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The dynamics of many soft condensed matter and biological systems is affected by space limitations, which
produce some peculiar effects on the systems’ stochastic resonance (SR) behavior. In this study, we propose a
model where SR can be observed: a confined overdamped harmonic oscillator that is subjected to a sinusoidal
driving force and is under the influence of a multiplicative white noise. The output response of the system is a
periodic signal with harmonic frequencies that are odd multiples of the driving frequency. We verify the amplitude
resonances at the driving frequencies and superharmonic frequencies that are equal to three, five, and seven times
the driving frequency, using a numerical method based on the stochastic Taylor expansion. The synergistic effect
of the multiplicative white noise, constant boundaries, and periodic driving force that can induce a SR in the
output amplitude at the driving and superharmonic frequencies is found. The SR phenomenon found in this paper
is sensitive to the driving amplitude and frequency, inherent potential parameter, and boundary width, thus leading
to various resonance conditions. Therefore, the mechanism found could be beneficial for the characterization of
these confined systems and could constitute an important tool for controlling their basic properties.
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I. INTRODUCTION

Stochastic resonance (SR) is an interesting phenomenon
typically found in nonlinear dynamic systems driven by a
periodic force and noise [1–3]. The SR-like phenomenon has
gained extensive attention because of its significant practical
applications. Numerous early studies mainly focus on the
phenomenon of SR occurring in nonlinear equations. However,
later researchers found that multiplicative SR in linear systems
is a general phenomenon [4–8]. Afterwards, SR was also found
in the excitable systems [9] and nondynamical systems without
response thresholds [10]; the input external signal can be either
a weak periodic signal or a chaotic signal [11]; the added noise
can be either additive noise or multiplicative noise [6]. The
phenomenon of stochastic multiresonances [12,13] was also
found, that is, with the change in noise intensity, the resonance
peak appears at the multiple noise intensities. The studies
on complex neuronal networks in Refs. [12,13] have shown
that appropriately tuned delays can also induce the system to
produce stochastic multiresonances.

Most studies on SR have focused on models without
boundaries. However, when scaling down the size of a system,
in situations frequently found in soft condensed matter and
biological systems, particles move in constrained regions
with boundaries such as small cavities, pores, or channels
[14–16]. The dynamics of these systems will be affected by the
space limitations, which exert unique effects on the reaction,
diffusion, and SR behavior of the systems. A system with
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boundaries is no longer an open system but a local system,
and uneven boundaries usually have the effect of entropic
barriers [16–19]. In 2002, Schüring [20] et al. studied the
influence of the entropic potential on the diffusion of zeolite
in molecular dynamics. In 2003, Schweizer et al. [21] studied
the entropic potential of colloidal suspensions and discussed
particle transport in microscopic dynamics. Reguera et al. [22]
found that the entropic potential caused by uneven boundaries
could effectively control particle transport in a quasi-one-
dimensional structure.

Burada [23] introduced the entropic potential in irregularly
shaped media in two-dimensional space and found a noise-
induced resonantlike behavior known as the entropic stochastic
resonance (ESR). However, previous studies on ESR have
primarily focused on Brownian particle movement in two-
dimensional space [23–26]. Gravity in the vertical direction
and uneven boundaries are crucial for the ESR to experience
the entropic barrier. Very recently, SR has also been found even
in the absence of an energetic or an entropic barrier while in
the presence of a geometric confinement, which is known as
geometric stochastic resonance (GSR) [27]. To our knowledge,
the response and SR of Brownian particle movement in a
one-dimensional space restricted by constant boundaries are
rarely reported.

Alternatively, in the case of one-dimensional discrete-time
systems, SR-like behavior analogous to ESR and GSR can
be observed in one-dimensional chaotic maps subjected to
sinusoidal multiplicative periodic forcing, where the output
trajectory is restricted to one of two subintervals and the
inherent chaos of the system could act as noise [28,29].
Moreover, we can reasonably assume that similar SR-like
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behavior occurs in a continuous-time system described by
differential equations.

In this study, given that a Brownian particle is subjected
to a sinusoidal driving force and another varying force caused
by the presence of a random fluctuating monostable potential,
its original motion equation is a linear Langevin equation
driven by multiplicative white Gaussian noise. In Ref. [5],
Berdichevsky and Gitterman found that for the linear Langevin
equation, SR occurs only for color multiplicative noise and
is absent for white multiplicative noise. However, the re-
stricted boundaries considered in this study actually produce
nonlinearity in the dynamics of the original linear system:
the average output amplitude A� at the driving frequency
� is a nonmonotonic function of noise intensity D; that is,
classical SR was found. Therefore, for our system, gravity and
geometric unevenness are not essential for the occurrence of
SR in a confined space. Even if the system is only affected by
multiplicative white noise, the confinement of the particle is
crucial for SR. The occurrence of SR proposed in this paper
depends on the width of the boundaries, system parameters,
and can then be controlled by them. Thus, understanding the
role of noise and space confinement in this paper does provide
application of a periodic driving force result in a spectral
amplification at an optimum value of the ambient noise level.

Moreover, most of the previous studies on SR focus on the
response at the frequency of the driving force. Several recent
studies on nonlinear systems also found that noise can induce
a resonance at high-order harmonics that are odd multiples of
the driving frequency [30–34]. In this study, the presence of
boundaries was also found to lead to high-order harmonics in
the output response. The results show that the multiplicative
white noise can not only induce an amplitude resonance at the
driving frequency, but also at the superharmonic frequencies
that are odd multiples of the driving frequency.

The rest of the study is organized as follows. In Sec. II, we
introduce the considered system and then present a numerical
Brownian dynamics algorithm based on the stochastic Taylor
expansion (STE) to calculate the average output amplitude of
the considered system. In Sec. III, we first check the validity
of the presented STE-based Brownian dynamics algorithm
and then investigate the noise-induced SR at the driving and
superharmonic frequencies. Finally, the results are discussed
and the main conclusions are drawn in Sec. IV.

II. MODEL AND METHOD

In this study, a Brownian particle moving in a confined
one-dimensional space is considered. The particle is subjected
to a periodic sinusoidal driving force and another varying force
caused by a random fluctuating monostable potential. The
overdamped dynamics which neglects inertial effects can be
described by the following linear Langevin equation:

ẋ = −[a + ξ (t)]x + A sin(�t), (1)

where t is the time, and x is the position of the particle
along the x axis. A > 0 and � > 0 are the amplitude and
angular frequency of the periodic driving force, respectively.
The potential parameter a describes the decay rate of the
output response to the equilibrium point in the absence of
noise. ξ (t) represents a standard Gaussian white noise with a

FIG. 1. Schematic diagram of the 1D structure, where the Brow-
nian particle moves in the confined interval. The x-axis coordinates
of the two vertical baffles are correspondingly x = −B and B, where
B is the half-width of the boundary.

vanishing mean and noise intensity D satisfying 〈ξ (t)〉 = 0 and
〈ξ (t)ξ (s)〉 = 2Dδ(t − s). Equation (1) has many applications,
such as problems of fluctuating barrier crossing in chemistry,
enzymatic kinetics in biology, and nuclear magnetic resonance
in physics [5].

When scaling down the size of systems, the particles in these
systems are always confined to move in a constrained space. In
this study, the movement of the particle is supposed to be con-
fined by two vertical baffles (i.e., boundaries). For the geometry
shown in Fig. 1, the dynamics of Eq. (1) can be considered as
the reflecting boundary conditions. When the Brownian parti-
cle meets one of the boundaries, the particle will be vertically
rebounded and then return between the two boundaries.

A. In the absence of restricted boundaries

In the absence of restricted boundaries, the exact average
solution of Eq. (1) is given by [5]

〈x(t)〉 = x(0)〈e− ∫ t

0 ξ (s)ds〉e−at

+Ae−at

∫ t

0
sin(�u)eau〈e− ∫ t−u

0 ξ (s)ds〉du, (2)

where 〈. . .〉 denotes an ensemble average over the distribution
of the random forces.

Suppose B(t) is a standard Brown motion, satisfies B(t) ∼
N (0,t), and then for the Gaussian white noise ξ (t), − ∫ t

0 ξ (s)ds

is a Brownian motion with drift, which has a zero drift coef-
ficient, and a diffusion coefficient of 2D, i.e., − ∫ t

0 ξ (s)ds ∼
N (0,2Dt). Moreover, e− ∫ t

0 ξ (s)ds is a geometric Brown motion,
and thus we have [35]

〈e− ∫ t

0 ξ (s)ds〉 = eDt , 〈e− ∫ t−u

0 ξ (s)ds〉 = eD(t−u). (3)

Substituting Eq. (3) into (2) we have

〈x(t)〉 = x(0)e−(a−D)t + Ae−(a−D)t
∫ t

0
sin(�u)e(a−D)udu.

(4)

Here, the integra
∫ t

0 sin(�u)e(a−D)udu in Eq. (4) can be
obtained by partial integral method:∫ t

0
sin(�u)e(a−D)udu

= �

(a−D)2 + �2
+ 1√

(a−D)2 + �2
cos(�t+�)e(a−D)t ,

(5)

in which � = arctan( a−D
�

) + π .
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FIG. 2. Trajectories and normalized frequency spectrums of the output responses of the Brownian particle in the absence of boundaries at
A = 1.5, � = 1, a = 1 with different values of D: (a), (b) D = 0; (c), (d) D = 0.5; (e), (f) D = 2. When D = 0 [as shown in (b)], the output
response is a single frequency signal; when D < a = 1 [as shown in (a) and (c)], the average position 〈x(t)〉 is bounded; while D > a = 1 [as
shown in (e)], the average position 〈x(t)〉 is unbounded.

Substituting Eq. (5) into (4) we have the average solution
of Eq. (1):

〈x(t)〉 = Ce−(a−D)t + Ast cos(�t + �), (6)

in which

C = x(0) + A�

�2 + (a − D)2
, Ast = A√

�2 + (a − D)2
,

� = arctan

(
a − D

�

)
+ π. (7)

For the noise intensity D < a, the exponent decay term
Ce−(a−D)t will tend to zero in the long time limit t → +∞,
which yields the average position 〈x(t)〉 bounded. Thus, in
this case, the stationary solution of Eq. (1) in the asymptotic
time limit (i.e., after the memory of the initial conditions is
completely lost) is

〈x(t)〉st = Ast cos(�t + �), (8)

whose amplitude Ast is a monotonic function of D, that is,
there is no SR for this linear system with multiplicative white
noise in the absence of boundaries. This result is not surprising
because the white noise has no characteristic frequency which
would be “in resonance” with an external frequency. Recall
that in the nonlinear case such a characteristic frequency can
be constructed for a random force (the Kramers rate) [5].
Moreover, note that for all D > a, the exponent term Ce−(a−D)t

will be infinite as t → +∞, so that 〈x(t)〉 is unbounded in
the absence of boundaries. For different values of the noise
intensity D, Fig. 2 presents three trajectories and three normal-
ized frequency spectrums of the output responses of the linear

Langevin equation (1) in the absence of restricted boundaries.
However, it can be seen from the following discussions the
addition of the boundaries makes the exponent term Ce−(a−D)t

bounded, thus resulting in changes in the dynamics properties
of the particle.

B. In the presence of restricted boundaries

In the presence of restricted boundaries, if the boundary
half-width satisfies B � Ast , and Ast is given in Eq. (7), then
the boundaries will have a bounding effect on the Brown-
ian particle. Therefore, the Brownian particle undergoes a
constrained motion. When the particle moves near one of
the baffles, the particle would meet the boundary via the
effects of the external potential field and periodic driving force.
Subsequently, the particle rebounds back from the boundary.
However, the effects of the external potential field and periodic
force are continuous. Thus, the particle will quickly return to
meet the boundary and repeatedly rebound until the particle
moves away from the boundary under the effects of the external
potential field and the periodic force. Afterwards, the particle
will move close to another boundary, and then the same process
will be repeated.

However, no generally valid analytical expressions are
possible in the presence of restricted boundaries. The behavior
of the particle of interest can be simulated using the standard
stochastic Euler algorithm, which requires a small integration
step time and high computation time. Thus, in this study, a
numerical method based on STE is adopted to simulate the
Langevin equation (1) [36,37]. After calculation, we obtained
the numerical formula (9) as follows, whose derivation is
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illustrated in the Appendix:

x(t + h) − x(t)

= [ − ah + 1
2a2h2

]
x(t) − 1

2ah2A sin(�t)

− A

�
{cos[�(t + h)] − cos(�t)}

+ (
(ah − 1)�1(t + h) + 1

2 [�1(t + h)]2
)
x(t)

− [h�1(t + h) − �2(t + h)]A sin(�t), (9)

wherein h is the integration step time, random variables �1(t +
h) and �2(t + h) are given by Eq. (A17).

Therefore, suppose the position of x(t) at t = nh is x[n]
and �1[n + 1] = �1(t + h) and �2[n + 1] = �2(t + h), then
the single integration steps read as

x[n + 1] = (
1 − ah + 1

2a2h2
)
x[n] − 1

2ah2A sin(�nh)

− A

�
{cos[�(n + 1)h] − cos(�nh)}

+ [
a�2[n + 1] − �1[n + 1] + ah�1[n + 1]

− a�2[n + 1] + 1
2 (�1[n + 1])2

]
x[n]

− [h�1[n + 1] − �2[n + 1]]A sin(�nh). (10)

Second, we consider the case when the particle is confined in
the interval [−B,B]:

(i) If |x[n + 1]| � B, the modification position is as fol-
lows:

x̃[n + 1] = x[n + 1], (11)

where x[n + 1] is the original position and is given by Eq. (10),
and x̃[n + 1] is the new position.

(ii) If x[n + 1] > B, and the velocity is v[n] = (x[n +
1] − x[n])/h, the particle will meet one of the boundaries.
In this case, a simple process, such as specular reflection, is
used to simulate the movement of particle near the boundary.
When the particle meets the boundary, the particle is vertically
rebounded with the same magnitude of the velocity and the
reversed direction of motion, and the time step is incremented
as follows:

x̃[n + 1] = B − v[n]

(
h − B − x[n]

v[n]

)

= 2B − x[n + 1]. (12)

(iii) If x[n + 1] < −B, similarly, the time step is incre-
mented as follows:

x̃[n + 1] = −B − v[n]

(
h − −B − x[n]

v[n]

)

= −2B − x[n + 1]. (13)

For different values of the noise intensity D, Fig. 3 presents
three trajectories and normalized frequency spectra of the
steady-state responses of the confined Langevin equation (1) in
the presence of boundaries. Here, the “baffles,” which confine
the trajectory to a finite domain are highly similar to the folding
operation of the map given in Refs. [28,29]. In Refs. [28,29],
the SR-like behavior of the chaotic map was observed. The
system with restricted boundaries is analogous to the classical
bistable well scenario of SR. In the presence of the boundaries,

the output trajectory of the system is restricted to either of the
two subintervals. The subintervals correspond to the two wells
between which the system hops to and fro, aided by the inherent
white noise and the periodic signal.

As shown in Fig. 3(a), because of the effect of the bound-
aries, the output steady-state response can be regarded as a
sinusoidal signal confined by a rectangle envelope. Such a
signal has high-order harmonics that are odd multiples of
the driving frequency. Thus, the frequency components in the
frequency spectra of the steady-state responses [as shown in
Figs. 3(b), 3(d), and 3(f)] not only contain the driving angular
frequency �, but also has superharmonic frequencies, namely,
3�,5�,7�, . . ., which are odd multiples of the driving angular
frequency. Interestingly, the amplitude of the frequency com-
ponents at superharmonic frequencies (e.g., ω = 3�,5�,7�)
becomes more evident as D increases. Thus, for this considered
linear system (1) in the presence of boundaries, the periodic
signal and noise cannot cooperate within the framework of
linear dynamics, such that energy transformation from the
noise to the signal may exist.

III. STOCHASTIC AND SUPERHARMONIC STOCHASTIC
RESONANCES IN A CONFINED ONE-DIMENSIONAL

SPACE

As seen from the above discussion, the response of the
system in Eq. (1) in the absence of restricted boundaries to the
periodic input signal F (t) = A sin(�t) is a periodic function of
time. The average value of the position x(t) in the asymptotic
time limit of the confined Langevin equation can be written in
the following Fourier series form:

〈x(t)〉st =
+∞∑
k=0

A(2k+1)� cos[(2k + 1)�t − 	(2k+1)�], (14)

where Ak� and 	k� are the average response amplitude
and phase lag at the angular frequency k�, respectively.
These quantities are obtained by averaging the inhomogeneous
process x(t) over the ensemble of different random path
realizations. In particular, the average particle position of
Eq. (1) is

〈x(t)〉 = 1

K

K∑
i=1

xi(t), (15)

where xi(t) is the system output response of the ith Monte
Carlo simulation, i = 1,2, . . . ,K .

Therefore, the response amplitude and the phase lag at the
angular frequency k� are computed by

Ak� =
√

Q2
sin + Q2

cos, (16)

	k� = arctan(Qsin/Qcos), (17)

where Qsin and Qcos are the sine and cosine components of the
Fourier transform, specifically,

Qsin = 2

NT0

∫ NT0

0
〈x(t)〉 sin(k�t)dt,

Qcos = 2

NT0

∫ NT0

0
〈x(t)〉 cos(k�t)dt, (18)
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FIG. 3. Trajectories and normalized frequency spectrums of the output response of the Brownian particle confined by boundary in Fig. 1
at B = 0.5, A = 1.5, � = 1, a = 1 with different values of D: (a), (b) D = 0; (c), (d) D = 10; (e), (f) D = 50. In the absence of white noise
(D = 0), the particle regularly dwells between the two boundaries. The regularity of the particle decreases with the increase in noise intensity
D.

where T0 = 2π/� and N is the period number, which is a large
integer, indicating that the effect of the initial condition on the
response can be ignored.
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FIG. 4. Comparison of average amplitude A� as a function of the
time steph, obtained by ODE, the present STE and the analytical result
in the absence of boundaries, in which, a = 1, � = 2, D = 0.32, and
N = 100.

In previous references of SR, in Eq. (16), k is always chosen
as k = 1. However, in the proposed case, the superharmonics
with high-order odd frequencies induced by the boundary also
exist. Therefore, in this study, we will consider the SR of
the � harmonic and the SR of the higher-order harmonics.
The high-order harmonic angular frequencies 3�, 5�, and 7�

were selected in the following analysis to simplify the problem.
The average amplitude at the driving angular frequency � was
chosen for comparison.

A. Validity of the present Brownian dynamics algorithm

To determine the validity of the present STE-based Brown-
ian dynamics algorithm, the present results should be compared
with the analytical results given by Eq. (7) in the absence
of boundaries. In the absence of boundaries, Eqs. (16) and
(18) are used to calculate the average response amplitude
A� at the angular frequency � obtained by the present STE
algorithm and ordinary differential equation (ODE) algorithm
as a function of the time step h in Fig. 4. The results from
the present STE-based algorithm agree well with that from
the analytical results for the small time step. Moreover, the
accuracy of the present algorithm is higher than that of the
ODE algorithm.

The convergence of the STE-based algorithm in the pres-
ence of boundaries was verified. Figure 5 illustrates that the
STE algorithm is convergent. Figure 5(a) illustrates that the
numerical results do not depend on the time step h for h �
0.001, Fig. 5(b) shows that the numerical results do not depend
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FIG. 5. Average A� obtained by the present STE in the presence of boundaries: (a) the average A� obtained by the present STE algorithm as
a function of h with B = 0.2, a = 1, � = 2, D = 0.08, N = 100, and K = 1000; (b) the average A� obtained by the present STE algorithm as
a function of N with B = 0.2, a = 1, � = 2, D = 0.08, K = 1000, h = 0.001s; (c) the average A� obtained by the present STE algorithm as a
function of K with B = 0.2, a = 1, � = 2, D = 0.08, N = 100, and h = 0.001 s.

on K for K � 1000. Figure 5(c) shows that the numerical
results do not depend on K for K � 1000. Therefore, to
provide the requested accuracy, the time step was chosen to
be h = 0.001 s, the period number N was set to 100, and
the average particle position 〈x(t)〉 along the x direction was
derived from an ensemble average of approximately K = 1000
trajectories according to the expression (15).

B. Stochastic and superharmonic stochastic resonances

To study the SR appearance, the average amplitude Ak� at
frequency k�with k = 1,3,5,7 was analyzed in the presence of
boundaries, which are defined by Eq. (16). Extensive numerical
simulations based on Eqs. (10)–(13) and Eqs. (16)–(18) were
performed to determine the average output amplitude.
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FIG. 6. Average response amplitude Ak�, k = 1,3,5,7, versus the noise intensity D for different values of the driving angular frequency �,
in which A = 1, a = 1, B = 1. For small angular frequency �, e.g., � = 0.1, 0.5, and 1, the average response amplitude A� is a decreasing
function of D, and no SR exists; Ak� (k = 3,5,7) shows the nonmonotonicity with D, that is, the SRs at the superharmonics that are odd
multiples of the basic driving frequency occur, which we called as superharmonic SR. For large values of �, e.g., � = 3, the SR exists in all
the Ak� − D curves (k = 1,3,5,7). Moreover, the interwell dynamics responsible of the appearance of the main peak in Ak� at higher noise
intensities is not remarkably affected by the driving frequency �.
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FIG. 7. Trajectories of the output response of the confined linear Langevin equation with different noise intensity D (D = 0.1,2,50) and
different angular frequency � (� = 0.5,3), at B = 1, A = 1, a = 1.

1. Influence of the driving angular frequency � on SR

The influence of the driving angular frequency � on the
average response amplitude was first analyzed. For different
values of �, the average response amplitude Ak� (k = 1,3,5,7)
versus the noise intensity D is plotted in Fig. 6. The SR and
superharmonic SR (the SRs at the superharmonics that are odd
multiples of the basic driving frequency) are both found in
Fig. 6. This phenomenon is different from the result shown in
Refs. [4,5], which reported that in the absence of boundaries,
SR will not occur in linear systems driven by multiplicative

white noise because the output response is unbounded with
large noise intensity D.

The resonance peak of the A� − D curve is absent for a
small angular frequency � but becomes pronounced as �

increases. Thus, SR in the considered confined system can be
easily realized with high-frequency signals. This phenomenon
is different from SR in a linear system driven by multiplicative
color noise and without a boundary in which SR can be easily
realized with a low-frequency signal. To provide a detailed
explanation, for driving frequency � = 0.5,3, Fig. 7 presents
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FIG. 8. Average response amplitude Ak�, k = 1,3,5,7, versus the noise intensity D for different values of potential parameter a, with
A = 1, B = 1, � = 2. With the increase in noise intensity, each average response amplitude Ak�, k = 1,3,5,7, increases initially and then
decreases. The interwell dynamics responsible for the appearance of the main peak in Ak� is highly affected by the parameter a at smaller noise
intensities but not as affected by a at high noise intensities.
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FIG. 9. Average response amplitude Ak�, k = 1,3,5,7, versus the noise intensity D for the boundary half-width B = 0.1,0.2,0.3,1,2,3.
For small B, e.g., B = 0.1, all average response amplitudes Ak� are decreasing functions of D, and no SR exists. As B increases, SR is first
found in the A7� − D curve (B = 0.2), second in the A5� − D and A7� − D curves (B = 0.3), third in the A3� − D, A5� − D, and A7� − D

curves (B = 1,2), and finally in all curves (B = 3).

the output trajectories of the confined Langevin equation with
different values of noise intensity D. In fact, in the absence
of noise (i.e., D = 0), the average response amplitude Ast

is a decreasing function of the driving angular frequency �

from Eq. (7). For large � [for example, � = 3, as shown in
Figs. 7(d)–7(f)], the average response amplitude Ast is small
and far from the boundaries. The periodic drive alone is not
sufficient to push the particle from one boundary to the other.
However, a random disturbance with certain strength can
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FIG. 10. Average amplitude A� as a function of bound-
ary half-width B, in which a = 1, A = 1, D = 1, N = 100, K =
1000, � = 2, h = 0.001 s. Shows that the A� − B curve has a peak
for a certain value of B, and this curve represents a generalized SR.

enable the particle transition between boundaries at a random
moment. In other words, in the presence of restricted bound-
aries, the noise and driving period may have a synergistic effect
on the motion of the particle, yielding SR. With a decrease
in � [for example, � = 0.5, as shown in Figs. 7(a)–7(c)],
the average response amplitude Ast increases and is closer
to the boundary B. Thus, noise with low intensity is required
to drive the particles to undergo transitions between the two
boundaries. As a result, the position of the SR peak of D shifts
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FIG. 11. Four output trajectories of the confined linear Langevin
equation (1) for different values of boundaries B (B = 0.4,2,6,10),
at D = 1, A = 1, a = 1.

012147-8



STOCHASTIC AND SUPERHARMONIC STOCHASTIC … PHYSICAL REVIEW E 97, 012147 (2018)

0 100 200 300 400
0

0.5

1

D

A
Ω

 

 

0 100 200 300 400
0

0.05

0.1

D

A
3Ω

 

 

0 100 200 300 400
0

0.01

0.02

0.03

D

A
5Ω

 

 

0 100 200 300 400
0

0.01

0.02

D

A
7Ω

 

 

A=0.1
A=0.5
A=1
A=3

A=0.1
A=0.5
A=1
A=3

A=0.1
A=0.5
A=1
A=3

A=0.1
A=0.5
A=1
A=3

(d)

(a)

(c)

(b)

FIG. 12. Average response amplitude A� as a function of noise intensity D for different values of driving amplitude A, wherein a =
1, B = 1, � = 2, N = 100, K = 1000, and h = 0.001 s. The A� − D curve in (a) shows that SR exists for the driving amplitude of low A

(e.g., A = 0.5), whereas the resonance structure of the amplification disappears for the large A value (e.g., A = 1,3), which monotonously
decreases with increasing D. Moreover, from (b)–(d), each peak values of A3�, A5�, and A7� show a nonmonotonic behavior for increasing
the modulation of driving amplitude A.

to the left. When � is low, the SR peak disappears and no SR
occurs.

Moreover, Fig. 6 shows that the peak value of SR in
the Ak� − D curve decreases as k increases, and the noise
intensity, which induces the resonance at the Ak� − D curve, is
an increasing function of k. Thus, the low-frequency harmonic,
which is weak noise, can easily induce SR, whereas strong
noise is required for the high-frequency harmonic.

2. Influence of potential parameter a on ESR

Figure 8 depicts how SR depends on the intrinsic frequency
parameter a, for different values of a. The curves of the average
amplitude Ak�, k = 1,3,5,7, versus D are shown in this figure.
SRs are found in all curves.

Furthermore, the peak value of the average value amplitude
decreases, and the peak point shifts to high D as potential
parameter a increases. The original determinist potential of
the considered system U (x) = ax2/2 is a classical harmonic
potential, with the potential parameter a that reflects the
potential strength. Therefore, as a increases, the potential well
of U (x) narrows. This phenomenon indicates that the height
of the particle movement should be high enough to achieve
the same amplitude. Consequently, strong noise energy should
be applied into the system to drive the particle movement.
This phenomenon is the reason for the monotonous shift in
the positions of the resonance peaks to high D. Moreover, the
peak value of the average value of amplitude decreases with
the increase in a in Fig. 8.

3. Influence of the boundary half-width B on SR

Similarly, to investigate how the boundary half-width B

affects the SR, for different values of B, the average amplitude
Ak�, k = 1,3,5,7, is shown versus the noise intensity D in
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FIG. 13. Average response amplitude A� as a function of driv-
ing amplitude A, wherein a = 1, B = 0.1, � = 2, D = 0.5, N =
100, K = 1000, and h = 0.001 s.
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FIG. 14. For driving frequency A = 0.1,3, the output trajectories of the confined Langevin equation with different noise intensity D, wherein
a = 1, B = 1, � = 2, N = 100, K = 1000, and h = 0.001 s.

Fig. 9. The interwell dynamics responsible for the appearance
of the main peak in Ak� at all the noise intensities is affected
by the boundary half-width B.

With the increase in the boundary B, the SR peak of noise
intensity D shifts to the right because for any given driving
amplitude and large B, increased noise is required to drive the
particles to undergo transitions between the two boundaries.
To determine the existence of an optimized value of B exists
at which the average amplitude takes its maximum value,
the average amplitude A� is plotted as a function of B in
Fig. 10.

To provide a detailed explanation, for different values of
boundaries, Fig. 11 presents four output trajectories of the
confined linear Langevin equation (1). For small B [for ex-
ample, B = 0.4, as shown in Fig. 11(a)], the average response
amplitude Ast is larger than the boundary B. Thus, under
the combined action of noise and periodic driving force, the
periodic driving plays a dominant role. When B increases
[for example, B = 2,6, as shown in Figs. 11(b) and 11(c)],
the periodic drive alone is not sufficient to push the particle
from one boundary to the other. A random disturbance of
certain strength can enable the particle transition between
boundaries, i.e., the synergistic effect between the noise and the
driving period exists, thereby resulting in the gradual increase
in the output amplitude. However, as the boundary further
increases [for example, B = 10, as shown in Fig. 11(d)],
the driving amplitude and noise intensity do not increase.
The interaction between the periodic driving force and noise
cannot easily drive the particles to undergo a transition between
the two boundaries, and the average output amplitude does
not increase. Finally, the output amplitude A� represents a
generalized SR with the increase in boundary B.

4. Influence of the driving amplitude A on SR

Finally, the dependence of SR on the driving amplitude A

is considered. The average amplitude Ak�, k = 1,3,5,7, for
different values of A is shown versus the noise intensity D in
Fig. 12.

Figure 13 depicts the average amplitude A� as a function
of driving amplitude A. Interestingly, the average amplitude
A� is a nonmonotonic function of driving amplitude A. The
output amplitude of a linear system is always a monotonic
function of the driving amplitude A. This characteristic is
described by Eqs. (3) and (4), where the output amplitude Ast

is a monotonically increasing function of A. Thus, the con-
sidered linear Langevin equation in the presence of restricted
boundaries ceases to be a linear system; rather, it exhibits
nonlinearity due to the boundary restrictions associated to the
confinement. Therefore, a resonance also exists in the A� − A

curve, and a particular driving amplitude A exists for the
average output amplitude A� to achieve the resonance peak,
which also represents another generalized SR in this study.

To provide a detailed explanation, for driving frequency
A = 0.1,3, Fig. 14 presents trajectories of the output response
of the confined Langevin equation for different values of
noise intensity D. When the driving amplitude A is low [for
example, A = 0.1, as shown in Figs. 14(a)–14(c)], the average
response amplitude Ast is lower than the boundary half-width
B. Moreover, for the low noise, the combined effect of the
periodic driving force and noise cannot easily drive the particle
undergo a transition between the two boundaries. When the
noise increases, random perturbations with sufficient strength
can enable a transition of particles between boundaries at a
random moment. Therefore, the average response amplitude
gradually increases because of the synergistic effect of the
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noise and the periodic driving force. However, with a further
increase in noise, the average response amplitude cannot easily
increase because of the limitation of the boundaries. Thus,
the noise begins to inhibit the effect, resulting in a decrease
in the average amplitude. Thus, the conventional SR occurs.
However, when the driving amplitude A increased to a certain
value, the average response amplitude Ast became greater than
boundary half-width B. The periodic driving force always
plays a leading role. The average response amplitude decreases
with the increase in noise. Thus, no SR occurs for the high
driving force A.

IV. DISCUSSIONS AND CONCLUSIONS

In general, the dynamics of many soft condensed matter
and biological systems will be affected by space limitations,
which make its features notably different from the macroscopic
features and thus produce peculiar effects on the systems’
reaction and diffusion behavior [14–19]. The ESR, known as
characteristic of small-scale and confined systems, is another
nonlinear noise-induced resonant effect when a Brownian par-
ticle moves in a confined medium in the presence of a periodic
driving force. Thus, it constitutes a useful mechanism for
manipulation and control of single molecules and nanodevices.

In this study, the resonant response of an overdamped
Langevin system driven by a periodic driving force and
multiplicative white noise in the presence of constant restricted
boundaries was investigated using numerical simulations. The

numerical analysis of the average amplitude at both the
harmonic with driving frequency � and the superharmonic
with odd frequency k� (k = 3,5,7) showed that amplitude
curves exhibit nonmonotonic behavior of the noise intensity
D, i.e., SR and superharmonic SR occur. The existence of
resonance peaks in the amplitude curve is the identifying
characteristic of the SR phenomenon. Thus, in the considered
overdamped Langevin system driven by a periodic driving
force and multiplicative white noise, an increase in the spec-
trum amplification at an optimum value of the noise intensity
D is caused by the constant geometrical restrictions. This
phenomenon is different from the previous SR and ESR studies
because the multiplicative color noise is a necessary condition
for SR in linear systems, and an uneven boundary is a necessary
condition for ESR. It is believed that the results obtained can be
very helpful for further investigation of the SR phenomenon
in a confined structure, and it can also open new avenues in
the optimization and control of systems at the micrometer and
nanometer scales, where a proper choice of the boundary and
system parameters can optimize the output signal.
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APPENDIX: DERIVATION OF SIMULATION RECURSION FORMULA (9)

At first, we calculate the integrals in interval [t,t + h] of both sides of Eq. (1) and get∫ t+h

t

ẋ(s)ds = −a

∫ t+h

t

x(s)ds −
∫ t+h

t

x(s)ξ (s)ds + A

∫ t+h

t

sin(�s)ds. (A1)

Replacing x(s) by x(t) + [x(s) − x(t)], Eq.(A1) can be rewritten as

x(t + h) − x(t) = −a

∫ t+h

t

{x(t) + [x(s) − x(t)]}ds −
∫ t+h

t

{x(t) + [x(s) − x(t)]}ξ (s)ds + A

∫ t+h

t

sin(�s)ds

= −ahx(t) − a

∫ t+h

t

[x(s) − x(t)]ds − x(t)
∫ t+h

t

ξ (s)ds

−
∫ t+h

t

[x(s) − x(t)]ξ (s)ds − A

�
{cos[�(t + h)] − cos(�t)}, (A2)

where h is the integration step time.
Here, x(s) − x(t) in Eq. (A2) is obtained by using Taylor expansion method at the lowest order given in Ref. [37] as follows:

x(s) − x(t) = [−ax(t) + A sin(�t)](s − t) − x(t)
∫ s

t

ξ (s1)ds1. (A3)

Substituting Eq. (A3) back into the integrals in Eq. (A2) gives∫ t+h

t

[x(s) − x(t)]ds =
∫ t+h

t

[−ax(t) + A sin(�t)](s − t)ds − x(t)
∫ t+h

t

ds

∫ s

t

ξ (s1)ds1

= 1

2
h2[−ax(t) + A sin(�t)] − x(t)

∫ t+h

t

ds

∫ s

t

ξ (s1)ds1 (A4)

and ∫ t+h

t

[x(s) − x(t)]ξ (s)ds = [−ax(t) + A sin(�t)]
∫ t+h

t

(s − t)ξ (s)ds − x(t)
∫ t+h

t

ds

∫ s

t

ξ (s)ξ (s1)ds1. (A5)
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Let

�1(t + h) =
∫ t+h

t

ξ (s1)ds1, �2(t + h) =
∫ t+h

t

ds

∫ s

t

ξ (s1)ds1 =
∫ t+h

t

�1(s)ds. (A6)

Then, by using the definition of the Stratonovich integral [38] we get∫ t+h

t

(s − t)ξ (s)ds =
∫ t+h

t

(s − t)d�1(s) = (s − t)�1(s)
∣∣t+h

t
−

∫ t+h

t

�1(s)ds

= h�1(t + h) − �2(t + h) (A7)

and ∫ t+h

t

ξ (s)ds

∫ s

t

ξ (s1)ds1 =
∫ t+h

t

ξ (s)ds �1(s) =
∫ t+h

t

�1(s)d�1(s) = 1

2
[�1(t + h)]2. (A8)

Substituting Eqs. (A7) and (A8) into (A4) and (A5) gives∫ t+h

t

[x(s) − x(t)]ds = 1

2
h2[−ax(t) + A sin(�t)] − �2(t + h)x(t) (A9)

and ∫ t+h

t

[x(s) − x(t)]ξ (s)ds = [−ax(t) + A sin(�t)][h�1(t + h) − �2(t + h)] − 1

2
x(t)[�1(t + h)]2. (A10)

At last, substituting of Eqs. (A9) and (A10) back into (A2) gives

x(t + h) − x(t) =
[

− ah + 1

2
a2h2

]
x(t) − 1

2
ah2A sin(�t) − A

�
{cos[�(t + h)] − cos(�t)}

+
(

(ah − 1)�1(t + h) + 1

2
[�1(t + h)]2

)
x(t) − [h�1(t + h) − �2(t + h)]A sin(�t). (A11)

Since ξ (s) is a Gaussian white noise with zero mean and variance 2D, for any given t , 〈�1(t + h)〉 = 0 and 〈�2(t + h)〉 = 0.
However, �1(t + h) and �2(t + h) are not independent, so we need a linear combination of two standard Gaussian random
numbers δ1,δ2 to simulate them, from the Box-Müller formula [37] we know

�1(t + h) = 〈
�2

1(t + h)
〉1/2

δ1,

�2(t + h) = 〈�1(t + h)�2(t + h)〉〈
�2

1(t + h)
〉1/2 δ1 +

[〈
�2

2(t + h)
〉 − 〈�1(t + h)�2(t + h)〉2〈

�2
1(t + h)

〉
]1/2

δ2, (A12)

where the variance and the cross correlation of �1(t + h) and �2(t + h) are readily determined from their definition. Since
B(t + h) = ∫ t+h

t
ξ (s)ds ∼ N (0,2Dh), thus, we have

�1(t + h) = B(t + h), �2(t + h) =
∫ t+h

t

B(s)ds. (A13)

Moreover, 〈B(s1)B(s2)〉 = 2D min(s1,s2), thus,

〈
�2

1(t + h)
〉 = 2Dh, (A14)

〈
�2

2(t + h)
〉 =

∫ t+h

t

∫ t+h

t

〈B(s1)B(s2)〉ds1ds2 = 2

3
Dh3, (A15)

〈�1(t + h)�2(t + h)〉 =
〈
[B(t + h) − B(t)]

∫ t+h

t

B(s)ds

〉

=
∫ t+h

t

〈B(t + h)B(s)〉ds −
∫ t+h

t

〈B(t)B(s)〉ds = Dh2. (A16)

Therefore, after calculations we get

�1(t + h) =
√

2Dhδ1, �2(t + h) = 1

2

√
2Dhhδ1 + 1

2
√

3

√
2Dhhδ2, (A17)

where δ1,δ2 are Gaussian distributed random numbers with zero mean and unit variance.
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