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Kinetic theory for strongly coupled Coulomb systems
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The calculation of dynamical properties for matter under extreme conditions is a challenging task. The popular
Kubo-Greenwood model exploits elements from equilibrium density-functional theory (DFT) that allow a detailed
treatment of electron correlations, but its origin is largely phenomenological; traditional kinetic theories have a
more secure foundation but are limited to weak ion-electron interactions. The objective here is to show how a
combination of the two evolves naturally from the short-time limit for the generator of the effective single-electron
dynamics governing time correlation functions without such limitations. This provides a theoretical context for
the current DFT-related approach, the Kubo-Greenwood model, while showing the nature of its corrections. The
method is to calculate the short-time dynamics in the single-electron subspace for a given configuration of the ions.
This differs from the usual kinetic theory approach in which an average over the ions is performed as well. In this
way the effective ion-electron interaction includes strong Coulomb coupling and is shown to be determined from
DFT. The correlation functions have the form of the random-phase approximation for an inhomogeneous system
but with renormalized ion-electron and electron-electron potentials. The dynamic structure function, density
response function, and electrical conductivity are calculated as examples. The static local field corrections in the
dielectric function are identified in this way. The current analysis is limited to semiclassical electrons (quantum
statistical potentials), so important quantum conditions are excluded. However, a quantization of the kinetic theory
is identified for broader application while awaiting its detailed derivation.
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I. INTRODUCTION

Recent interest in matter under extreme conditions (e.g.,
high-pressure materials, warm dense matter, and high-
temperature plasmas) has been stimulated in part by new exper-
imental access to such states [1]. Thermodynamic properties
can be addressed in a controlled way by finite-temperature
density-functional theory (DFT) for the electrons [2] in con-
junction with ab initio molecular dynamics (AIMD) for the
ions [3]. The two tools of DFT and MD are appropriate for
such states since strong coupling and bound states can be
treated with well-developed approximations. Dynamical phe-
nomena are more problematical, particularly for the electrons
which require quantum dynamics in general. Current many-
body theories of condensed matter physics or plasma physics
have questionable applicability. Kinetic theories, classical or
quantum, are typically limited to free electrons and weak
ion-electron correlations. Models which utilize DFT quantities
(such as the Kubo-Greenwood model [4] below) remove
this restriction at the price of phenomenology and unknown
context. The objective here is to demonstrate a kinetic theory
for electrons in a given configuration of ions, obtained in a limit
that incorporates the DFT model and well-known many-body
effects of electron dynamics. The derivation is semiclassical
but makes no explicit restrictions regarding coupling among
the ions and electrons or bound and free electron states.

The system of interest here is that of electrons in equilibrium
with a frozen disordered configuration of ions in the grand-
canonical ensemble. In applications, properties for this system
are found by averaging over different ionic configurations.

The properties of interest are time correlation functions that
determine transport coefficients, scattering cross sections,
and other equilibrium dynamic electron fluctuations of linear
response. The state conditions include possible strong coupling
and other effects of correlations such as dynamical fluctuations.
These are the types of difficult cases that are handled well by
DFT for thermodynamic calculations, and it is tempting to
think (hope) that such detailed information can be exploited
somehow for the analysis of dynamics as well. A practical
implementation of this idea, the Kubo-Greenwood model
(KG) [4], is obtained by replacing the many-body electron-
ion Hamiltonian by a sum of single-particle Hamiltonians.
Though in principle arbitrary, invariably they are chosen to be
noninteracting particles governed by the Kohn-Sham potential
which includes the external ion field. This potential appears
in the variational Euler equation of DFT and is determined
from the exchange-correlation free energy as a functional of
the equilibrium density [2]. In the KG model the Kohn-Sham
Hamiltonian, originally defined to determine the equilibrium
density, is promoted to a generator for the dynamics. Further-
more, it is assumed to represent in a mean-field way the effects
of the true Coulomb interactions which it replaces. The origin
of this picture of Kohn-Sham quasiparticles and the conditions
for its validity have not been established. Doing so is a primary
objective of the present work.

In earlier work the authors considered time correlation
functions for a semiclassical electron gas in the presence of
a single fixed ion and derived a kinetic equation whose form
is obtained from the short-time limit [5]. It has a single-
particle dynamics with a “renormalized” external potential
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from the electron-ion interaction. In addition, there is a col-
lective Vlasov (random-phase approximation) dynamics with
a renormalized electron-electron interaction. Both of these
effective interactions are determined from derivatives of the
semiclassical exchange-correlation free energy. In particular,
the electron-ion interaction is precisely the Kohn-Sham po-
tential of the KG model. Here, that description is extended
to time correlation functions for electrons in a disordered
many-ion background with configurations sampled from an
equilibrium ensemble. An important distinguishing feature of
this kinetic equation relative to others is that only electron
degrees of freedom are averaged out to define the single-
electron subspace. No ion average is performed. This allows
a detailed description of the average electron interaction with
each ion, setting the framework for connection with DFT. A
brief summary of these ideas is given in Ref. [6].

The reduction of the generator for the dynamics at short
times to a practical form at present has been established only
for semiclassical electrons. Thus strong degeneracy and other
extreme quantum effects are not captured in the analysis here.
This limits the conditions for applicability, as described briefly
in Sec. VI. However, the primary objective here is to show by
example how the many-body problem can be controlled and
to indicate a pathway to the basis for the KG model. In Sec. V
a straightforward quantization of this semiclassical result is
given as a temporary “placeholder” for the detailed quantum
derivation paralleling that given here.

In the next section, the time correlation functions and their
representation in terms of linear kinetic theory are introduced.
The formal definition of the generator for the electron dynamics
in the single-electron subspace is defined. While generally
time dependent, its form is evaluated at t = 0 in Appendix A.
No limitations are placed on the strength of correlations
or coupling. This gives a Markov dynamics for the time
correlation functions in which the generator is taken to have the
same form at later times as well. The result has the structure of
a kinetic theory in the random-phase approximation, extended
to an inhomogeneous system due to the external forces of the
ions. However, that force is renormalized to be derived from
the Kohn-Sham potential (the ion field plus the first functional
derivative of the excess free energy), and the electron-electron
Coulomb potential is renormalized to the electron-electron
direct correlation function (second functional derivative of the
excess free energy). As illustrations, the dynamical structure
function, density response function, and frequency-dependent
electrical conductivity are determined from this kinetic equa-
tion. The dielectric function is considered, and the associated
static local field corrections are identified. In the last section
these results are summarized and discussed.

II. TIME CORRELATION FUNCTIONS
FROM KINETIC THEORY

Consider a system of Ne electrons in equilibrium with Ni

fixed ions. The Hamiltonian is

H =
Ne∑

α=1

[
1

2
mv2

α + Vei(rα,{R})
]

+ 1

2

Ne∑
α �=γ=1

Vee(rαγ ), (1)

where the interaction potential for the electrons with the Ni

fixed ions is

Vei(rα,{R}) ≡
Ni∑

γ=1

Vei(|rα − Rγ |). (2)

The notation {R} denotes a dependence on the collection of Ni

fixed ion coordinates Rγ . Also, rα and vα are the position and
velocity of electron α. In the quantum case all interactions are
pure Coulomb. However, the analysis below is entirely within
classical mechanics for both ions and electrons. Residual
quantum effects must be retained to prevent collapse due to
the electron-ion singularity at zero separation. In the quan-
tum case such collapse is avoided due to diffraction effects.
These can be accounted for in the classical representation by
regularizing the Coulomb potential within a distance of the
order of the thermal de Broglie wavelength. Similar effects
occur for the electron-electron interaction, which also has
an additional effect due to Pauli exclusion. The use of such
modified potentials has a long history, leading to many different
forms originating from different contexts for their derivation
[7]. The resulting classical representation allows MD simula-
tion of opposite charge components. One of the first was an
application to hydrogen plasmas [8]; a more recent simulation
in the current context is that of Refs. [9,10]. The specific forms,
or their limitations, are not central to the discussion here.
Instead, the objective is to demonstrate how the many-body
physics can be analyzed in a controlled way to make contact
with current phenomenology and to clarify its context.

The equilibrium time correlation functions for two observ-
ables A and B in the grand-canonical ensemble are

〈A(t)δB; {R}〉
=

∑
Ne

∫
d{x}ρe({R},{x})A(t,{R},{x})δB({R},{x}), (3)

ρe({R},{x}) = eβ�({R})e−β(H ({R},{x})−μ), (4)

where δB = (B − 〈B〉). The set of phase variables {x} =
{x1, . . . ,xNe

} denote the positions and velocities of each elec-
tron, e.g., x1 ⇐⇒ r1,v1. The passive dependence on the ion
coordinates has been made explicit here but will be suppressed
in the following for simplicity of notation, except where
needed.

The time dependence of A(t,{x}) is generated by the
Hamiltonian (1) from the initial value A({x}). The phase
functions A({x}) and B({x}) denote some observables of
interest, composed of sums of single-particle functions

A =
Ne∑

α=1

a(xα), B =
Ne∑

α=1

b(xα). (5)

The special form (5) allows reduction of the Ne electron
average to a corresponding average in the single-electron
subspace by partial integration over Ne − 1 degrees of freedom
(see Appendix A),

〈A(t)δB〉 =
∫

dxn(r)φ(v)a(x)b(x,t). (6)

Here n(r) is the equilibrium number density for electrons at
a position r, and φ(v) is the Maxwell-Boltzmann velocity
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distribution. The function b(x,t) is

b(x,t) = 1

n(r)φ(v)

∫
dx ′G(x,x ′; t)b(x ′), (7)

where the phase-space density autocorrelation function is

G(x,x ′; t) = 〈f (x,t)(f (x ′) − 〈f (x ′)〉)〉,

f (x) =
Ne∑

α=1

δ(x − xα). (8)

The time derivative of b(x,t) is

∂tb(x,t) = 1

n(r)φ(v)

∫
dx ′∂tG(x,x ′; t)b(x ′). (9)

Both (7) and (8) are linear maps of b(x ′). Eliminating the latter
gives the formal kinetic equation in the single-particle phase
space

∂tb(x,t) +
∫

dx ′L(x,x ′; t)b(x ′,t) = 0, (10)

with

L(x,x ′; t) ≡ − 1

n(r)φ(v)

∫
dx ′′(∂tG(x,x ′′; t))

×G−1(x ′′,x ′; t)n(r′)φ(v′). (11)

The initial value for this equation is

b(x,0) = b(x)

= b(x) +
∫

dx ′n(r′)φ(v′)(g(r,r′) − 1)b(x ′), (12)

and g(r,r′) is the pair correlation function for two electrons at r
and r′ in the presence of the ion configuration {R}. Note that the
equation is inherently linear. An elaboration of this approach
to time correlation functions via a formal linear kinetic theory
is given in Ref. [11].

III. MARKOVIAN KINETIC EQUATION
AND ITS RELATION TO DFT

The generator of dynamics, L(x,x ′; t), is an appropriate
point for the introduction of approximations. Typically, matter
under extreme conditions does not admit any small parameter
expansions because the treatment must include possible strong
Coulomb coupling. Here, a Markov approximation is chosen
that does not prejudice such conditions. Furthermore there is
no scattering context so that the electrons may be free or bound
to the ions. A Markov kinetic equation has a generator whose
form does not change in time. Hence, a practical expression
can be determined from L(x,x ′; t = 0) and assumed to hold
as well for all later times. One of the first developments of
this idea for classical time correlation functions was given
by Lebowitz, Percus, and Sykes [12] and for the quantum
case by Boercker and Dufty [11]. The primary difference here
is the presence of the external forces due to the ions. The
analysis follows that of Ref. [5], and the details are given in

Appendix B with the resulting kinetic equation,

(∂t + v · ∇r − m−1∇rVie(r) · ∇v)b(x,t)

= −v · ∇rβ

∫
dx ′Vee(r,r′)φ(v′)n(r′)b(x ′,t). (13)

To understand this result, note that if Vie and Vee were their
(regularized) Coulomb interactions, then (13) would be the
random-phase approximation in the presence of the external
ion potential. Here, however, those potentials have been renor-
malized by the initial equilibrium correlations. The left-hand
side of (13) describes single-particle motion in an external
renormalized ion-electron potential Vie(r),

Vie(r,{R}) ≡ −β−1 ln n(r,{R}). (14)

The right-hand side of (13) describes dynamical correlations
for this single-particle motion with a renormalized electron-
electron potential,

Vee(r,r′,{R}) = −β−1c(r,r′,{R}). (15)

Here c(r,r′,{R}) is the electron direct correlation function de-
termined in terms ofg(r,r′,{R}) through the Ornstein-Zernicke
equation [Eq. (A13)] [13]. For weak coupling, (14) and (15)
reduce to their Coulomb forms. The explicit dependence on {R}
has been restored at this point to emphasize that the electron
subsystem is nonuniform due to the presence of the ions.

These renormalizations are due to static correlations of
the equilibrium ensemble and provide the desired connection
to DFT. To see this, note that the electron system is an
inhomogeneous electron gas due to the presence of the ions.
The associated equilibrium free energy F is a functional of
the corresponding inhomogeneous density and is traditionally
separated into a noninteracting part, F (0), and an interacting
part, F (1),

F (β | n) = F (0)(β | n) + F (1)(β | n). (16)

The equilibrium density for evaluation of these functionals is
determined from the ion-electron potential by

δF (β | n)

δn(r,{R}) = μ − Vei(r,{R}), (17)

with Vei(r,{R}) given by (2). Equation (17) can be rearranged
as

δF (0)(β | n)

δn(r,{R}) = μ − vKS(r,{R}), (18)

where vKS(r,{R}) is known in DFT as the Kohn-Sham potential

vKS(r,{R}) ≡ Vei(r,{R}) + δF (1)(β | n)

δn(r,{R}) . (19)

Furthermore, F (0)(β | n) can be evaluated for the classical
system considered here to give

δF (0)(β | n)

δn(r,{R}) = β−1 ln n(r,{R}). (20)

Consequently, the renormalized ion-electron potential (14)
becomes

Vie(r,{R}) = −δF (0)(β | n)

δn(r,{R}) = vKS(r,{R}) − μ. (21)
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With this identification it is instructive to write the kinetic
equation (13) as

∂tb(x,t) − {hKS(x),b(x,t)}
= 1

φ(v)n(r)

∫
dx ′{Vee(r,r′),φ(v)n(r)φ(v′)n(r′)b(x ′,t)}.

(22)

Here {,} denotes the Poisson bracket and hKS is the Kohn-Sham
Hamiltonian,

hKS(x) = 1
2mv2 + vKS(r). (23)

As noted in the Introduction a common approximation for eval-
uating Green-Kubo time correlation expressions for transport
coefficients is the replacement of the actual Hamiltonian with
Coulomb interactions by a sum of single-particle Kohn-Sham
Hamiltonians [4]. The resulting kinetic theory representation
is the same as (22) with zero on the right-hand side. The
semiclassical analysis here provides an important context for
that approximation, justifying the introduction of the Kohn-
Sham dynamics, and making the connection to DFT.

In addition, the renormalized electron-electron potential
(15) is related to the excess free-energy functional by

βVee(r,r′,{R}) = −c(r,r′,{R})

= δ2βF (1)(β,{R} | n)

δn(r,{R})δn(r′,{R})
= δβvKS(r,{R})

δn(r′,{R}) . (24)

Thus all of the input for the kinetic equation can be obtained
from DFT, even for conditions of interest for strong coupling.

IV. DYNAMIC STRUCTURE, RESPONSE,
AND CONDUCTIVITY

The correlation functions for the dynamic structure factor,
density response function, and electrical conductivity are
closely related. The dynamic structure factor is determined
from the Fourier transform of the density-density time corre-
lation function

C(r,r′,t) = 〈̂n(r,t)δn̂(r′)〉, n̂(r) =
Ne∑

α=1

δ(rα − r). (25)

The density response function is proportional to its time
derivative [14]

χ (r,r′,t) = β∂tC(r,r′,t). (26)

Finally, using the continuity equation

∂t n̂(r,t) + ∇ · ĵ(r,t) = 0, ĵ(r) =
Ne∑

α=1

δ(rα − r)vα, (27)

the response function is related to the current-current correla-
tion function

∂tχ (r,r′,t) = −β〈∇·̂j(r,t)∇′·̂j(r′)〉, (28)

which determines the electrical conductivity.

The general solution to the kinetic equation is given in
Appendix C. When applied to C(r,r′,t) and χ (r,r′,t) integral
equations for each are obtained,

C(r,r′,t) = C0(r,r′,t) +
∫ t

0
dτ

∫
dr′′χKG(r,r′′,t − τ )

×
∫

dr′′′Vee(r′′,r′′′)C(r′′′,r′,τ ) (29)

and

χ (r,r′,t) = χKG(r,r′,t) +
∫ t

0
dτ

∫
dr′′χKG(r,r′′,t − τ )

×
∫

dr′′′Vee(r′′,r′′′)χ (r′′′,r′,τ ). (30)

In each of these the noninteracting Kubo-Greenwood response
function occurs,

χKG(r,r′,t − τ )

= −β

∫
dvφ(v)n(r)e−LKG(t−τ )v · ∇rδ(r − r′). (31)

Here LKG is the generator for the Kubo-Greenwood dynamics

LKG ≡ v · ∇r − m−1∇rVie(r) · ∇v. (32)

The correlation function C0(r,r′,t) has the same dynamics but
also the true initial conditions

C0(r,r′,t) =
∫

dvφ(v)n(r)e−LKG t {δ(r − r′)

+ n(r′)[g(r,r′) − 1]}. (33)

The solutions to (29) and (30) are obtained by first taking
their Laplace transforms,

C̃(r,r′,z) =
∫ ∞

0
dτe−ztC(r,r′,t),

χ̃ (r,r′,z) =
∫ ∞

0
dτe−ztχ (r,r′,t). (34)

Then the solutions are

C̃(r,r′,z) =
∫

dr′′ε−1(r,r′′,z)C̃0(r′′,r′,z) (35)

and

χ̃(r,r′,z) =
∫

dr′′ε−1(r,r′′,z)χ̃KG(r′′,r′,z), (36)

where ε−1(r,r′′,z) is the inverse function for

ε(r,r′,z) = δ(r − r′) −
∫

dr′′χ̃KG(r,r′′,z)Vee(r′′,r′). (37)

A. Dielectric function and local field corrections

The function ε(r,r′,z) is closely related to the dielectric
function defined by∫

dr′′V (r − r′′)χ̃ (r′′,r′,z)

=
∫

dr′′ε−1(r,r′′,z)[ε(r′′,r′,z) − δ(r′′−r′)]. (38)
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It has the form

ε(r,r′,z) = δ(r − r′)+
∫

dr′′
∫

dr′′′V (r − r′′)χKG(r′′,r′′′,z)

×D−1(r′′′,r′,z) (39)

with

D(r,r′,z) = δ(r − r′) −
∫

dr′′
(r,r′′,z)χKG(r′′,r′,z). (40)

The leading term on the right side of (40) gives the random-
phase approximation. The second term contains the “dynamic
local field corrections” 
(r,r′′,z). In the present case with
χ̃(r,r′,z) given by (36) the local field corrections 
(r,r′,z)
are found to be


(r,r′,z) → Vee(r,r′) − V (r − r′). (41)

These are the static field corrections due to correlations in the
definition of Vee(r,r′) [Eq. (24)],

Vee(r,r′) = −β−1c(r,r′{R}) = δ2F (1)(β,{R} | n)

δn(r,{R})δn(r′,{R}) . (42)

If the Hartree energy is subtracted fromF (1), then the remainder
is the exchange-correlation free energy Fxc and

Vee(r,r′) − V (r − r′) = δ2Fxc(β,{R} | n)

δn(r,{R})δn(r′,{R}) . (43)

Thus the static local field corrections are the second functional
derivative of Fxc.

B. Electrical conductivity

The frequency-dependent electron conductivity is given by
its classical Green-Kubo form [14]

σ (ω) = Re
∫ ∞

0
dteiωtψ(t), ψ(t) = β

3V
〈〈̂J(t) · Ĵ〉〉i . (44)

The double brackets 〈〈〉〉i denote an average over the electron
degrees of freedom, followed by an average over the ion
configurations (see below). The total current Ĵ is the volume
integral of the current density ĵ(r),

Ĵ = j̃(k = 0), j̃(k) =
∫

dreik·r̂j(r). (45)

The Fourier transform of (28) gives

∂t 〈χ (k,k′,t)〉i = βkmk′
n〈〈j̃m(k,t)j̃n(k′)〉〉i . (46)

Once the ion configuration average has been performed, the
system is isotropic, so this becomes

∂t

〈
χ (k,k′,t)

〉
i
= −1

3
βk2

〈〈̃
j(k,t) · j̃(−k)

〉〉
i
δ−k k′ . (47)

Therefore the current autocorrelation function in the expres-
sion for the conductivity [Eq. (44)] is

ψ(t) = − 1

V
lim
k→0

k−2∂t 〈χ (k,−k,t)〉i , (48)

where the response function is given by (36). If the electron
screening of ε(r,r′,z) could be neglected, then the Kubo-
Greenwood model would be obtained,

ψ(t) → − 1

V
lim
k→0

k−2∂t 〈χKG(k, − k,t)〉i . (49)

In practice, the conductivity is calculated directly from
〈̃j(0,t) · j̃(0)〉 in the Kubo-Greenwood approximation for each
ion configuration, without reference to the density response
function. These conductivities for the disordered systems are
then averaged over ion configurations sampled from an AIMD
simulation.

The above properties, and the solution to the kinetic equa-
tion more generally, are given in terms of the KG response
function χKG. For example, the density response function is
obtained from (36) and (37),

χ̃ (r,r′,z) = χ̃KG(r,r′,z) +
∫

dr′′
∫

dr′′′χ̃KG(r,r′′,z)

×Vee(r′′,r′′′)χ̃(r′′′,r′,z). (50)

There are well-developed computational codes for Kubo-
Greenwood properties and the excess free energy needed for
Vee(r′′,r′) (e.g., VASP). Consequently, the additional compu-
tational difficulty to implement the additional physics obtained
here is solution to the linear integral equation (50).

V. QUANTUM KINETIC EQUATION

The above-detailed reduction of the short-time generator
to a practical representation in terms of the renormalized
potentials expressed as functional derivatives of the free-
energy functional was accomplished within the limits of the
semiclassical limit. The use of quantum potentials to represent
diffraction and degeneracy is an uncontrolled approximation.
Instead the above kinetic theory should be understood as
reliable only for conditions where such effects are weak. For
example, a description of conditions where multiple bound
electron-ion populations occur would be excluded. However,
conditions with electron coupling of the order of unity are
included and hence some of the “extreme conditions” of
interest are relevant.

In the quantum case the electron correlation function (6)
becomes

〈A(t)δB〉 = Tr1f (1)a(1)b(1,t), (51)

where the trace is taken over a single-electron Hilbert space,
and the classical equilibrium one-electron distribution function
n(r)φ(v) has been replaced by its corresponding quantum
operator f (1), the equilibrium single-electron-density opera-
tor. Similarly, a(1) and b(1,t) are the operators generalizing
the phase-space functions a(x) and b(x,t). The analysis of
Appendix A follows in an analogous way [11]. However,
the simplifications of the higher-order correlations from the
equilibrium hierarchy, (B11) and (B12), are more complex.
Furthermore, recognition of ln n(r) as the functional derivative
of the noninteracting free-energy functional no longer applies
in the quantum case. Hence, to date the corresponding practical
simplification of the generator for the dynamics L(t = 0) in the
quantum case has not been accomplished.

In the meantime an alternative route is to quantize the
classical result derived here. The most direct path is to write
the kinetic equation in the equivalent form

∂tb(1,t) − {hKS(1),b(1,t)}
= f −1(1)Tr2{Vee(1,2),f (1)f (2)b(2,t)} (52)
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and to quantize it by replacing Poisson brackets by their
corresponding commutators. This gives the operator equation

∂tb(1,t) + i[hKS(1),b(1,t)]

= −f −1(1)Tr2i[Vee(1,2),f (1)f (2)P (12)b(2,t)]. (53)

The Kohn-Sham Hamiltonian is the operator corresponding to
(23) with the Kohn-Sham potential determined in the same way
as (19) from the free-energy functional for the quantum system.
Similarly, Vee(1,2) is determined from that functional as given
in (15) and (24). Also, a two-particle symmetrization operator
P (12) has been included to represent exchange effects.

Equation (53) is the quantum random-phase approximation
for a system of electrons among a configuration of the ions,
with renormalized potentials. Its classical limit is (13). The
random-phase approximation without renormalization (weak
coupling limit) has been established directly for the quantum
case [11] and is given correctly by (53). More generally, it
predicts a density response function in agreement with the
corresponding result from time-dependent density-functional
theory [15].

VI. DISCUSSION

The objectives here have been twofold. The first is to
describe a kinetic theory for electrons in a disordered array
of ions that is both practical and free from any assumptions
regarding electron-electron or ion-electron coupling. In par-
ticular, the purpose is to do so without the need for distinction
of free and bound electrons. This was accomplished by an
evaluation of the generator for time dependence at t = 0,
followed by the assumption that this generator is a reasonable
approximation at all later times (Markov assumption). The
second objective is to make contact between a controlled many-
body theory and the phenomenology of the Kubo-Greenwood
model. This was accomplished by observing that the short-time
generator has a single-particle dynamics that is the same
as the Kubo-Greenwood model, including the ion-electron
force determined from the Kohn-Sham potential of equilibrium
DFT. In addition, the context of that model was exposed,
requiring additional effects of electron-electron screening via
a renormalized potential also determined from DFT. The
correlation functions have the structure of the random-phase
approximation for an inhomogeneous system, modified by
these potentials from DFT.

Although these conceptual issues of strong coupling, con-
nection to DFT, and clarification of the Kubo-Greenwood
model have been addressed, the practical application of the
kinetic equation developed here is limited by its semiclassical
nature. Some of the most interesting state conditions of warm,
dense matter include strong electron degeneracy, outside the
domain of the regularized quantum potentials assumed here.
For these cases the quantum theory of Sec. V should be a
useful practical tool. The detailed origin for this equation and
its limitations (e.g., absence of electron-electron collisional
effects) will be provided elsewhere.

The semiclassical electrons assumed here nevertheless have
an important domain of validity where degeneracy is weak
but electron-electron and electron-ion coupling can be strong.
They have been used in early MD simulations of hydrogen

plasmas [8], where electron coupling strengths of order one
were studied at weak to moderate degeneracy. Subsequent sim-
ulations have demonstrated that such potentials can describe
the transition from fully ionized to atomic states but fail for
molecular formation [16]. More recently simulations to test
the accuracy of different forms of these effective quantum
potentials have been reported [9,10].

The role of the frozen ion configuration is passive in this
analysis of the electron dynamics. In practice the systems of
interest are ions and electrons in which both species are mobile.
It is assumed, however, that the ions are effectively static on
the time scale for electron properties. In this case the latter
properties are calculated as here for a given configuration, and
then an average is performed over configurations. The latter
are sampled from an ab initio simulation of the ions [2]. A
discussion of the effect of ion motion is deferred to a later
point [5].
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APPENDIX A: KINETIC THEORY

The dynamics of 〈A(t)δB〉 is conveniently expressed in
terms of the fundamental correlation function G(x,x ′; t)

〈A(t)δB〉 =
∫

dxdx ′a(x)G(x,x ′; t)b(x ′), (A1)

G(x,x ′; t) = 〈f (x,t)(f (x ′) − 〈f (x ′)〉)〉,

f (x) =
Ne∑

α=1

δ(x − xα). (A2)

This gives the representation (6)

〈A(t)δB〉 =
∫

dxn(r)φ(v)a(x)b(x,t), (A3)

with the identification

b(x,t) = 1

n(r)φ(v)

∫
dx ′G(x,x ′; t)b(x ′). (A4)

The initial value is

b(x,0) = b(x) = 1

n(r)φ(v)

∫
dx ′G(x,x ′; 0)b(x ′). (A5)

Evaluation of G(x,x ′; 0) is straightforward from the definitions
of the one- and two-particle equilibrium distribution functions

n(r1)φ(v1) =
∑
Ne>1

NeT r2,..Ne
ρ({R},{x}), (A6)

n(r1)n(r2)g(r1,r2)φ(v1)φ(v2)

=
∑
Ne>2

Ne(Ne − 1)Tr3,..Ne
ρ({R},{x}), (A7)

where ρ({R},{x}) is the N electron grand-canonical distribu-
tion function of (4). The result is

G(x,x ′; 0) = n(r)φ(v)[δ(x − x ′) + φ(v′)n(r′)h(r,r′)], (A8)

012149-6



KINETIC THEORY FOR STRONGLY COUPLED COULOMB … PHYSICAL REVIEW E 97, 012149 (2018)

with the hole function defined by h(r,r′) = g(r,r′) − 1. This
leads to (12)

b(x) = b(x) +
∫

dx ′n(r′)φ(v′)h(r,r′)b(x ′). (A9)

A kinetic equation follows from the definition of the inverse
for G(x,x ′; t),∫

dx ′′G−1(x,x ′′; t)G(x ′′,x ′; t) = δ(x − x ′), (A10)

and differentiation of (A4),

∂tb(x,t) = 1

n(r)φ(v)

∫
dx ′∂tG(x,x ′; t)b(x ′)

= 1

n(r)φ(v)

∫
dx ′dx ′′(∂tG(x,x ′; t))

× G−1(x ′,x ′′; t)n(r′′)φ(v′′)b(x ′′,t). (A11)

The generator for the dynamics is identified as

∂tb(x,t) +
∫

dx ′L(x,x ′; t)b(x ′,t) = 0, (A12)

L(x,x ′; t) ≡ − 1

n(r)φ(v)

∫
dx ′′(∂tG(x,x ′′; t))

×G−1(x ′′,x ′; t)n(r′)φ(v′). (A13)

APPENDIX B: EVALUATION OF L(x,x′; 0)

The Markov approximation is based on using L(x,x ′; 0) as
the generator for dynamics,

L(x,x ′; 0) = 1

n(r)φ(v)

∫
dx ′′∂tG(x,x ′′; t) |t=0

×G−1(x ′′,x ′; 0)n(r′)φ(v′). (B1)

Consider first G−1(x ′′,x ′; 0) in the form

G−1(x,x ′; 0) = 1

n(r)φ(v)
δ(x − x ′) − c(r,r′). (B2)

Then this obeys the inverse condition (A10) with (A8) if c(r,r′)
obeys the equation

c(r,r′) = h(r,r′) −
∫

dr′′h(r,r′′)n(r′′)c(r′′,r′). (B3)

This definition for c(r,r′) is the Ornstein-Zernicke equa-
tion [13].

Next ∂tG(x,x ′′; t) |t=0 is evaluated from its definition (A2)
and Newton’s equations

[∂t + v · ∇r − m−1∇rVie(r) · ∇v]f (x,t)

=
∫

dx ′(∇rVee(r,r′)) · m−1∇v

× [f (x,t)f (x ′,t) − δ(x − x ′)f (x ′,t)]. (B4)

This gives

∂tG(x,x ′; t) |t=0

= −[v · ∇r − m−1∇rVie(r) · ∇v]G(x,x ′; 0)

+
∫

dx ′′[∇rVee(r,r′′)] · m−1∇v〈[f (x)f (x ′′)

− δ(x − x ′′)f (x ′′)](f (x ′) − 〈f (x ′)〉)〉. (B5)

The average in the second term on the right-hand side can be
evaluated using the expressions

〈f (x)〉 = φ(v)n(r), (B6)

〈f (x)f (x ′)〉 = δ(x − x ′)φ(v)n(r)

+φ(v)φ(v′)n(r)n(r′)g(r,r′), (B7)

〈[f (x)f (x ′′) − δ(x − x ′′)f (x ′′)]f (x ′)〉
= [δ(x − x ′) + δ(x ′′ − x ′)]φ(v)φ(v′′)n(r)n(r′′)g(r,r′′)

+ φ(v)φ(v′)φ(v′′)n(r)n(r′)n(r′′)g(r,r′,r′′). (B8)

Here g(r,r′,r′′) is defined from the three-electron reduced
distribution function

n(r1)n(r2)n(r3)g(r1,r2,r3)φ(v1)φ(v2)φ(v3)

=
∑
Ne>3

Ne(Ne − 1)(Ne − 2)Tr3,..Ne
ρ({R},{x}). (B9)

Then (B5) becomes

∂tG(x,x ′; t) |t=0 = − [v · ∇r − m−1∇rVie(r) · ∇v]G(x,x ′; 0) − βv · [∇rVee(r,r′)]φ(v)φ(v′)n(r)n(r′)g(r,r′)

+ n(r)m−1∇v · δ(x − x ′)φ(v)
∫

dr′′[∇rVee(r,r′′)]n(r′′)g(r,r′′)

− n(r)n(r′)φ(v′)φ(v)βv ·
∫

dr′′[∇rVee(r,r′′)]n(r′′)[g(r,r′,r′′) − g(r,r′′)]. (B10)

The two integrals on the right-hand side can be evaluated using the first two equations of the BBGKY hierarchy∫
dr′′[∇rVee(r,r′′)]n(r′′)g(r,r′′) = −β−1∇r ln n(r) − ∇rVie(r), (B11)

∫
dr′′[∇rVee(r,r′′)]n(r′′)[g(r,r′,r′′) − g(r,r′′)]

= −[∇rVee(r)]g(r,r′) − [∇rVie(r) + β−1∇r ln n(r)]h(r,r′) − β−1∇rh(r,r′) (B12)
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to get

∂tG(x,x ′; t) |t=0 = − [v · ∇r − m−1∇rVie(r) · ∇v]G(x,x ′; 0) − n(r)m−1∇v · δ(x − x ′)φ(v′)[β−1∇r ln n(r) + ∇rVie(r)]

+ n(r)n(r′)φ(v′)φ(v)βv · [∇rVie(r,r′) + β−1∇r ln n(r)]h(r,r′) + n(r)n(r′)φ(v′)φ(v)βv · β−1∇rh(r,r′).

(B13)

Finally, eliminate the delta function in the second term of the right-hand side using (A6)

∂tG(x,x ′; t) |t=0 = −[v · ∇r + m−1β−1∇r ln n(r) · ∇v]G(x,x ′; 0) + n(r)n(r′)φ(v′)φ(v)βv · β−1∇rh(r,r′). (B14)

Together with (B1), (B2), and (B3), this gives the desired result,

L(x,x ′; 0) = [v · ∇r − m−1β−1∇r ln n(r,{R}) · ∇v]δ(x − x ′) − n(r′,{R})φ(v′)v · ∇rc(r,r′,{R}). (B15)

APPENDIX C: SOLUTION TO MARKOV
KINETIC EQUATION

A formal solution to the kinetic equation (13) for b(x,t) is

b(x,t) = e−LKG t b(x) −
∫ t

0
dτe−LKG(t−τ )v · ∇r

×
∫

dr′βVee(r,r′)I (r′,τ ), (C1)

where the generator for the effective single-particle (Kubo-
Greenwood) dynamics is

LKG ≡ v · ∇r − m−1∇rVie(r) · ∇v (C2)

and the source term I (r,t) is

I (r,t) ≡
∫

dvφ(v)n(r)b(x,t). (C3)

Use of (C1)–(C3) gives an integral equation for I (r,t),

I (r,t) = I0(r,t) +
∫ t

0
dτ

∫
dr′χKG(r,r′,t − τ )

×
∫

dr′′Vee(r′,r′′)I (r′′,τ ), (C4)

with

I0(r,t) ≡
∫

dvφ(v)n(r)e−LKG t b(x) (C5)

and

χKG(r,r′,t−τ ) = −β

∫
dvφ(v)n(r)e−LKG(t−τ )v · ∇rδ(r−r′).

(C6)

1. Dynamic structure factor

The dynamic structure factor is determined from the
density-density time correlation function

C(r,r′,t) = 〈̂n(r,t)δn̂(r′)〉, (C7)

which corresponds to a(x1) = δ(r1−r) and b(x1) = δ(r1−r′)
in (6). Then with (C1) the dynamic structure factor obeys the

integral equation

C(r,r′,t) = C0(r,r′,t) +
∫ t

0
dτ

∫
dr′′χKG(r,r′′,t − τ )

×
∫

dr′′′Vee(r′′,r′′′)C(r′′′,r′,τ ), (C8)
where

C0(r,r′,t) = n(r)
∫

dvφ(v)e−LKG t [δ(r − r′) + n(r′)h(r,r′)].

(C9)

The solution to the linear equation (C8) is obtained first by
defining the Laplace transform

f̃ (z) =
∫ ∞

0
dτe−ztf (t) (C10)

to get

C̃(r,r′,z) = C̃0(r,r′,z) +
∫

dr′′χ̃KG(r,r′′,z)

×
∫

dr′′′Vee(r′′,r′′′)C̃(r′′′,r′,z). (C11)

Next define

ε(r,r′,z) = δ(r − r′) −
∫

dr′′χKG(r,r′′,z)Vee(r′′,r′), (C12)

so the solution to (C11) is

C̃(r,r′,z) =
∫

dr′′ε−1(r,r′′,z)C̃0(r′′,r′,z). (C13)

2. Density response function

The density response function is related to the density
correlation function by (26)

χ (r,r′,t) = β∂tC(r,r′,t). (C14)

Then differentiating (C8) gives

χ (r,r′,t) =χ0(r,r′,t) +
∫

dr′′χKG(r,r′′,0)
∫

dr′′′Vee(r′′,r′′′)C(r′′′,r′,t) −
∫ t

0
dτ

∫
dr′′β∂τχKG(r,r′′,t − τ )

×
∫

dr′′′Vee(r′′,r′′′)C(r′′′,r′,τ ),
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= χ0(r,r′,t) +
∫

dr′′χKG(r,r′′,t)
∫

dr′′′Vee(r′′,r′′′)C(r′′′,r′,0) +
∫ t

0
dτ

∫
dr′′χKG(r,r′′,t − τ )

×
∫

dr′′′Vee(r′′,r′′′)χ (r′′′,r′,τ ), (C15)

χ (r,r′,t) = χKG(r,r′,t) +
∫ t

0
dτ

∫
dr′′χKG(r,r′′,t − τ )

∫
dr′′′Vee(r′′,r′′′)χ (r′′′,r′,τ ). (C16)

The Ornstien-Zernicke equation (B3) has been used to make
the identification

χKG(r,r′,t) = χ0(r,r′,t) +
∫

dr′′χKG(r,r′′,t)

×
∫

dr′′′Vee(r′′,r′′′)C(r′′′,r′,0). (C17)

Taking the Laplace transform of (C16) gives the solution

χ̃ (r,r′,z) =
∫

dr′′ε−1(r,r′′,z)χ̃KG(r′′,r′,z), (C18)

where ε−1(r,r′,z) is the inverse function associated with

ε(r,r′,z) = δ(r − r′) −
∫

dr′′χKG(r,r′′,z)Vee(r′′,r′). (C19)
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