous homogeneous yield. For example, studies on the PLC
effect have established specific types of correlations between
the nature of the AE signals and the three different types
of bands and the associated serrations [10,11,13–15,18,19].
For the uncorrelated static type C bands that displays large-
amplitude serrations, the AE signals consist of well separated
AE bursts with a low-level AE background, while for the
partially propagating type B bands exhibiting relatively small-
amplitude serrations, the AE bursts begin to overlap. The AE
signals corresponding to the fully propagating type A bands
(with very-small-amplitude serrations) are continuous with
bursts of AE appearing only occasionally [13–15,19]. These
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characteristic features have been captured in our recent work
[20,21]. Similar correlations exist for the Lüders band [14–17],
another type of propagative instability [22]. Furthermore, the
AE signals for the Lüders band are different from that for the
three PLC bands [3,4], a feature that is also captured by our
model [21].

In the case of propagative instabilities, collective dislocation
processes govern the nature of the bands and the associated
stress-strain curves. While the AE associated with both the
continuous yield and the discontinuous yield consists of a
sequence of intermittent bursts of acoustic energy, the AE
technique is able not only to distinguish these two types of AE
patterns, but also to quantify them. Indeed, the recent progress
in experimental techniques with a high degree of resolution and
accuracy has helped to establish quantitative characterization
of the AE signals corresponding to the different types of
stress-strain curves [7,9,10,14,15,23,24].

One characteristic feature of AE signals is the scale-free
statistics of the amplitude (or energy) in widely different
physical systems such as volcanic activity [25], microfractur-
ing processes [26], thermal cycling of martensites [27–29],
peeling of an adhesive tape [30–32], and plastic deformation
of materials exhibiting homogeneous yield [7,9,10] as well
as discontinuous flows [10,23,24]. In the context of plastic
deformation, the statistics of the recorded intermittent AE
signals obtained from a uniaxial compressive creep of ice
crystals, e.g., single and polycrystalline samples of hcp and fcc
structures [10], follow power-law distributions. Surprisingly,
even in the case of the PLC effect, power-law distributions for
the AE energies are reported for all the PLC bands [10,19,24].
Interestingly, while the scaling region for the AE energies
corresponding to the type A bands is the lowest scaling regime,
it is only for the type A band that power-law distributions for the
magnitudes and durations of stress drops have been reported
[23,33–35].

The fact that power-law distributions of the AE signals are
seen in these two cases (of homogeneous and discontinuous
flows) with distinctly different dislocation dynamics is sur-
prising. The power-law statistics for the homogeneous yield
has been predicted in two- and three-dimensional simulations
[9,36]. The underlying physical mechanism is the formation
of dislocation network that is driven to the edge of criticality.
In this state, some proportion of the network is poised at and
just below the criticality. Then bursts of AE are attributed to the
coherent unpinning of those dislocation segments at criticality.
Once unpinned, these segments are arrested falling below the
critical state with segments below the criticality pushed to
the threshold, much like the sandpile model scenario [37].
Clearly, this kind of explanation cannot hold for the power-law
statistics of the AE signals associated with the PLC bands
since these band types are attributed to collective unpinning
of dislocations. We are unaware of models or simulations that
predict the power-law statistics of the AE signals in the case
of the PLC effect. Thus, our primary objective is to examine if
the calculated model AE signals associated with the three PLC
bands [21] exhibit power-law statistics.

Even more interesting is the fact that the statistical prop-
erties of the AE signals from the PLC bands are even more
complex, requiring a distribution of scaling exponents for a
proper characterization, unlike the single exponent required for

characterizing a power-law distribution [10,19,24]. Indeed, the
statistical properties of such complex sets are mathematically
characterized by a continuum of generalized Rényi dimensions
Dq parametrized by a parameter q [38–40]. Alternately, they
can be described as an interwoven sets of Hausdorff (fractal)
dimensionsf (α) having a singularity strengthα [39,40]. So far,
there is no model that reports the generalized dimensions Dq or
the singularity spectrum f (α) for the AE energies associated
with the three PLC bands. Thus, our second objective is to
examine if the calculated AE signals for the PLC bands [20,21]
exhibit multifractality.

Towards this end, we follow the recently introduced frame-
work for calculating AE for any plastic deforming situation
[20,21]. We use the Rayleigh dissipation function to represent
the energy dissipated during acoustic emission. The method
involves setting up a discrete set of wave equations for the
elastic strain with plastic strain rate as a source term. The plastic
strain source term is itself calculated using the Ananthakrishna
(AK) model for the PLC effect since the model predicts all the
generic features of the PLC instability including the three band
types [20,21]. This model also predicts Lüders-like bands. We
demonstrate that the model AE energy bursts corresponding to
the three types PLC bands and Lüders-like band predict both
power-law distributions and multifractal spectra.

II. THEORETICAL FRAMEWORK FOR ACOUSTIC
EMISSION DURING PLASTIC DEFORMATION

We briefly recall the theoretical framework developed for
calculating AE in our previous papers [20,21]. The basic idea is
that acoustic emission (transient elastic waves) is generated due
to the abrupt motion of dislocations. In mathematical terms,
this translates to setting up a wave equation for the elastic
degrees of freedom with the plastic strain rate as a source term.
At this point, the equation is general enough to be applicable to
any plastic deformation since the plastic strain rate source term
has no specific reference to the nature of plastic deformation.
Therefore, to be applicable to a specific plastic deformation, we
need to devise a suitable model that captures the characteristic
features of the plastic deformation. In the present context, the
minimum requirement is that the model should predict all the
generic features of the PLC effect, including the three types of
bands and the associated serrations. The AK model meets this
requirement since the model captures most generic features of
the PLC effect, including the band types [3,41–46]. The model
also predicts the Lüders-like band.

A. Approach

As stated above, the abrupt motion of dislocations sets off an
elastic disturbance, which then activates the dissipative forces
that tend to oppose their growth so that mechanical equilib-
rium is restored. Then the dissipative energy [28,29,31,32,47]
during AE is represented by the Rayleigh dissipation function
RAE [48] either in terms of the elastic strain εe or in terms of
displacement field u(y,t). Then we have

RAE = η

2

∫ [
∂εe

∂t

]2

dy = η

2

∫ [
∂u̇(y,t)

∂y

]2

dy, (1)
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where we have used the elastic strain defined by εe(y,t) =
∂u(y,t)

∂y
. Here η the damping coefficient. Then, since RAE ∝

ε̇2
e (y), we interpret RAE as the acoustic energy dissipated

during the abrupt motion of dislocations [28,29,31,32,47,49].
The total energy of a one-dimensional crystal is the sum

of the kinetic energy, the potential energy, and the gradient
potential energy [28,29,49]. The kinetic energy is given by T =
ρ

2

∫
[ ∂u(y,t)

∂t
]2dy, where ρ is the linear mass density. In our work

we have chosen to use mass per unit volume instead of linear
mass density so that the elastic constant μ appears naturally
in the expression for the potential energy, given by Vloc =
μ

2

∫
[ ∂u(y,t)

∂y
]2dy. (Note that the machine equation describing the

constant strain rate condition contains the elastic constant.) The
gradient potential energy is given by Vgrad = D

4

∫
[ ∂2u(y,t)

∂y2 ]2dy.

Here D is the gradient energy coefficient. Then, using the
Lagrangian L = T − Vloc − Vgrad in the Lagrange equations
of motion, we get

ρ
∂2u(y,t)

∂t2
= μ

∂2u(y,t)

∂y2
+ η

∂2u̇(y,t)

∂y2
− D

∂4u(y,t)

∂y4
. (2)

Noting that strain ε(y,t) is the natural variable used in plastic
deformation, the wave equation in the strain variable is ob-
tained by differentiating Eq. (2) with respect to y. Then we
have

ρ
∂2εe

∂t2
= μ

∂2εe

∂y2
+ η

∂2ε̇e

∂y2
− D

∂4εe

∂y4
. (3)

Equation (3) describes sound waves in the absence of dislo-
cations. However, during plastic flow, since transient elastic
waves are triggered by the abrupt motion of dislocations, we
include the plastic strain rate ε̇p(y,t) as a source term in Eq. (3).
Then the relevant inhomogeneous wave equation describing
the AE process takes the form

ρ
∂2εe

∂t2
= μ

∂2εe

∂y2
− ρ

∂2εp

∂t2
+ η

∂2ε̇e

∂y2
− D

∂4εe

∂y4
. (4)

Here c = √
μ/ρ is the velocity of sound. Note that ε̇p(y,t)

is a function of both space and time and hence contains
full information of any possible heterogeneous character of
the deformation. Clearly, the plastic strain rate source term
needs to be calculated independently by setting up appropriate
evolution equations for suitable types of dislocation densities
for the desired plastic deformation. For the problem under
consideration, we will use the AK model for the PLC effect.

Solution of Eq. (4) requires that we specify the initial and
boundary conditions appropriate to the problem. Consider the
commonly employed constant strain rate mode of deformation.
This condition is enforced by fixing one end of the sample
and applying a traction at the other end. However, it is
important to ensure that the boundary conditions on Eq. (4)
be consistent with those imposed on the evolution equations
for the dislocation densities (subject to constant strain rate
condition). However, the values of the dislocation densities
at the boundaries are determined by physical considerations
and therefore the plastic strain rate ε̇p(y,t) at the boundary
points need not necessarily be consistent with those imposed on
Eq. (4). (Note that the sum of the elastic and plastic strain rates
should be equal to the imposed strain rate.) More importantly,
in real samples, the machine stiffness gripping the ends of the

sample is higher than that for the sample. This condition is not
easy to include in the continuous form of the wave equation,
i.e., Eq. (4). On the other hand, this condition can be easily
implemented in the equivalent discrete set of wave equations
given in the Appendix (see also Ref. [21]). Such a discrete
set of wave equations for εe(j,t), j = 1, . . . ,N , allows us to
make a distinction between points within the sample and those
at the boundary. Note that numerical solution of the evolution
equations for the dislocation densities is obtained by solving
them on a grid of N points corresponding to a sample length L

by fixing one end and pulling the other end at a constant strain
rate. Then the plastic strain rate computed for each spatial point
can be directly used as source terms in the discrete set of N

wave equations. The method also brings clarity to the boundary
conditions. A brief outline of the discrete set of wave equations
is given in the Appendix [Eqs. (A1)–(A5)]. For details see
Ref. [21].

B. The Ananthakrishna model
for the Portevin–Le Chatelier effect

Equation (4) [or Eqs. (A1)–(A5)] require that we supply the
source term ε̇p(y,t) to compute the AE signals associated with
the PLC bands. This then can be used for further statistical
analysis. For the sake of completeness, we briefly recapitulate
the AK model [3,41–43,45,46] for the PLC effect that was also
used in Refs. [20,21] for calculating AE corresponding to the
three PLC bands.

We begin with a brief summary of the salient features of the
PLC effect. The PLC effect is characterized by three types of
bands [3,4] and the associated stress serrations observed with
increasing strain rate. At low applied strain rates ε̇a , randomly
nucleated static type C bands are seen with large-amplitude
nearly regular serrations. With an increase in ε̇a , hopping
type B bands are seen that exhibit more irregular smaller
serrations. Finally, at high ε̇a , the continuously propagating
type A bands are observed. The associated serration amplitudes
are considerably smaller. These different types of PLC bands
have been shown to represent distinct correlated states of
dislocations in the bands [3,42–46].

We will use the AK model for the PLC effect since it
predicts all the characteristic features of the phenomenon such
as the existence of instability within a window of strain rates,
the negative strain rate behavior [41,50], and the three types
of band types C, B, and A [3,41–43,45,46]. The model also
predicts several dynamical features reported in the analysis
of the experimental time series such as the existence of
chaotic stress drops [51], which has been subsequently verified
[33,52,53]. Inclusion of spatial degrees of freedom automat-
ically predicts the crossover dynamics from low-dimensional
chaos to an infinite-dimensional power-law state of stress drops
reported in the analysis of experimental stress-strain series
[33,42–45,52,53]. In addition, the AK model also predicts
Lüders-like bands [21].

The basic idea of the model is that all the qualitative
features of the PLC effect emerge from a nonlinear inter-
action of a few collective degrees of freedom, namely, the
densities of the mobile dislocations, immobile dislocations,
and dislocations with a cloud of solute atoms, denoted, re-
spectively, by ρm(x,τ ), ρim(x,τ ), and ρc(x,τ ). The evolution
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TABLE I. Parameter values used for the AK model for computation of the acoustic emission.

E∗ (GPa) σy (GPa) αm (s−1) αc (s−1) v0 (ms−1) γ (s−1) f m β (m2 s−1) �

48 0.2 0.8 0.08 10−7 5 × 10−4 1 3 5 × 10−14 1012

equations are

∂ρm

∂t ′
= −βρ2

m − fβρmρim − αmρm + γρim

+ θv0

[
σeff

σy

]m

ρm + �θv0

ρim

∂2

∂x2

[
σeff

σy

]m

ρm, (5)

∂ρim

∂t ′
= βρ2

m − βρmρim − γρim + αcρc, (6)

∂ρc

∂t ′
= αmρm − αcρc. (7)

Equations (5)–(7) have been discussed in a number of
earlier publications and the details can be found in
Refs. [3,21,41–46,53]. For the sake of completeness, here
we provide a brief description of each of the dislocation
mechanisms.

The first term in Eq. (5) refers to the formation of dipoles.
This term acts as a source term for ρim. The second term
refers to the annihilation of a mobile dislocation with an
immobile one. Here β has a dimension of the rate of the
area swept by a dislocation. This is a common loss term to
both ρm and ρim. The third term αmρm in Eq. (5) corresponds
to solute atoms diffusing to mobile dislocations temporarily
arrested at immobile (or forest) dislocations. Here αm can be
expressed in terms of the solute concentration c at the core of
the dislocations, Dc is the diffusion constant of the solutes, and
λ is an effective attractive length scale for the solute diffusion.
Then αm = Dc(T )c/λ2 (see [46]). The fourth term γρim is the
reactivation of the fraction of ρim that has been immobilized
due to solute pinning (discussed below).

The loss term αmρm in Eq. (5) is a gain term for ρc. We
consider those mobile dislocations that start acquiring solute
atoms as dislocations with solute atoms ρc. As dislocations
progressively acquire solute atoms at a rate αc, they are
eventually immobilized, at which point they are considered
as ρim. Then the loss term αcρc in Eq. (7) is a source term for
ρim in Eq. (6). (Note that 1/αc represents the aging time.) Thus,
ρim includes dislocations that are pinned by solute atmosphere
as well. Therefore, the loss term γρim in Eq. (6) is considered
to represent the unpinning of that fraction of ρim immobilized
by the solute atoms.

The fifth term in Eq. (5) represents the rate of multiplication
of dislocations due to cross slip given by θvm(σeff )ρm =
θv0[σeff/σy]mρm, wherem is a velocity exponent. Herevm(σeff )
is the mean velocity of mobile dislocations taken to have
a power-law dependence on the effective stress σeff = σa −
hρ

1/2
im [22]. In addition, σy is the yield stress and hρ

1/2
im the back

stress. (h = αGb, where α ∼ 0.3, G is the shear modulus, and
b is the magnitude of the Burgers vector.)

Several types of spatial couplings, such as solute diffusion
to dislocations, double-cross-slip, long-range elastic interac-
tions between dislocations, compatibility stresses between
grains, the Bridgman factor (bending moments), and correlated

motion of dislocation glide due to long-range forces, have
been proposed (see Ref. [3], pp. 130–133). In the context of
theoretical modeling, even the long-range spatial couplings,
such as the long-range elastic interaction between dislocations,
the Bridgman factor, and correlated motion of dislocations,
have been reduced to a diffusive type of coupling to the leading
order [3]. In our model, the most natural spatial coupling [the
sixth term in Eq. (5)] arises from the double-cross-slip process
that allows dislocations to move into neighboring spatial
elements. Note that the 1/ρim factor prevents the occurrence of
cross slip into regions of high back stress. (See [3,45] for details
of the derivations for different types of diffusive couplings.)

These equations are coupled to the machine equation that
enforces the constant strain rate condition

dσa

dt ′
= E∗

(
ε̇a − b

L

∫ L

0
v0

[
σeff

σy

]m

ρmdx

)

= E∗[ε̇a − ε̇p(t ′)]. (8)

Here E∗ is the effective modulus of the machine and the sample
and L is the length of the sample.

Equations (5)–(8) are solved by using an adaptive step
size differential equation solver (ode15s MATLAB solver). The
model parameters fall into two types, one experimental and
the other theoretical. In our approach, we can adopt the
experimental parameters. Theoretical parameters correspond
to parameters associated with dislocation mechanisms used in
the model. The instability domain for various parameters has
been determined in a number of publications [3,21,41–46,53].
The parameters used for calculation of AE signals (adopted
from Ref. [21]) are given in Table I.

III. POWER-LAW STATISTICS FOR THE ACOUSTIC
ENERGY DURING JERKY FLOW

As stated in the Introduction, the discrete set of wave
equations for εe(j,t), j = 1, . . . ,N , given by Eqs. (A1)–(A5)
provides the general framework for calculating the AE signals
provided the plastic strain rate source term can be calculated.
For the present case, ε̇p is calculated by using the AK model
equations that reproduce all the generic features of the PLC ef-
fect. The underlying physical mechanism subsumed in the AK
model is the collective pinning and unpinning of dislocation
from solute clouds. Clearly, the unpinning mechanism acts as
a source generating the AE signals.

The numerical steps adopted for computing AE signals is
detailed in Ref. [21]. The first step is to solve Eqs. (5)–(8)
on a grid of N points for the entire time interval and obtain
ε̇p(k,t ′i ) using a fixed or variable time step δt ′. The so-computed
ε̇p(k,t ′i ) can then be used as a source term in the N discrete
wave equations (A1)–(A5). However, noting that the discrete
wave equations need to be integrated at much finer time steps,
say, δt , we first obtain the corresponding interpolated values
of ε̇p(k,ti) at these time steps, which are then used to solve
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Eqs. (A1)–(A5). This gives the elastic strain rate, which is
used to compute the AE energy dissipated using Eq. (1).

It should be mentioned here that the above method
of calculating AE is only approximate since we use the
equilibrated value of stress (8) to obtain the plastic strain rate
ε̇p(k,t ′). The method is akin to adiabatic schemes. However, it
is possible to solve the AK model equations (5)–(7) together
with Eqs. (A1)–(A5) to obtain the elastic strain and hence
the instantaneous stress along with the plastic strain rate.
The so-computed stress will in general be different from the
equilibrated value used in the approximate scheme.

A. Nature of the acoustic emission signals
accompanying the PLC bands

Recall that, in our framework, acoustic emission is triggered
by the plastic strain rate source term. The latter carries the
physical information about the abrupt motion of dislocations. It
is therefore useful to briefly recall some results from our earlier
work [46] on the nature of the stress serrations associated with
the three band types and their correlations with the nature of AE
patterns [21]. At low strain rates, the uncorrelated static type C
bands are seen with nearly regular large-amplitude serrations.
As ε̇a is increased we see the hopping type B bands. The serra-
tions are more irregular and are also of smaller magnitude. One
important feature predicted by the model relevant to the AE
studies is the correlation between band propagation property
and small-amplitude serrations (SASs) and its influence on the
AE pattern. It was recently demonstrated that band propagation
induces small-amplitude serrations that are bounded on both
sides by large-amplitude stress drops [46]. The latter were
found to be well correlated with the nucleation and stopping
of the band. As we increase ε̇a , the extent of propagation
increases with a concomitant increase of the SASs. At high
ε̇a (type A bands), occasional large-amplitude stress drops
accompany the SASs, identified with the band reaching the
boundaries. These features are consistent with experimental
studies [54,55]. Another feature that is relevant for the AE
studies is the fact that the mean stress level of these SASs
increases or decreases, though this change is small.

Now consider the nature of the AE signals accompanying
the three types of PLC bands. For the type C band, well
separated AE bursts are seen in the strain rate region 3 ×
10−6 s−1 < ε̇a < 1.5 × 10−5 s−1 [21]. Further, the bursts of
AE are well correlated with the stress drops. Figure 1(a) shows
typical burst-type AE signals for ε̇a = 1.125 × 10−5 s−1. The
inset shows a few successive well separated AE bursts. The
amplitude of each burst exhibits an oscillatory exponential
decay, which, however, is not visible on the scale of the
inset, but becomes visible on a finer scale. These features are
consistent with AE experiments for the type C bands [14,15].

With increasing ε̇a , the AE bursts begin to overlap in the
region of the partially propagating type B bands. A typical
plot of the AE for ε̇a = 3 × 10−5 s−1 is shown in Fig. 1(b).
The overall structure of the AE pattern is similar to the voltage
plot of experimental AE signals in Fig. 2 of Ref. [24]. As
shown in Ref. [21], a careful analysis of the AE signals and
stress serrations shows two features. First, the low-amplitude
continuous AE signals are well correlated with the band
propagation induced SASs. Second, the large-amplitude AE

FIG. 1. Model acoustic energy RAE associated with (a) the uncor-
related static type C bands for ε̇a = 1.125 × 10−5 s−1, (b) the partially
propagating type B bands for ε̇a = 3.0 × 10−5 s−1, and (c) the fully
propagating type A bands for ε̇a = 5.5 × 10−5 s−1. The inset in (a)
shows the nonoverlapping nature of the bursts for the type C bands.
The amplitude decreases in an oscillatory manner, not visible on this
scale. The inset in (b) shows the increasing background AE level
caused by SASs for the type B bands. The inset in (c) shows the
increased level of background AE is due to the long stretches of SASs
for the type A bands.

bursts (shown in the inset) are well correlated with the large-
amplitude stress drops that are identified with the nucleation of
new bands or stoppage of bands. This prediction is consistent
with recent experimental studies on AE associated with the
PLC bands [14,15].

At high ε̇a of the fully propagating type A bands, the
nature of the AE pattern becomes nearly continuous, which
again is due to the long stretch of SASs induced by type
A bands propagating long distances. A typical AE pattern
for ε̇a = 5.5 × 10−5 s−1 is shown in Fig. 1(c). (It must be
mentioned here that the small strain rate range over which
the instability is seen is the limitation of the AK model as used
here, which does not include the forest hardening term. This
term was primarily ignored for mathematical convenience.
However, inclusion of this term extends the instability range
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FIG. 2. Power-law distributions for the AE events RAE(p) for
(a) the type C bands for ε̇a = 1.125 × 10−5 s−1, (b) the partially
propagating type B band for ε̇a = 3.0 × 10−5 s−1, and (c) the type
A band for ε̇a = 5.5 × 10−5 s−1.

to three orders in strain rate as in experiments [56].) As can be
seen, the AE pattern has a nearly continuous background AE
level with occasional relatively large bursts. The continuous
background AE is illustrated in the inset. The high background
level of the model AE signals corresponding to the type A band
is also consistent with experiments [12–15]. In our earlier paper
[21] we demonstrated that the relatively large AE bursts are
correlated with the large-amplitude stress drops due to either
nucleation or the band reaching the boundaries.

B. Power-law distributions of AE events
associated with the PLC bands

Accumulation of the statistics of AE events requires iden-
tifying a segment of AE signals as an individual AE burst or
an AE event. Recall that the AE signals corresponding to the
type C bands consist of well separated AE bursts of varying
peak amplitudes. In addition, we also find overlap of several
successive AE bursts [see the inset of Fig. 1(a)]. Each of these

AE bursts shown in the inset of Fig. 1(a) decays in an oscillatory
fashion. While the peak amplitude of all AE bursts decays in
this manner, a few bursts may not relax fully due to the overlap
with the next AE burst. In such cases, the amplitude of the
AE signal first decreases and then increases to a new peak
amplitude. When the strain rate is increased, the tendency for
overlap of AE bursts increases, as is clear from the insets of
Figs. 1(b) and 1(c). This feature helps us to define an individual
AE burst or an AE event by the local peak amplitude of the
burst. Using the local peak amplitude of each burst as the
event size RAE(p), we have computed the distribution of the
event sizes D(RAE(p)). If the distribution D(RAE(p)) follows
a power law, then we have

D(RAE(p)) ∼ RAE(p)−ν, (9)

where ν is the scaling exponent.
Here it is useful to briefly summarize the method used

for accumulating the statistics of experimental AE bursts or
events. Several factors influence the statistics of the AE event
sizes. The first is the threshold imposed to identify what is
regarded as an individual AE burst. (See Fig. 6 of Ref. [10].)
The threshold, in particular, has a tendency to eliminate the
AE signals that are smaller than the threshold value. In our
calculation, the power-law distributions have been computed
without any threshold. The second factor is that the exponent
value depends on the region of the strain where the signal
is recorded for the analysis. This is related to fact that the
stress-strain curves exhibit hardening. In contrast, the model
AE signals are recorded in the stationary region.

We have calculated the distribution of the magnitude of
the AE events (AE energy bursts) RAE(p) associated with all
three types of the PLC bands. A plot of ln D(RAE(p)) versus
ln RAE(p) for the type C bands is shown in Fig. 2(a). A scaling
region of nearly two orders of magnitude in RAE(p) is clear
and the exponent value is ν = 1.32. At higher strain rates of
partially propagating type B bands, the calculated distribution
D(RAE(p)) is shown in Fig. 2(b). The scaling regime is again
nearly two orders in RAE(p) with an exponent value ν = 1.5.
In the fully propagating band A, we find a significantly larger
proportion of small-amplitude AE events and a smaller number
of large-amplitude AE events. The corresponding power-law
distribution for RAE(p) is shown in Fig. 2(c). As can be seen,
there is a reduced scaling region, a feature that is similar to
experiments. The exponent value is ν = 1.8. In all three cases,
the model exponent values are considerably smaller than those
reported by Lebyodkin and co-workers [10,19,24].

Finally, we consider analyzing the AE signals correspond-
ing to another type of propagating band, namely, the Lüders
band. It is well known that several alloys exhibiting the PLC
effect also exhibit the Lüders band [14–16]. Since the AK
model predicts the characteristic features of the three PLC
bands, one can anticipate that the AK model should also predict
a Lüders-like band. Indeed, the AK model also predicts a
Lüders-like band following a yield drop. The corresponding
AE pattern has been investigated [21]. Here we adopt the
same parameters as used in Ref. [21] for calculating the
AE signals associated with the Lüders-like band. The values
are αm = 1 s−1, αc = 0.002 s−1, γ = 5 × 10−4 s−1, E∗/σy =
240, m = 10, and ε̇a = 1.67 × 10−6 s−1. Figure 3(a) shows
the stress-strain curve and associated AE signals. As can be
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FIG. 3. (a) Model acoustic energy RAE(p) for the Lüders-like
propagating band along with the stress-strain curve. (b) Correspond-
ing power-law distribution for the AE signals ε̇a = 1.67 × 10−6 s−1.

seen, the AE pattern exhibits a peak corresponding to the yield
drop, beyond which the AE amplitude decreases rapidly to
an average AE level corresponding to the band propagation
regime. The AE peak is due to the rapid multiplication of the
dislocations from its initial low value. The steady level of AE
activity during the band propagation can be identified with the
production of new dislocation sources at the propagating front
as it moves along the sample. The low-amplitude level of the
AE signals is again attributable to the SASs induced by the
propagating band [see the inset of Fig. 6(b) of Ref. [21]]. The
nature of the AE pattern corresponding to the Lüders band
predicted by the AK model is also consistent with experiments
[14–16]. The calculated distribution of the AE bursts (sampled
in the band propagation region) is shown in Fig. 3(b). As can
be seen, the scaling region is only one order as for the type
A band. The exponent ν ∼ 2.51. This value is significantly
higher than the model exponent values for types C, B, and
A, but is closer to the type A propagating band. The latter is
understandable since both are propagating type bands that have
a low level of stress fluctuations. However, there are no reports
of a power-law distribution for the experimental AE signals
in the case of the Lüders band for comparison with the model
exponent value.

In summary, power-law distributions are predicted for the
three PLC bands with exponent values increasing from 1.32
for the type C band to 1.82 for the type A band. Further, a
power-law distribution for the Lüders band is also predicted by
the model with an exponent 2.52. Thus. the power-law statistics
of AE signals appear to be ubiquitous in PLC bands and the
Lüders band.

FIG. 4. Plots of respective subsegments of the AE signals shown
in (a) Fig. 1(a) for the type C band, (b) Fig. 1(b) for the type B band,
and (c) Fig. 1(c) for the type A band.

IV. MULTIFRACTAL ANALYSIS

Scale-invariant power-law distributions for events (of any
kind) in a time series is the simplest statistical feature. Very of-
ten, such time series can possess much richer scaling properties
than power-law distributions. For instance, the overall structure
of the AE pattern corresponding to the three types of bands
shown in Figs. 1(a)–1(c) is similar to the dissipated energy
pattern in turbulent flows (compare these figures with Fig. 1 of
Ref. [40]). The much richer scaling properties can be visualized
by examining different segments of the AE time series on
smaller scales. To illustrate this, consider the AE signals
corresponding to ε̇a = 1.125 × 10−5 s−1 shown in Fig. 1(a).
The AE energy bursts do not appear to exhibit any obvious
correlation between the successive bursts. However, the AE
time series is not random either because the magnitudes of the
AE bursts obey a scale-free power-law distribution, meaning
that there is correlation at all scales. The time correlation is
more subtle, which can be visualized by plotting a subsegment
of the AE signals and comparing it with the whole. A plot of
the subinterval t = (1.75–2.75) × 104 is shown in Fig. 4(a).
While a strict scale similarity to Fig. 1(a) is not seen, the
overall structure appears to be statistically similar to the
original AE segment. In fact, this kind of statistical scale
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similarity is exhibited by any subsegment. This suggests that
different segments have different scaling exponents. This kind
of statistical scale similarity is also seen for the AE patterns
corresponding to the type B and A bands. This is illustrated
in the plots of subsegments of Figs. 1(b) and 1(c) shown in
Figs. 4(b) and 4(c), respectively.

Such multiscale similarity of sets is known to lead to
highly nonuniform probability distributions instead of a simple
power-law distribution. Such nonuniform distributions require
a continuum of scaling exponents for their characterization.
The emergence of such nonuniform distributions has been at-
tributed to the underlying nonlinear dynamical evolution of the
system as established in a number of physical situations such as
turbulence, distribution of growth probabilities of a diffusion-
limited aggregate [39,40,57–59], stress drop magnitudes in
type A PLC bands [33,34,53], and AE energies associated with
type C, B, and A bands [19]. Then statistical characterization
of the self-similar (fractal) properties is carried out in terms
of the measures associated with the nonuniform distribution.
This is the basis of multifractal formalism. The characterization
is done in terms of the commonly used generalized Rényi
dimensions Dq parametrized by q or in terms of the singularity
spectrum f (α) of singularity strengths α associated with
the nonuniform distribution [38–40,57,58]. A direct way of
calculating the singularity spectrum was introduced as an
alternate way of characterizing nonuniform distributions [40].

Generalized dimension and singularity spectrum

As in many physical systems, in our case also, the AE
signals occur in time and therefore the support of the measure
is the real line. Then a length L of the time series can be covered
by N segments of time interval δt and we have Nδt = L.
Let RAEi be the acoustic energy dissipated in the ith interval.
Then the probability Pi(δt) of the acoustic energy dissipated
in the ith interval is given by Pi(δt) = RAEi/

∑N
i RAEi . The

generalized dimension Dq is defined by

Dq = 1

q − 1
lim
δt→0

ln
∑

i P
q

i

ln δt
. (10)

Here q is a real number taken as a parameter. The structure
of Eq. (10) provides a straightforward physical interpretation.
The positive q’s accentuate the denser regions (high probabil-
ities) of the nonuniform distribution, while the negative q’s
accentuate the rarer regions (small probabilities).

Alternately, multifractals can be defined as interwoven sets
with fractal (Hausdorff) dimensions f (α) having a singularity
strength α. In this formalism, the probability of the ith box is
taken to scale as Pi(δt) ∼ δt−αi . The number of boxes N (α)
with singularity strength between α and dα is given by N (α) ∼
δt−f (α). The singularity spectrum f (α) of a multifractal is
related to Dq through a Legendre transformation [provided
f (α) and Dq is a smooth function of α and q]. Then

(q − 1)Dq = qα − f (α), α = d

dq
(q − 1)Dq. (11)

However, obtaining the f (α) spectrum using the computed
Dq values requires evaluation of the derivatives. This can
lead to uncontrolled errors, particularly in the analysis of
experimental data. In view of this, a direct computation of
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FIG. 5. Multifractal spectrum f (α) associated with the AE sig-
nals accompanying the type C, B, and A bands for ε̇a = 1.125, 3.0,
and 5.5 × 10−5 s−1, respectively.

f (α) has been suggested [40]. The method involves defining
normalized measures μi(δt,q) by

μi(δt,q) = P
q

i∑
j P

q

j

(12)

in terms of the probabilities Pi defined earlier. Using μi(δt,q)
and Pi(δt), we can directly calculate the multifractal spectrum
f (α) as a function of α using [40]

α = lim
δt→0

∑
i μi(δt,q) ln Pi(δt)

ln δt
(13)

and

f (α) = lim
δt→0

∑
i μi(δt,q) ln μi(δt,q)

ln δt
. (14)

We use the direct method of computing the f (α) spectrum.
Numerically, the multifractal spectrum for a given data set is
calculated by plotting ln

∑
μi ln μi and ln

∑
μi lnPi as a func-

tion of ln δt to obtain the respective slopes for each q. The slope
of ln

∑
μi ln μi versus ln δt gives f (q), while ln

∑
μi ln Pi

versus ln δt gives α(q). In general, the log-log plots begin to
exhibit scatter for increasing positive and negative q values.
This is due to the poor statistics corresponding to small δt

bins. For this reason, a fit is obtained by considering those
bins with reasonable statistics (i.e., bins of larger δt). Such a
scatter for large positive and negative values of q is common
to multifractal calculations. (See plots of

∑
μi ln Pi in Fig. 6

of Ref. [40].) In our calculation, the range over which α(p)
and f (p) are calculated is at least two orders of magnitude in
δt . While we had no difficulty in getting good fits to the slopes
even for large q, the error bars increase for large q, particularly
for f (q), as will be clear below.

We have computed the singularity spectrum f (α) cor-
responding to the AE spectra [shown in Figs. 1(a)–1(c)]
corresponding to type C, B, and A bands. Figure 5 shows the
f (α) spectra corresponding to the AE signals associated with
the three PLC bands. It is clear that the maximum value of
f (α) is unity in all three cases, as it should be for a set whose
support is the real line. Several features are evident. First, the
f (α) spectrum of the AE signals associated with the type C
band is skewed to the right with significantly larger error bars
for higher values of α. This is due to a higher proportion of
large-amplitude AE bursts compared to the type B and A bands.
Second, the width of the multifractal spectrum defined by
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FIG. 6. Generalized dimensions for the AE events associated with
the type C, B, and A bands for ε̇a = 1.125, 3.0 and 5.5 × 10−5 s−1.

θ = αmax − αmin, with αmin and αmax referring to the extreme
values of α, is maximum for the type C AE signals, decreasing
to a minimum for the AE signals corresponding to the type
A band. The third feature is that αmin is nearly the same for
all three band types. This feature is also understandable since,
unlike the probability of large-amplitude AE bursts being quite
different, the probabilities for small-amplitude AE signals are
not significantly different.

The generalized dimension corresponding the AE signals
for the three types of bands can now be easily calculated by
using Eq. (11). The corresponding Dq’s as a function of q are
shown in Fig. 6. Again, the range of Dq is largest for the type
C band, while it is lowest for the type A band.

We have also calculated the multifractal spectrum for the
Lüders-like band. This is shown in Fig. 7. The range of θ =
αmax − αmin is similar to that of the type A band, as expected.

V. DISCUSSION AND CONCLUSIONS

The present work is motivated by the lack of any model
for the statistical characterization of the AE signals accom-
panying the three band types in the PLC effect [10,23,24]. In
particular, our study reports both power-law distributions and
multifractal spectra for the AE energies. Two types of statistical
characterization of the model AE signals have been attempted.
The first one is to examine if the model AE signals follow
power-law distributions for the AE energies associated with
the C, B, and A PLC bands. We have also carried out a similar
study for the Lüders-type band. The second type of statistical
analysis is the possibility of multifractal spectra for the AE
energies associated with the PLC and Lüders bands. Within

0.4 0.7 1 1.3 1.6

0

0.5

1

α

f(
α)

FIG. 7. Multifractal spectrum f (α) for the Lüders-like propagat-
ing band for ε̇a = 1.67 × 10−6 s−1.

our framework, the AE signals are calculated as solutions to
the discrete set of wave equations with a plastic strain rate as
a source term. The latter is computed using the AK model for
the PLC effect since the model predicts the three PLC bands
and the Lüders-like propagating band.

The present study demonstrates that the statistical analysis
of the peak amplitudes of the model AE bursts associated
with the three PLC bands exhibits power-law distributions
consistent with experiments [10,23,24]. We have also verified
that the AE bursts corresponding to the Lüders-like band also
follow a power-law distribution. Since there are no reports
of the statistical analysis of the AE events for this case, it
would be interesting to verify this prediction. However, the
model exponent values corresponding the three PLC bands are
significantly smaller than the reported values. Further, while
the reported exponent values decrease as we move from the
type C to the type A bands, our results show the opposite trend.
This mismatch requires a critical examination.

In this context, it must be stated that a comparison be-
tween the reported exponent values and the model exponent
values is not straightforward because the former depends
on several experimental variables. Similarly, several factors
such as modeling the AE signals and modeling the PLC
bands contribute to the computed exponent values. From the
experimental side, there are several factors that affect the
exponent such as preparation of the samples, the nature of
the sample, sample history, for instance, how long the samples
are aged, sample-to-sample variation, testing conditions, etc.
From the modeling side, the one-dimensional nature of the
wave equation used for calculating the AE signals and the
calculation of the plastic strain rate source term clearly affects
the exponent values. In addition, any effort in modeling such
a complex spatiotemporal phenomenon as the PLC effect can
only constitute idealization and therefore can be expected to
contribute. Clearly, the AK model is no exception, even though
the model predicts all the characteristic features of the PLC
effect mentioned in Sec. III A, including the band types.

While the above factors could be contributing to the smaller
values of the model exponents compared to the previously
reported values, the increasing trend of the model exponents as
we progress from type C to A bands needs a critical examina-
tion, particularly in view of the fact that the AK model predicts
most generic features of the PLC effect. Here we argue that this
trend appears to be consistent with the physical (mathematical)
mechanism underlying acoustic emission used in our approach
together with the dynamic strain aging mechanism specific to
the PLC effect subsumed in the AK model. To see this, we
first note that the model AE signals are computed by using the
well established mechanism that acoustic emission is triggered
by the release of the stored energy. The latter information is
contained in the plastic strain rate and is computed from the AK
model. Now we examine how the aging kinetics of dislocations
determines the nature of the AE pattern. For instance, the
type C serrations are the result of unpinning of fully aged
dislocations. This means that the unpinning stress is high. Thus,
once unpinned, the kinetic energy imparted to the lattice is high
and therefore the corresponding AE bursts are generally large.
For higher strain rates where the type B and A bands are seen,
there is less time to complete the aging process and therefore
lower stress is required to unpin dislocations compared to the
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type C bands. Consequently, the transferred kinetic energy to
the lattice is lower, leading to a larger proportion of lower-level
AE bursts. At high strain rates of the type A bands, there is
even less time for the aging process to occur and therefore
even smaller stress is required to unpin dislocations. Therefore,
a large proportion of the AE signals should be expected to
be small-amplitude signals and thus significantly fewer larger
AE bursts. Indeed, we have recently demonstrated [21] that
in general the AE bursts associated with type C are of large
amplitude and well separated. In contrast, for the type B bands,
fluctuations in stress level are low during propagation with
occasional large stress drops occurring during nucleation of a
band or when the band stops [46]. In the type A band case, due
to the band propagating over large distances, the amplitude of
the stress serrations is small with relatively large stress drops
seen only when the band reaches the sample boundaries. Then,
using the fact that AE signals are proportional to unpinning
stress, the relative proportion of large-amplitude AE bursts is
higher for the type C than for the type B or type A. This has
been demonstrated in Ref. [21]. On the other hand, considering
the fact that a relatively larger proportion of SASs are seen for
the type B and even more for the A bands, we expect a larger
proportion of small-amplitude AE bursts for the type B and
A bands compared to the type C bands. This implies that the
exponent corresponding to the type C band AE events should
be lowest, and increasing for type B and then for the type
A bands. This is precisely the trend exhibited by the model
exponents.

In view of the above discussion, we look for other possible
sources of discrepancy between our model results and the
experimental results. For instance, experimental stress-strain
curves always exhibit considerable hardening. The exponent
value corresponding to the AE signals recorded in the regions
of increasing strains increase from 2.5 approaching a saturation
level of 3.0. Noting that signals can be considered as stationary
only when the stress-strain curve reaches the saturation regime,
the AE time series itself is nonstationary during the hardening
region. This raises questions about the possible influence of
nonstationarity on the exponent values. This issue, however,
has so far not been investigated in any context. Thus, the
reported exponent values corresponding to the hardening
regime are subject to this criticism. This is not applicable to
the exponent value corresponding to stationary regime (∼3).
Noting that the version of AK model used here exhibits a
low level of hardening, even if one wishes to examine the
dependence on strain, the generalized AK model that includes a
work hardening trend is more appropriate [56]. In contrast, the
model AE statistics has been compiled in the stationary state.
The model exponent values are however significantly low.

On the other hand, the exponent values are sensitive to
the threshold value used for recording an AE burst as a
single event. In experiments, a stretch of an AE signal is
regarded as an individual AE event when the amplitude of the
signal stays above a chosen threshold value. Lebyodkin et al.
[23] reported that increasing the threshold by a factor of 3.3
decreases the exponent from 2.54 to 2.1 for the type C band,
with a concomitant decrease in the scaling region (see Fig. 6
of Ref. [10]). Further, a higher threshold has a tendency to
eliminate small-amplitude AE bursts, thereby decreasing the
exponent value. Indeed, we have verified that increasing the

threshold value of the recording, the model exponent value
decreases along with the scaling regime. Furthermore, for
higher strain rates, smaller events dominate and two successive
peak heights that are close to each other will be regarded
as one when the threshold is higher. Thus, at high strain
rates small events are undersampled. This suggests that the
exponent values for the type B and A bands should be expected
to be higher than what is reported. This means that using
a lower threshold can reverse the decreasing trend of the
exponent values for the experimental AE signals as we increase
strain rates. However, this depends on the capability of the
experimental setup.

On the modeling side, other than the influence of ideal-
izations discussed above, one obvious idealization that affects
the calculated AE signals is that the solutions of the model
equations (both the wave equation and the AK model) have
been obtained in one space dimension, while real samples
are three dimensional. One other possible influence on the
computed exponent values is the numerical accuracy of com-
putation of the solutions of the model differential equations.
We have specifically investigated this aspect by increasing
the accuracy of computation by one order. We find that the
exponent value increases, though not significantly. Another
factor that could affect the model AE statistics is the algorithm
employed for computing the AE signals. Recall that AE is
calculated using the plastic strain rate computed using the AK
model. However, the computed plastic strain rate ε̇p has been
obtained using Eq. (8), which assumes stress equilibration.
This was done for the sake of convenience of computation
(and the procedure akin to adiabatic methods). The framework
itself is more general than the methodology followed here
for computing ε̇p. However, the stress equilibration constraint
can easily be lifted by using the instantaneous stress that can
be obtained from the elastic strain calculated from the wave
equation. This again can affect the exponent value.

In view of the above discussion, it is unrealistic to expect
a match of model exponent values with that reported for the
experimental AE energies. On the other hand, while factors
that affect the exponents in experiments have a tendency
to reverse the increasing trend of the exponent values, the
factors contributing from the modeling efforts have a tendency
to reverse the increasing trend of model exponents. Again,
it is difficult to make a quantitative assessment of how the
experimental and theoretical factors affect the trends of the
exponents. The question whether the exponent values should
increase with strain rate or not remains unresolved.

We have also computed the multifractal spectra for the
AE signals associated with the three PLC bands and the
Lüders-like propagating band. The multifractal spectra have
been computed using the direct method of computing the
f (α) spectrum [40]. This circumvents using the Legendre
transformation of τ (q) to obtain the D(q), a procedure that
often leads to uncontrolled errors. The direct method used here
is better suited for analyzing numerical data. The computed
f (α) spectra for the three PLC bands are all smooth. The width
of the multifractal spectrum decreases from a maximum value
for the type C band to a minimum for the type A bands. The
corresponding Dq’s also show the same trend. A comparison
with the results reported by Lebyodkin and co-workers [18,19]
is not possible since the reported f (α) spectra are not in the
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stationary state. We have also calculated the f (α) spectrum for
the Lüders-like band. There are no reports of the f (α) spectrum
for the Lüders band for comparison.

In summary, a significant characteristic feature, namely, the
power-law distributions for the AE bursts for all three types of
PLC band, is predicted by our approach. However, the model
exponent values and their increasing trend with increasing
strain rates does not match with the reported values and trend.
The possible causes contributing to these two differences
discussed in detail show that a comparison between model
exponent values and those for the experimental AE signals is
not meaningful because the reported exponent values depend
on several experimental variables as well as those in modeling
a complex spatiotemporal phenomenon such as the PLC effect.
A power-law distribution for the model AE bursts is also
obeyed for the Lüders-like band. The approach also correctly
captures the reported multifractal nature of the AE spectra
associated with the PLC bands and Lüders band.
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APPENDIX

In this Appendix we briefly recall the discrete wave equa-
tions used for computing acoustic emission. (See Ref. [21]
for details.) To do this, consider a spring-block system of N

points of mass m coupled to each other through near-neighbor
springs pulled at a constant strain rate by holding one end of the
sample fixed and pulling the other. The fact that the ends of the
sample are gripped by the machine translates to choosing the
force constant km for the boundary points to be much larger
than the spring constant ks for the interior points. Then the
kinetic energy T , the local potential energy Vloc, the gradient
potential energy Vgrad, and the dissipated acoustic energy RAE

[Eq. (1)] are written down easily in terms of the displacement
u(i,t) defined at each site. It is then straightforward to set up
the corresponding set of wave equations. Taking the spatial
derivative of these equations, the discrete set of wave equations
in terms of the elastic strain variables εe(i,t), which include the
plastic strain rate source terms ε̇p(i,t), takes the form

ε̈e(1) = 0.0, (A1)

ε̈e(2) = − c2

a2

[
{εe(2) − εe(3)} + km

ks

εe(2)

]
− ∂ε̇p(2,t)

∂t

− η′

a2ρ
[ε̇e(2) − ε̇e(3)] + D′

a4ρ
[εe(4) + εe(2) − 2εe(3)],

(A2)

ε̈e(3) = c2

a2
[εe(4) + εe(2) − 2εe(3)] − ∂ε̇p(3,t)

∂t

+ η′

a2ρ
{ε̇e(4) + ε̇e(2) − 2ε̇e(3)}

− D′

a4ρ
{εe(5) − 4εe(4) + 5εe(3) − 2εe(2)}, (A3)

ε̈e(i) = c2

a2
{εe(i + 1) − 2εe(i) + εe(i − 1)} − ∂ε̇p(i,t)

∂t

+ η′

a2ρ
{ε̇e(i + 1) − 2ε̇e(i) + ε̇e(i − 1)}

− D′

a4ρ
[εe(i + 2) − 4εe(i + 1) + 6εe(i)

− 4εe(i − 1) + εe(i − 2)], (A4)

ε̈e(N − 1) = − c2

a2

[
{εe(N − 1) − εe(N − 2)}

− km

ks

{εe(N ) − εe(N − 1)}
]

− ∂ε̇p(N − 1,t)

∂t

+ η′

a2ρ
[ε̇e(N ) + ε̇e(N − 2) − 2ε̇e(N − 1)]

− D′

a4ρ
[εe(N − 3) − 4εe(N − 2)

+ 5εe(N − 1) − 2εe(N )]. (A5)

Equation (A4) is valid for i = 4, . . . ,N − 1. The mass density
ρ = m/a3 and the velocity of sound is c = √

μ/ρ [see Eq. (4)]
with μ = ks/a, η′ = η/a, and D′ = Da. The plastic strain rate
ε̇p obtained from the AK model (5)–(8) is used as a source
term in Eqs. (A1)–(A5). Equations (A1)–(A5) are solved by
using a differential equation solver (ode15s MATLAB solver)
with appropriate initial and boundary conditions. The initial
conditions are

εe(1,0) = 0,

εe(i,0) = 0 + ξ × εr , i = 2, . . . ,N − 1,
(A6)

where εr (∼10−7) represents the strain due to inherent defects
in the sample and ξ is a random number in the interval − 1

2 <

ξ < 1
2 . The left-hand side of the sample is fixed and right-hand

side is pulled at a constant strain rate ε̇a . So the boundary
conditions for the wave equation are

εe(1,t) = 0, εe(N,t) = ε̇at, t > 0. (A7)

The time step required for integrating Eqs. (A1)–(A5) needs
to be substantially smaller than that for the AK model. This
requires that the time variables in Eqs. (A1)–(A5) and Eqs. (5)–
(8) are matched correctly. [Interpolated values for εp(k,t ′) are
used as input in Eqs. (A1)–(A5).] (For details see Ref. [21].)
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Sci. Eng. A 324, 200 (2002).
[15] F. Chmelík, F. B. Klose, H. Dierke, J. Šachl, H. Neuhäuser, and
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