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We introduce a heterogeneous continuous-time random walk (HCTRW) model as a versatile analytical
formalism for studying and modeling diffusion processes in heterogeneous structures, such as porous or disordered
media, multiscale or crowded environments, weighted graphs or networks. We derive the exact form of the
propagator and investigate the effects of spatiotemporal heterogeneities onto the diffusive dynamics via the
spectral properties of the generalized transition matrix. In particular, we show how the distribution of first-passage
times changes due to local and global heterogeneities of the medium. The HCTRW formalism offers a unified
mathematical language to address various diffusion-reaction problems, with numerous applications in material

sciences, physics, chemistry, biology, and social sciences.
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I. INTRODUCTION

Understanding transport phenomena in multiscale porous
media and crowded environments is of paramount importance
in material sciences (e.g., hardening of concretes or degrada-
tion of monuments caused by salts penetration into stones),
in petrol industry (oil extraction from sedimentary rocks),
in agriculture (moisture propagation in soils), in ecology
(contamination of underground water reservoirs and streams),
in chemistry (diffusion of reactants toward porous catalysts), in
biology (transport inside cells and organs, such as lungs, kid-
ney, placenta), to name but a few [ 1-17]. In spite of a significant
progress in imaging techniques and computational tools over
the past decade, accurate modeling of these processes is still
restricted to a relatively narrow range of time and length scales.
At the same time, the multiscale structure of porous media
has a critical impact onto the transport properties [ 18—20]. For
instance, concretes exhibit pore sizes from few nanometers in
the cement paste to few centimeters (or larger) that greatly
impact water diffusion, the consequent cement hydration, and
ultimately, the mechanical properties of the material. Bridging
theories and simulations on different scales has become at the
heart of modern approaches to such multiscale phenomena. In
particular, one aims at coarse-graining an immense amount of
microscopic geometrical information about the medium from
high-resolution imaging, and revealing the structural features
that are the most relevant for a macroscopic description of the
transport processes.

In this light, continuous-time random walks (CTRWs),
introduced by Montroll and Weiss [21-23], have been often
evoked as an important model of diffusive transport in disor-
dered and porous media [18,24-29]. In this model, a diffusing
particle spends a random time at a region of space (e.g., a pore)
or at a site of a lattice before jumping to another region or
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site. The waiting event reflects either energetic trapping of the
walker in a local minimum of the potential energy landscape
or a geometric trapping in a pore separated from other pores
by narrow channels or semipermeable membranes (Fig. 1)
[1,19,20,30-32]. The CTRW model is intrinsically homoge-
neous, as all sites have the same waiting-time distribution
¥ (¢). In practice, however, pores and channels have a broad
distribution of sizes and shapes, as well as the local minima
of the potential energy landscape are broadly distributed.
An extension of the conventional approach by considering a
site-dependent waiting-time distribution, ¥, (¢), may capture
the heterogeneity of the minima or pore shapes but ignores
heterogeneities in mutual minima arrangements or in interpore
connections. For this reason, we propose a more general
approach that we call heterogeneous continuous-time random
walk (HCTRW). In this approach, a random walker moves on
a graph, jumping from a site x to a site x” with the probability
Q.. The graph can be either a natural representation of the
studied system (e.g., electric, transportation, internet, or social
network), or constructed as a coarse-grained representation
of a potential energy landscape or a porous medium (Fig. 1).
Graphs can also serve as discrete approximations (meshes) to
Euclidean domains and manifolds. The travel (or exchange)
time 7., needed to move from x to x’ is a random variable
drawn from the probability density v, (¢), which depends
on both sites x and x’. In this paper, we only consider the
Markovian case with independent jumps on connected graphs.

The paper is organized as follows. In Sec. II we introduce
the HCTRW framework and derive the exact formula for the
Laplace-transformed propagator. We show that the dynamics
of HCTRW is fully determined by the spectral properties of
the generalized transition matrix that couples temporal and
spatial heterogeneities. Using perturbation theory we establish
the long-time asymptotic behavior of the propagator for both
finite and infinite mean travel times. In Sec. III, we show
the relation of the HCTRW formalism to multistate switching
models. We also discuss a natural inclusion of boundary
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FIG. 1. (Left) A complex dynamics in a disordered potential
energy landscape can be approximated as HCTRW between local
minima (defining the sites of the coarse-graining graph) with random
exchange times 7., between neighboring sites x and x’ drawn
from an exponential probability density v, () with the mean time
T X exp(U,, /kT), where U,, is the energetic barrier between two
minima and kT is the thermal energy. (Right) Diffusion of a particle
(shown by a hexagon) inside a porous medium (white space with gray
obstacles) can be approximated as HCTRW between pores (defining
the sites of the coarse-graining graph) with random travel times 7,/
between neighboring sites x and x’ drawn from an exit time (or travel

time) probability density v, (¢) determined by the shape of the pore
at x and its connections to neighboring pores x’.

conditions into the model and the consequent possibility to
assess various first passage quantities and reaction kinetics in a
unified way. In particular, the peculiar effects of spatiotemporal
heterogeneities of the medium onto the first passage time
(FPT) distribution are presented. An explicit solution for the
HCTRW propagator on m-circular graphs and some technical
derivations are reported in the Appendices.

II. GENERAL FORMALISM
A. Propagator

We derive the general formula for the propagator Py, () of
the HCTRW on a graph. Here we adapt the matrix notation,
writing xo and x as subscripts. The propagator Py, (¢) is the
probability to find a walker at a site x at time 7 if it started from
a site xp at time 0. This probability can be written as

o0

Pe(t) =Y POD), e

n=0

where P;:;(t) is the probability to find the random walker,
started from xo, at x at time ¢ after n independent jumps. Note
that the order of starting and ending points is important since
we consider a general, not necessarily symmetric, transition

matrix Q. Each component P)Eg’; (t) can be represented as

t
PI(1) = / dt' Rt @, (1t — 1), (2)
0

where @, (r — t’) is the probability of staying at site x during
time 7 — 1" and RY).(¢') is the probability density to reach x
from x, at time ¢’ at the n” step, which due to the Markovian
property is

RO = [(ar RO 0t -1 @)
0

x/

where O, () is the joint transition probability density:

Qx’x(t) = Qx’xl/fx’x(t)~ (4)

The structural heterogeneities of the graph, represented by the
transition matrix Q [33-38], are now coupled, via the gen-
eralized transition matrix Q(¢), to dynamical heterogeneities
represented by the densities ¥, (¢). In contrast to the Montroll-
Weiss formula for ordinary CTRW with a continuous jump
distribution, there is no Fourier transform in Eq. (2) be-
cause the probability P)f,';)(t — ') is written for a discrete
graph (see Appendix A 1). Applying the Laplace transform
to Eq. (3) and using its linearity and convolution property, one
gets

R.(s) = RUZVOIO$)]ex )

where Q(s) is the Laplace transform of Q(¢),

Qx’x (8) = Qux 1)Dx’)c (s), (6)
with the Laplace transform of quantities denoted with the
tilde above them, e.g., ¥/, (s) = fooo dt e yr(t). With this
notation, we can write Eq. (5) in a compact form

RY(s) = [D(s) Txpe- )

Hence, we get the Laplace transform of the propagator P, (s)
using Eq. (1):

Pry(s) = {1 — O()] e Bas), (®)

where [ is the identity matrix, and the geometric series formula
was applied to the sum of powers [Q(s)]" given that || Q] < 1
(see Appendix A 2). Writing

1 - Zxr Qxx’(s)

N

d,(s) = ©)
the final expression of the propagator of HCTRW in the Laplace
domain is

P (s) = [(I — () Txgu- (10)

1 - Zx’ Qxx’(s)
s

This is one of the main results of the paper. Note

that the propagator determines all the moments of the

position of the walker, including the mean squared

displacement.

The inverse Laplace transform is then needed to get the
propagator in time domain. When the exchange times are
drawn from exponential distributions, ¥/, (s) = (1 4+ s7,,) ",
PxOx(s) in Eq. (10) is a ratio of two polynomials of s, whereas
P, x(t) gets the usual form of a sum of exponentially decaying
functions. In this practically relevant case, one needs to find the
poles of P, (s), i.e., the zeros of the equation det[/ — O(s)] =
0. The Gerschgorin theorem determines the radius of a disk in
the complex plane, in which the poles are located, and hence
speeds up their numerical calculation [39]. In the homogeneous
case, Yy (s) = ¥(s) = (1 +s7)”!, the problem is reduced
to computing the eigenvalues )LQ of the matrix Hy =1 — Q
and then finding s at which (s) = 1/(1 — )»2). One gets
thus the poles s; = —kg /7, as expected. In general, however,
spatiotemporal heterogeneities in ¥, (s) can significantly
alter the above relation between the dynamical properties of
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the HCTRW (determined by the poles s;) and the spectral
properties of the stochastic matrix (the eigenvalues A{). In
Appendix B, we investigate these effects for the cases when
Ve (5) depends either only on x, or only x’. Moreover, if some
Vox(s) are nonanalytic, the Laplace-transformed propagator
can also be nonanalytic. As a consequence, Py .(f) may not
be expressed as a sum of exponentials, exhibiting a slower
approach to the steady-state limit (see below).

B. Spectral analysis and the long-time behavior

In general, the matrix
H(s)=1— Q(s) (11)

isreal but not symmetric so that its complex-valued eigenvalues
form complex conjugate pairs [40]. For each s, we denote i
and vy the left and the right eigenvectors of H(s), associated
with the same eigenvalue A;:

Uy H(s):)»kuk, H(s)vk :)\.k Vk. (12)

The left eigenvectors of H(s) are just the transpose of the right
eigenvectors of the transposed matrix H (s)!. One gets thus the
spectral representation of Eq. (10),

1— fo Qxx’(s) Z Uk(-XO) uk(x)

A
§ k=0 k

ﬁxox(s) =

, 13)

where we used biorthogonality: (u;vi) = §; . Since uy is a
left row-vector, we do not write the transpose symbol T for uy.
Although the explicit dependence on x and x is factored out in
Eq. (13), this representation remains rather formal, since uy, vy,
and A; depend on s in a highly nontrivial way. However, it
shows that the spectral properties of the generalized transition
matrix Q(s) fully determine the propagator of HCTRW. In
some particular cases, the eigenvalues and eigenvectors of the
matrix H can be found explicitly, allowing one to derive an
explicit form of the propagator in time domain, as illustrated
in Appendix C for m-circular graphs. In general, however,
the time dependence of the propagator over the whole range
of times is difficult to grasp, and one focuses on long-time
asymptotic behavior.

The long-time behavior of HCTRW is determined by
f’xOx(s) at small s. Here we distinguish two cases: (i) when
all mean travel times (7,,/) are finite, and (ii) when at least one
of the mean travel times is infinite.

In the former case, one gets the expansion

Vew(8) = 1= 5(Tew) + 0(s). (14)
Introducing a matrix 7 with elements
Txx’ = Qxx’<7;x’)’ (15)

one gets H(s)~ I — Q +sT + o(s), so that the Laplace
transform of the propagator can be approximated as

Proi(s) = [T — Q +5T) s (16)

where
te = ZTM,. A7)

The normalization of the propagator is preserved even in this
approximate form (see Appendix A 3).

Using the standard perturbation analysis at small s [41,42],
we substitute the expansions

M= A+ A} + o(s), (18a)
Uy = ug + su,]{ + o(s), (18b)
v = v + s + o(s), (18¢c)
into Eq. (12) to get in the zeroth and first order in s:
u)Hy = Auf, Hovp = Advp, (19a)
ulHy + udT = A0ul + rjul, (19b)
Hovp + Tvp = A0v) + A0} (19c)
Multiplying the second equation by u?, one has
M= (u{Tvy). (20)
Then to the first order, Eq. (13) becomes
5 v (xo) up(x)
Popu(s) = 1,y Ho——k @1)
>0 Ap T+ sA

Given that 1) = 0 and v] = 1/+/N due to the normalization
of the transition matrix Q, where N is the number of vertices
in the graph, it is convenient to isolate the term with k = 0:

S 0 0
= pxt vg (xop) ug(x)
P (s) > —= +1t, - 22
o (5) s g(; A 4 sA) (22)
where
st l‘xﬂx
= = 23
Py S e (23)

is the steady-state (stationary) distribution, with m, being the
steady-state distribution of the ordinary random walk on the
graph, governed by the transition matrix Q: 7 Q = 7 (see
Appendix A4).

The ratio —)»2 / )L}{ in Eq. (22) is the pole of the approximate
Laplace-transformed propagator and thus an approximation
of the true pole s;. This approximation can only be valid
for poles with the small absolute value |s;|. Denoting 1, =
rlgla())({)\}{ /kg} = )»,1( /Agm (for some index k,,) as the largest

time scale, we get the long-time exponential approach to the

steady-state distribution:

0 0
, v, (xo) g (x)
Paa(t) = py =g e (24
M

The above analysis is not applicable when at least one
mean travel time is infinite. We sketch the main steps of
the asymptotic analysis for the particular situation when all
probability densities ¥, (¢) exhibit heavy tails with the same
scaling exponent 0 < a < 1: ¥ (t) o< t == or, equivalently,

Ve (s) = 1 =528, + o(s9), (25)
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with possibly different time scales ... The propagator is then
approximated as

Poe(s) = 5[ — O + 5% T) s (26)

with the matrix 7' being still defined by Eq. (15), in which
(T:x) are replaced by t°,,, and ¢, is defined by Eq. (17).

For small s, one can apply the same perturbation theory, in
which s is replaced by s*, to get

" vy (xo) up(x)
Py (s) ~ sl Y KR 27)
0 g; A+ s

The formal inversion of the Laplace transform yields the long-
time asymptotic approach to the steady state,

o) (xo)u (x)
1

ngx(t) = P;t + tx Eot(_ta/tm)a (28)

Kom
where E,(z) is the Mittag-Leffler function. Since the Mittag-
Leffler function exhibits a slow, power-law decay, E,(—z) =~
77!/T(1 —a) as z — oo, the major difference with the
former case of finite mean travel times is a much slower
approach to the steady-state limit, which is caused by deep
traps.

III. DISCUSSION

The HCTRW model naturally describes multistate systems,
for which the states are represented by nodes and the prob-
ability densities ¥,,/(#) characterize the inverse of random
exchange rates. The simplest example is a two-state system,
which switches randomly between two states 1 and 2 after
random times 71, and 7;; drawn from the probability densities

0 1
Yr12(¢) and Yrp (7). Inthiscase, Q = ( 1 0 ),andtheLaplace-

transformed propagator reads as

P(s) = - ! =
S = Yri2(s)yai(s)]
« { 1 = Ya(s) [1— 1/721(~S)]1p12(s)}
[1 = ¥12()]i (s) L —21(s) '

(29)

where P(s)isa2 x 2 matrix notation for f’m (s). In particular,
the non-Markovian dynamics of such a simple system was
established when ¥, ,/(¢) are not exponential densities [43].
The HCTRW formalism naturally extends this analysis to
a multistate system, which randomly switches between N
different states. More generally, the HCTRW framework can
be related to the theory of renewal processes [44], to random
walks in random environments [45,46], and to persistent
CTRW [47].

The matrix H(s) = I — OQ(s) can be seen as a normalized
form of a weighted discrete Laplacian on a graph, which
is also related to the model of random resistor networks
[48]. Since the generalized transition matrix Q(s) couples the
structure of the graph (the matrix Q) to the spatiotemporal
dynamics of the walker on that graph [the densities ¥,/ (¢)],
it is natural to distinguish the effects of both aspects. In
particular, one can investigate how the spectral properties of
the matrix Q(s) are affected by structural (or geometric) and

spatiotemporal (or distributional) perturbations. In the former
case, one changes the structure of the graph (e.g., by adding,
removing, or modifying some links). In the latter case, the
graph is kept fixed but the densities v, ,/(¢) are modified.
Analytical estimates for the propagator under spatiotemporal
perturbations can be derived by using the time-dependent
perturbation theory [49] and approximations for the smallest
eigenvalue [50,51].

A. Absorbing boundary, bulk reactions, and
first passage phenomena

In contrast to continuous-space problems, one can naturally
accommodate boundary conditions through the stochastic
matrix Q, with no change to the HCTRW formalism. In fact,
areflecting boundary is intrinsically implemented by the mere
fact of a finite-size matrix Q. An absorbing boundary or a target
can be implemented by adding a “sink site” x* to the graph,
such that Q,+,« = 1;i.e., any particle that comes to x* remains
trapped at this site. The geometric structure of the absorbing
boundary (or the target) is captured through the elements Q ,+;
i.e., the probabilities of arriving at the sink site from other
sites of the graph. The propagator P, () is then interpreted
as the probability for a walker started at xo to be at a site
x at time t without being absorbed. In turn, Py ,+(t) is the
probability of being absorbed by time ¢, whereas Sy, () = 1 —
Py, .+(t) is the survival probability. As a consequence, Py ()
can be interpreted as the cumulative probability distribution
of the first passage time (FPT) to the sink site (or to the
absorbing boundary), whereas p,,(f) = 0Py (¢)/0t is the
probability density of this FPT. The mean FPT is simply
PXOX*(O), and other moments of the FPT are expressed as
derivatives of the Laplace-transformed propagator ISX0 (8) at
s = 0. One can also easily treat partially absorbing boundaries
[52-60] by allowing nonzero leakage probability from the sink
site x*.

If a particle can disappear or lose its activity during
diffusion, FPT problems for such “mortal” walkers [61-68]
can be treated by introducing two sink sites, x| and xj,
which represent an absorbing boundary and a reactive bulk,
respectively. Using the exchange time distributions .. (¢)
depending on x, one can model space-dependent bulk reaction
rates. Note also that Py,.+(00) is the splitting probability; i.e.,
the probability of the arrival on x before arriving on x; (i.e.,
the arrival to the target before dying or loosing activity). If
there are many sink sites x{, ...,x;, Pxﬂx;ﬂ (00) are the hitting
probabilities (a discrete analog of the harmonic measure).

All these conventional concepts of first passage phenomena
[69] are accessible through the mathematical formalism of
HCTRW which plays thus a unifying role. The main advantage
of this approach is the reduction of the sophisticated dynamics
in heterogeneous media to the spectral properties of the
governing matrix Q(s), which generalizes the stochastic matrix
Q. In the same way as the structural features of the medium that
are relevant for simple random walks were captured through
the spectral properties of the transition matrix Q [70], the
spatiotemporal heterogeneities of the medium are captured
by the spectral properties of the generalized transition matrix

0(s).
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FIG. 2. FPT probability density p,,(t) for symmetric HCTRW
on a discrete interval with N = 100 sites, the absorbing endpoint
at x* = 1, and the reflecting endpoint at x = 100. We set xo = 50
and &XX/(S) = (1 + Stxx’)il’ with Tay' = r+8x.x’71 + r78x.,’(’+l' Gl‘ay
crosses show the density pfoM(t) for Brownian motion on the unit
interval, with D = 1/(2N?) and z9 = xo/N.

B. Effects of spatiotemporal heterogeneities on
first passage times

If one is primarily interested in the impact of spatiotemporal
heterogeneities onto the diffusive dynamics, one can choose
the simplest geometric setting, e.g., a discretized interval,
represented by a graph with N = 100 sites. We consider a
symmetric HCTRW on this graph, with equal probabilities
to move to the left and to the right. The nodes x* = 1 and
x = 100 are, respectively, absorbing and reflecting. This fixes
the transition matrix Q as follows: Q. = %6,(,)4_1 + %6)6,)“_1
for ]l <x < N; Qi =681x; and Qny = %BN_xul + %5N,x’-
In turn, the temporal aspects of diffusion, represented by travel
time densities ¥,/ (¢), will be explored. Note that the results
do not depend on the choice of the density 1/,««(¢) at the sink
site (see Appendix A S).

Although various diffusive characteristics are available,
we focus on the probability density p,,(¢) of the FPT. For
each considered example, we compute this density by using
the Talbot algorithm [71] for a numerical inversion of the
Laplace transform of s Py, +(s) (with x* = 1). To validate this
inversion procedure, we compare py,(¢) in the homogeneous
case with ¥ (s) = (1 + s7)~', to the known solution of the
FPT probability density for Brownian motion on the unit
interval (0, 1) with absorbing (respectively, reflecting) endpoint
at O (respectively, at 1):

o0
pPM(t) = 7D D (n +1/2)sin[z(n + 1/2)z0]e ™ P,
n=0

(30)

where D is the diffusion coefficient, and zo = xo/N. Setting
D = a®/(2t) with a = 1/N being the intersite distance, one
expects that the homogeneous diffusion on this graph is a
discrete approximation of Brownian motion so that py, () and
pfm\,(t) are close to each other. One can see an excellent
agreement between two functions (shown by solid line and
crosses) in Fig. 2, except at short times at which small
deviations can be attributed to the discretization of the interval

by N points. After this validation, we will reveal the impact of
spatiotemporal heterogeneities by comparing all results to the
homogeneous case, with Yer(s) = (1 +s7)" L

First, we illustrate the effect of nonsymmetric travel times.
For this purpose, we set IZ“/(S) = (1 + 5Te)"" with 7, =
T48x.x—1 + T_8x x+1. In other words, we consider a random
walker jumping with exponentially distributed travel times but
the mean time to jump to the left, 7_, is different from the mean
time to jump to the right, t;. This difference may originate,
e.g., from a potential inside channels connecting neighboring
pores. We emphasize that the probabilities of jumping to the
left and to the right remain equal. Figure 2 compares four cases:
@ty=t_=1,®r.=10,t_=1;(c) . =1, 7_ = 10;
and (d) 7, = 7— = 10. As expected, the cases (a) and (d) yield
the fastest and the slowest arrival to the sink site, whereas the
cases (b) and (c) stand in between. Note that the cases (b)
and (c) exhibit the almost identical behavior at long times,
whereas there is a notable difference at short times. This
effect has a simple explanation. Let n_ (respectively, n) be
the (random) number of jumps to the left (respectively, to the
right) in a trajectory from x¢ to the sink x*. Qualitatively,
the FPT is n_t_+nytp =m_ —ny)t— +ny(t4 + 1),
where we replaced randomly distributed travel times by their
means. The difference n_ — n, is deterministic and equal
to xo — x*; i.e., there are more jumps to the left. When the
number of jumps is not large, the term (n_ — n4)7_ provides
the dominant contribution to the FPT, and it matters whether
the mean travel time to the left (toward the sink) is smaller
than the mean travel time to the right. In turn, when the walker
performs many jumps, the relative contribution of the term
(n— — ny)t_ to the FPT is small, and the asymmetry between
jumps to the left and to the right is averaged out.

Second, we demonstrate the effect of adding a single trap-
ping site with reversible binding kinetics. For this purpose, we
consider the homogeneous interval with ¥,/ (s) = (1 + s7)~,
except for one point x;, at which &xhxr(s) =[14(s7)*]7},
with a scaling exponent o = 0.5. This corresponds to the
Mittag-Leffler distribution of travel times. Since the mean
travel time from the trapping site is infinite, a random walker
can remain trapped much longer at this particular site, as
compared to other sites. Figure 3 shows the probability density
Px,(t) with xg = 50 for three cases: no trapping site (the
reference case), trapping site at x, = 25, and trapping site
at x, = 75. The two latter cases are qualitatively different
because the walker is always trapped at x;, = 25 on the way to
the sink at x* = 1, whereas the trapping site at x;, = 75 may
be not be visited when started at x, = 50. In the latter case, the
density py,(¢) coincides with that for the homogeneous case
at short times because the short trajectories to the sink do not
pass through the trapping site at x, = 75. In turn, significant
deviations appear at long times. Indeed, eventual traps with the
infinite mean trapping time drastically changes the propagator
so that the density py,(¢) exhibits a slow, power-law long-time
asymptotic decay: py,(¢) oc t~17%, in analogy to Eq. (28). In
particular, the mean FPT to the sink is infinite, regardless the
position of the trap.

Third, we look at the effect of spatial variations of the mean
travel time 7, by setting ¥,.(s) = (1 + s7,)~'. Such a HC-
TRW can be viewed as a microscopic model of heterogeneous
diffusion processes with space-dependent diffusion coefficient
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FIG. 3. FPT probability density p,,(t) for symmetric HCTRW
on a discrete interval with N = 100 sites, the absorbing endpoint
at x* = 1, and the reflecting endpoint at x = 100. We set xy = 50,
T =1, and ¥,/ (s) = (1 +s7)' for all x, except for a trapping site
at x;, for which Vr,,./(s) = [1 + (s7)*]™", with o = 0.5. Two cases
xp, = 25 and x;, = 75 are compared to the homogeneous case without
trapping site (solid line). Dashed line shows a power law decay t~!=¢.

[72,73], which can also mimic crowding effects [74]. We
consider four choices for 7,: a constant, 7, = 7 (the reference
case); aperiodic variation, 7, = t[1 + csin(gmwx/N)]; alinear
growth from the sink, 7, = ax; and a linear decrease toward
the sink, v, =a(N + 1 — x). For a proper comparison of
these cases, we choose the functions 7, to have the same
mean travel time over the interval. We use the arithmetic
mean: % Zf:l 7, = T, as justified below. In particular, we
seta = Wi"l) and take ¢ to be an integer (one also imposes
|c|] < 1 to ensure the positivity of t,). Figure 4 shows the
probability density py,(f) at xo = 100 for these cases. As
expected, periodic variations of the mean travel time have
no effect on the first passage time, in comparison to the
homogeneous case. In fact, these variations are averaged out
by passing through all the sites. This observation justifies our
choice of using the arithmetic mean: the first passage time can

1073
——homogeneous
® - periodic
} linear increase
107 ¢ i 3
‘v linear decrease
~ o
105 1
108 3
10" 102 103 10% 10°

t

FIG. 4. FPT probability density p,,(¢) for symmetric HCTRW on
adiscrete interval with N = 100 sites, the absorbing endpoint at x* =
1, and the reflecting endpoint at x = 100. We set xo = 100, 7 = 1,
and ¥, (s) = (1 4+ s7,)~', with four choices: 7, = 7 (homogeneous
case), T, = t[1 + 0.5sin(4wx/N)], T, = ax (linear increase), t, =
a(N + 1 — x) (linear decrease), witha = 27/[N(N + 1)].

be viewed as a weighted sum of travel times between visited
sites. We also checked that the probability density py,(¢) does
not depend on the amplitude ¢ and the frequency ¢ for a broad
range of these parameters (not shown). In turn, if the starting
point xp is not set at a site with 7, = t (here, at xo = 100),
then differences between the homogeneous and periodic cases
can emerge. For instance, if ¢ = 1, ¢ > 0, and xy = 25, then a
walker would on average take longer travel times, as t, > 1 for
x between 1 and 50. This difference is particularly important
at short times.

Now we turn to the linear dependence of t, on x. The spatial
heterogeneity of travel times strongly affects the probability
density py,(¢): the distribution of FPT is much wider in the
case when the mean travel time 7, increases from the sink site,
7, = ax, as compared to the case of decreasing t, = a(N +
1 — x). Indeed, the probability density p,,(t) at long times is
determined by long trajectories, which stayed away from the
sink. Since the random walker samples preferentially the sites
far from the sink, the FPT to the sink is longer in the case
of linearly increasing 7, and shorter in the case of linearly
decreasing t,. The argument is inverted at short times when
the density p,,(f) is determined by short trajectories when the
walker moves preferentially toward the sink.

IV. CONCLUSIONS

We presented a model of heterogeneous continuous-time
random walks, which generalizes CTRW by allowing a het-
erogeneous distribution of travel times between sites. This
model merges two important and rapidly developing research
directions: continuous-time random walks as a generic model
of anomalous transport, and discrete-time random walks on
graphs and networks. We derived the analytical formula
Eq. (10) for the HCTRW propagator in the Laplace domain
and discussed its inversion to time domain. In particular,
the perturbative analysis of the matrix I — Q(s) yields the
long-time asymptotic behavior. More generally, the complex
diffusive dynamics in multiscale structures with spatiotempo-
ral heterogeneities was related to the spectral properties of the
generalized transition matrix Q(s). In this light, a rigorous
extension of this study to infinite graphs (or, equivalently, the
limit of increasing graphs) presents an important perspective.
In this situation, the steady-state distribution may not exist
(as for a simple random walk on an infinite lattice), whereas
the spectrum of the generalized stochastic matrix may be
continuous. The derivation of a macroscopic description of
HCTRW on very large (or infinite) graphs [75], like fractional
diffusion equation for CTRW, remains an open problem.
This analysis can shed a light onto space-dependent diffusion
equations and provide their microscopic models.

To reveal the effects of spatiotemporal heterogeneities onto
the diffusive dynamics, we kept the geometric structure as
simple as possible. The next step consists in coupling these
heterogeneities to the structural complexity of graphs and net-
works [76-91]. For instance, one can study HCTRW on some
fractal trees and networks, for which the spectral properties
are relatively well known [92-94]. Even a simple random walk
on fractal structures such as tree graphs, in combination with
the particular distributions of waiting times, often leads to
anomalous diffusion [95,96]. Since coarse-graining methods
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have been extensively developed over the past decade [97-
100], the HCTRW framework has a promising application
for studying transport properties in porous materials. Other
potential developments include applications of HCTRW to
temporal networks [84], transportation systems (with the intri-
cate interrelation between the traffic and the complex topology
of the roads graph or airflight connections), electric networks,
as well as internet and social networks [101,102].
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APPENDIX A: BASIC PROPERTIES AND
TECHNICAL RELATIONS

1. Reduction to Montroll-Weiss formula

We show that HCTRW framework leads to the Montroll-
Weiss formula for CTRW on a lattice [23]. The spatial and
temporal components of the waiting time distribution of CTRW
are separated:

Qx’x(t) = Qx’xW(t)v

where () is the waiting time probability density. Then
Eq. (10) becomes

(AL)

- 1—
Po(s) = #[

(I — Q¥ () upx- (A2)

For one-dimensional lattice Z, the discrete Fourier transform
yields

Fid Prgr()} = ) Pryu(s)e™

_ ik 1—¥(s) 1
- s L=P@)(1—2Y)

where 1 — A are the eigenvalues of the matrix Q. Since
1 =2 = ge ™ + (1 — g)e'* is the characteristic function of
the jump distribution on the lattice, with probability ¢ (re-
spectively, 1 — ¢) to jump to the left (respectively, to the
right), Eq. (A3) is the Montroll-Weiss formula for CTRW in
Laplace-Fourier domain. The calculation extends to Z¢ with
d-dimensional discrete Fourier transform.

(A3)

2. Spectrum of the generalized transition matrix

Since V., (s) is the Laplace transform of a_probability
d~ensity of a positive random variable, one has ¥,/ (s) > 0,
Ipxx’(o) =1, and

&xx’(s +8)— &xx’(s) = /oo wxx’(t)eits(ei& —1dt <0
0

for any § > 0 [we excluded the trivial distribution with
Yw(t) = 8(¢), for which the integral is equal to 0]. As a
consequence, v/, (s) is a monotonously decreasing function
on (0,00), and thus

0< () <1 (s>0). (A4)

The matrix Q(s) is a real (nonsymmetric) matrix with
nonnegative elements. We note that the matrix Q(s) is not
necessarily irreducible that allows us to consider, e.g., sink
sites. According to the Perron-Frobenius theorem for non-
negative matrices, there exists a nonnegative eigenvalue Ag
such that the corresponding eigenvector vy has nonnegative
components, and the other eigenvalues A; are bounded in the
absolute value: |A;| < Ag. Since the sum of the elements of
the matrix Q.. (s) in each column does not exceed 1, one gets
Ao < 1. In fact, denoting vg(x) the maximal component of the
vector vy, vo(x) = max,{vy(x")} > 0, one has

hovo() = D Ourvo(’) < max{v(x)} Y Qv < o)

thatimplies 1y < 1. Moreover, the inequality is strict fors > 0

due to Eq. (A4). As a consequence, the matrix I — Q(s) is
invertible for any s > 0.

3. Normalization of the HCTRW propagator

We check the normalization of the HCTRW propagator.
From Eq. (10), we get

D Poils)
% 2(1 - Q(s»x/)[(l = 06D

1 ~ ~ 1
S DI = 06N (T = QDL = . (AS)

Sothat )" Py (t) = 1 for any 7 and x,.
The normalization of the approximate expression Eq. (16)
is also fulfilled:

Z(Z m)w — Q+5T) e

=Y I = Q+5T) e Tew
=Y I = Q+5T) ' Tl

1
=2 MU =0+sD'6T+1 = 0= = Oy

= %(1 — Z[(I — Q4+ sT) Nl — Q]xx,> - %

(A6)

where the last implication is valid because ) [(I — Q)],v =
0, independently of x and s.

4. Stationary distribution of a simple random walk on a graph

We recall the basic result about the stationary distribution
of a simple random walk on a graph G = (V, E) with vertices
in a set V and edges in a set E. In this model, the transition
probability from x’ to x is O, = 1/ deg,,, where deg,, denotes
the number of edges incident with the node x’. The stationary
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distribution is 7, = deg, /(2| E|), where | E| is the number of
edges. In fact, we have

Z Ty Qx/x =
"

where the sum runs over all sites x” adjacent to x (for other
sites Q,/, is zero). We getthus 7 Q = 7.

deg, 1 deg,
Z —

- (A7)
2|E| deg,  2|E]|

= Ty,
x' € A(x)

5. No dependence on v+« (t)

As intuitively expected, the propagator in the presence of a
sink at x* does depend on the choice of the corresponding travel
time probability density 1.« (¢). For simplicity of notations,
let x* = 1 so that the governing matrix has the form

(6 0 O ...
i=(C 00 )

where ¢ = 1 — Y+ (s) and H is the remaining matrix of size
(N — 1) x N.Theelements of the inverse of H can be formally
written in terms of minors as

1= Qu(s) (—1)y0r*det[ M
s det(H)

(A8)

XX0 (H)]

Pxox(s) = s (Ag)
where M, ,,(H) is the matrix obtained from H by removing
the row x and the column x,. We consider separately two cases:
x # x*and x = x*.

(i) In the former case, the first factor in Eq. (A9) does
not contain -,-(s). Using the Laplace’s formula and the
structure of the matrix H, one gets det(H) = ¢det[ M« (H)].
Similarly, det[ M, (H)] = ¢pdet{ M - [M .\, (H)]}, so that
the factor ¢ containing ¥-,(s) is canceled, whereas the
remaining minors do not contain ¢.

(i1) In the case x = x*, Eq. (A9) becomes

¢ (— 1yt det[M e, (H)]
s ¢det[ M+« (H)]

Py (s) = , (A10)
where we used that Q,-/(s) = 8, Pr-(s). Once again,
the factor ¢ is canceled, whereas the minors M«,,(H) and
M «(H) do not contain ¢. We conclude that the propagator
Py, (s) does not depend on Yerps (8).

APPENDIX B: THE CASES ¢,/ (f) = ¥, () and
'/’xx’(t) = 'ﬁx’(t)

In many practically relevant situations, the travel time
distribution is fully determined by the current site, i.e., when
the probability densities v, ,/(¢) depend on x but not on x':
I/JXX () = Y (¢). In this case, the generahzed transition matrix
O(s) can be factored as W(s)Q, where W(s) is the diagonal
matrix formed by ¥, (s). As a consequence, Eq. (10) becomes

1 - '&x(s)
s P (s)

In turn, when the probability densities depend on x’ but not on
X, Yo () = Y (t), one has Q(s) = QW(s), and thus

1— Zx’ Qxx’lzfx’(s)
§ Yo (s)

Poi(s) = [(F's) = Q) e (BD)

[P~ '(s) —

0) Nypx- (B2)

Pxox(s) =

In what follows, we focus on the first situation with Eq. (B1),
bearing in mind straightforward extensions to the second
situation.

If all travel times follow exponential distributions, Ue(s) =
(1+s7)7", Eq. (B1) reads

Pyu(s) =1, [H (B3)

]xgx’

with H; = I — Q + sT, where T is the diagonal matrix formed
by t,. Note that the matrix H; is different from H(s) defined
by Eq. (11): H(s) = W(s)H,. The poles of the propagator are
determined by the equation

0 = det(H,) = det(T)det[s] + T-'(I — Q)],  (B4)

where det(T) = t; - - - ty. The solutions of this equation are
thus s; = —ug, where u; are the eigenvalues of the matrix
T~'(I — Q). In other words, in this particular case, the dynam-
ics is expressed through the spectral properties of the weighted
Laplacian. Note that if the transition matrix Q is symmetric,
then it is more convenient to consider the symmetrized matrix,

T~2(1 — Q)T~'/2, which has the same eigenvalues. Once all
poles s; are identified, one can write
N
det(H,) = det(D) [ J(s —s0) (B)
k=1

(note that some poles may coincide). One can also rewrite the
propagator from Eq. (B3) as
(=D * det{ My, (H;)]

~ _ -1 — ‘
PXUX(S) =Ty (Hs )xox =h det(Hs) ' (B6)

Using the representation Eq. (BS), one further gets

—1)%o+x
Prs) = 7, G}
det(T) [ T,—, (s — s%)

If all s, are distinct (i.e., all poles are simple), the corre-
sponding residue can be computed as

( 1) det[ My, (H;,)]
e () TTps s o (S — sK)
In this case, the inverse Laplace transform can be explicitly

evaluated by applying the residue theorem to the Bromwich
integral

¢ = res,, { Py (5)} =

(B8)

Pyr(t) = Zcfgz,L (B9)
When there is a sink site x*, one can also compute the mean

FPT to the sink. One has

(=1 det| M e, (H,)]
s det[Mx*x*(Hs)] '

so that the Laplace-transformed survival probability reads

Py (s) = (B10)

& 1 (= 1)x°+x*det[/\/lx*x0 (Hy)]
S.(s)=-11- : Bll
o(5) s { det[ M sy (H,)] (B11)
Using the Jacobi’s formula,
det(A 4+ sB) =detA[1 +tr(A'B)s + O(s?)], (B12)
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q 2q/
1q 2(%‘?)

FIG. 5. m-circular graph with N = 10 nodes is shown for m = 2
(left) and m = 4 (right). Arrows indicate possible jumps to neighbor-
ing nodes.

we get the MFPT
St (0) = tr[ My (Hp) ™' My (T)]

— [ Mgy (Ho) ™' Mo (T, (B13)

where Hy = I — Q. This result relies on the following identity

(= 1) det] Moy, (Ho)l = detl M+« (Hp)l.  (B14)

The proof of this identity relies on the basic properties of the
determinant and the normalization property of the matrix Hy:
> (Ho)xy = 0. In fact, one can replace the x*th column of
the matrix M, (Hp) by the sum of all its columns, and this
linear operation does not change the determinant. Permuting
successively the neighboring columns, one can move the new
x*th column to the (xo — 1)th position, and the determinant is
just multiplied by the number of permutations, (—1)*~1=*",
However, the normalization property implies that the former
sum of columns is equal to minus the xgth column of the
matrix M- (Hp). In other words, the matrix M+, (Hp) can
be transformed to the matrix M «,+(Hp) by linear operations
and permutations that implies Eq. (B14).

APPENDIX C: EXPLICIT SOLUTIONS FOR
CIRCULAR GRAPHS

In general, a numerical Laplace inversion is needed to get
the HCTRW propagator in time domain. Here we provide a
basic example when the inversion can be performed explicitly.

Letus consider the asymmetric random walk on a m-circular
graph (also known as a regular small-world graph) with N
nodes, where the degree m of each node is even (Fig. 5). Such
graphs have a circular transition matrix Q with m nonzero
elements in each row [48]. Let us set transition probabilities for
each node to be 2g/m (jumps to the “right”) and 2(1 — gq)/m
(jumps to the “left”). We also choose Yy (s) to be equal to
V. (s) for jumps to the right and to v/_(s) for jumps to the
left. The components of an eigenvector of the circular matrix
I — Q(s) are given by

vk(x) — eZnikx/N/ﬁ7

where k =0,1,...,N — 1 and x = 1~,...,N. Denoting y =
e?™i/N the eigenvalues A.(s) of I — Q(s) are

() =1 = q¥_()ve — (1 — QY ()y—s,

(CI)

(C2)

where

21— eZﬂikm/(ZN)
Ve = T amikiN — ] (€3)
These spectral quantities fully determine the propagator in the
Laplace domain according to Eq. (10). .

In the particular case of exponential distributions ¥ (s) =
(1 + st+)~!, one easily gets the explicit form of the propagator
in time domain. For this purpose we represent A;(s) as

T+T_S2 + Bis + Cyi

M) = T 450 ()
where
By = (t4 + 1) — tyqve — -(1 = @)y,
Ce=1—gy—U0—=qy—.
Since Cy = 0, one has
hals) = X ) (5)

I+ st +s12)°

wherew = (1 — g)/t- + ¢q/74+. Asaconsequence, the Laplace
transform of the propagator is

N-1 i
B 1 1 eka(x—xo)/N
Pty = L Ly

sN N =Sk T 5%

a)+s,j' W+ s
X = - ),
s — 8y s — 8

—Bk + ‘/Blz - 4‘L'+‘L'_Ck

2T, T

(Co)

where

+ _
S =

The Laplace inversion yields the propagator in time domain:

1 1 N-1 t?27'rk(x7)m)/N
P = 5+ 5 L o
k=1

x [(w + s,:’)eS:’ —(@+sp)e']. (CT)

y In the case of Mittag-Leffler distribution of travel times,
Y+(s) = 1/(1 + s%1), one can simply replace s by s* and 7+
by ¢ in the above expressions for A;(s), Bi, @, and s,f. As a
consequence, the propagator in time domain reads

1 N-1 2mk(x—x0)/N

1 e
Pxox(t) = N"' NZ
k=1

=S
X [(@ 4 ) Eo(s{ 1Y) — (0 + 53 ) Ea(sg t9)],
(C3)

where E,(z) is the Mittag-Leffler function.
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