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According to the asymptotic equipartition property, sufficiently long sequences of random variables converge
to a set that is typical. While the size and probability of this set are central to information theory and statistical
mechanics, they can often only be estimated accurately in the asymptotic limit due to the exponential growth in
possible sequences. Here we derive a time-inhomogeneous dynamics that constructs the properties of the typical
set for all finite length sequences of independent and identically distributed random variables. These dynamics
link the finite properties of the typical set to asymptotic results and allow the typical set to be applied to small
and transient systems. The main result is a geometric mapping—the triangle map—relating sequences of random
variables of length n to those of length n + 1. We show that the number of points in this map needed to quantify the
properties of the typical set grows linearly with sequence length, despite the exponential growth in the number of
typical sequences. We illustrate the framework for the Bernoulli process and the Schlögl model for autocatalytic
chemical reactions and demonstrate both the convergence to asymptotic limits and the ability to reproduce exact
calculations.
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I. INTRODUCTION

Typical behaviors lie at the heart of statistical mechanics [1].
Asymptotic theories, such as large deviation theory [2–4] and
equilibrium statistical mechanics [5,6], are effective, in part,
because random variables converge to their “typical” value
in the appropriate asymptotic limits. Take a monatomic gas
of N atoms in thermal equilibrium with a heat bath. For
this system, the relative standard deviation of the energy is
σ (E)/〈E〉 = O(N−1/2) [7]. As the number of atoms becomes
large, the size of deviations from the mean become relatively
small. For example, when the number of atoms is 1018, the
relative error is σ (E) � 10−9〈E〉. Only when this relative error
is small can systems be well described by their mean or typical
behavior. Many tools are available to describe systems at and
away from equilibrium, prominent examples being fluctuation
theorems [8–10] and maximum entropy approaches [11,12].
What remains open is how to precisely and accurately quantify
the typical states of systems that cannot solely be described
by their mean behavior. Systems, including molecular ma-
chines [13–15] and single molecules [16,17], can exhibit large
fluctuations [18] in structure, energy, or position.

Another definition of typicality exists in information theory.
There, the asymptotic equipartition property (AEP) [19,20]
says that sequences of random variables converge to a high-
probability subset: the typical set, An

ε . Take a system described
by a finite set of random variables or states, ω, of size |ω| = M .
The states could represent the sides of a coin, different chemical
species [21], or the coarse-grained regions of a partitioned
dynamical system [22]. The AEP states that for sequences of
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length n, ω̂n = (ω1,ω2, . . . ,ωn), in the limit where n → ∞,
the sample entropy of the typical sequences converges to the
entropy rate hμ: −n−1 ln μ(ω̂n) → hμ. These sequences occur
with probability

∑
ω̂n∈An

ε
μ(ω̂n) ∼ 1, constitute the typical set,

and determine average behavior. In dynamical systems theory
language, the entropy rate hμ is the Kolmogorov-Sinai (KS)
entropy [23,24]. There are recent applications of the AEP to
irreversibility in stationary Markov processes [25], relations to
the Fisher information [26], and the harnessing of fluctuations
for thermodynamic function [27]. These results all rely on an
asymptotic limit, a situation we avoid here.

The existence of the typical set was first shown for fi-
nite alphabets generating independent identically distributed
(i.i.d.) sequences by Shannon [28] and McMillan [29]. It was
generalized to stationary-ergodic processes by Breiman for
finite alphabets. Chung extended the typical set to countably
infinite alphabets under the condition hμ < ∞ [30,31]. As
an aside, caution is necessary for infinite alphabets [32] and
correlated finite alphabets [19] where there are examples of
divergent entropy rates. The typical set is fundamental to
information theory, where it is essential to limits on the coding
and transmission of information. For example, the logarithm
of the size of the typical set (per symbol) is a bound on the rate
that information can be transmitted [33].

Though underappreciated, the typical set does exist for finite
sequences. However, there are challenges to an accurate and
predictive theory for its properties. One challenge is that the
convergence rate theories based on statistical moments do not
always give accurate bounds [34–37]. Another challenge is that
for long, but finite sequences, there is an exponential growth in
possibilities and explicitly generating each sequence becomes
intractable. Given a system with M states, the number of
possible sequences often grows as Mn = enhtop , where n is the
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length of a sequence of states and htop = ln M is the growth rate
or topological entropy rate [38–40]. Given only M = 8 states
and n = 12, there are 812 = 4.4 × 1012 possible sequences,
which is comparable to the number of galaxies in the known
universe [41]. In this work, we address these challenges.

Here we present a quantitative framework for the typical
set [19] that bridges the gap between brute force calculations
of all possible sequences and asymptotic approximations.
In this framework, we evolve densities of sequences which
represent observables of the typical set, such as size |An

ε |
or probability μ{An

ε }. Previous work introduced a variational
version of the typical set [20,42] that avoids asymptotic limits.
The complementary formalism introduced here avoids the
combinatorial explosion of sequences. We will introduce the
framework in several parts. The space of finite length sequences
will be partitioned into three sets or “macrosequences”: one
typical and two atypical sets. These macrosequences describe
how ensembles of typical and atypical sequences change as a
function of the sequence length. Transitions in and out of the
typical set are described by a time-inhomogeneous dynamics.
For these dynamics, we define a discrete dynamical system
with a geometric interpretation that maps the exact size and
probability of the typical set over n. Together the macrose-
quences and associated dynamics form an object similar to
ε-machines in computational mechanics [43–45]. Both our
geometric construction and ε-machines provide a simplified
description of a system by encoding all possible histories into
possible futures.

II. BACKGROUND AND NOTATION

Consider a particular sequence ω̂n generated by some
dynamical process with joint probability μ(ω̂n). Though we
will refer to n as the length of the sequence, it could also
be a dimensionless measure of time, n = t/�t . Individual
states will be labeled by j = 1,2, . . . ,M . We will assume all
states are independent and the probability distribution over
the states pj , such that

∑
j pj = 1, is stationary with respect

to n. Sequences are then independent, identically distributed
(i.i.d.) random variables. While the marginal probability p is
stationary, the joint probability over sequences need not be
stationary. The dynamics can generate Mn possible sequences,
and only in the infinite limit does the difference in probability
between any two sequences go to zero through the AEP:

lim
n→∞ μ(ω̂n+1) − μ(ω̂n) ∼ e−nhμ (ehμ − 1) ∼ 0. (1)

For i.i.d. random variables, the entropy growth rate hμ is
equivalent to the Shannon entropy, hμ = H = −∑

j pj ln pj ,
which depends only on pj and measures the average surprise
of observing state j . More generally, however, the entropy rate,

hμ ≡ hμ(n) = −n−1
∑
ω̂n

μ(ω̂n) ln μ(ω̂n), (2)

depends on the joint distribution. The entropy rate is central
to the definition of the typical set for all sequences of length
n [19]:

An
ε ≡ {

e−n(hμ+ε) � μ(ω̂n) � e−n(hμ−ε)
}
. (3)

The parameter ε ∈ R+ is fixed and, together with n, defines
the neighborhood of typical sequences around the entropy rate.

FIG. 1. Comparison of the exact fraction of sequences in the
typical set, |An

ε |/Mn, as a function of the sequence length, n, from
enumeration (solid line) to the asymptotic upper bound, |An

ε |/Mn ∼
en(hμ+ε−ln M) (dashed line) for a biased coin with p = [0.7,0.3] and
ε = 0.02.

The choice of ε is arbitrary, so long as n is sufficiently large. In
our calculations, to avoid the trivial solution of an empty typical
set of finite length sequences, we choose ε so that μ{An

ε } 
= 0
for all n.

An asymptotic upper bound on the size of the typical set
is [19] ∣∣An

ε

∣∣ � en(hμ+ε). (4)

In the infinite n limit, ε can be made arbitrarily small and
|An

ε | ∼ enhμ . For n � ∞, the upper bound can be a poor
approximation of the size of the typical set. Figure 1 shows
the normalized size of the typical set, |An

ε |/Mn (solid line), for
a biased coin with the probability of heads being 0.7 and 0.3
for tails. The normalized upper bound exp[n(hμ + ε − ln M)]
is a monotonic function of n (dashed line) but |An

ε | is not:
sequences enter and escape from the typical set. To account
for the fluctuating size of the typical set, we next introduce a
partition over the space of sequences.

III. EVOLUTION OF TYPICAL AND ATYPICAL
SEQUENCES

The biased coin example highlights the need to predict
the typical set for sequences that are longer than those
accessible from direct enumeration and shorter than those
well approximated by the asymptotic limit. Fluctuations in
properties of the typical set arise from the interplay between
the changing sample entropy −n−1 ln μ(ω̂n) and the bounds
hμ − ε and hμ + ε. A consequence of this interplay is that
typical (atypical) sequences of length n can give rise to atypical
(resp. typical) sequences at n + 1. Since the number and
probability of sequences entering and leaving the typical set is
a function of n, we can represent changes in these quantities
through transition probabilities. The transition probabilities are
between groups of sequences we call “macrosequences.” All
sequences belonging to the same macrosequence have the same
average behavior. The typical set is one macrosequence. For an
alphabet of size M , sequences of length n can be subsequences
to at most M sequences of length n + 1. In this way, sequences
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can be seen as transitioning from one macrosequence to another
through their offspring. If a sequence transitions from typical
to atypical, for example, the size of the typical set will decrease
by 1/Mn+1. The probability in the typical set will decrease by
the joint probability of that sequence, which is not necessarily
1/Mn+1. Consequently, both the number of sequences in each
macrosequence and their corresponding probabilities evolve
under two different dynamics.

We next make the relationship between ω̂n, μ(ω̂n) and the
macrosequences more precise. Doing so will allow us to predict
which sequences will be typical at n. We begin by defining a
partition using the typical set over the space of all sequences
of length n,�n.

A. Macrosequence dynamics

For each n, a natural partition over the sequences uses An
ε

and its complement, which represents all atypical sequences

Cn
ε ≡ {

�n\An
ε

}
. (5)

We can further divide the complement Cn
ε into the lower

complement, Cn
l = {ω̂n : μ(ω̂n) < e−n(H+ε)}, and the upper

complement, Cn
u = {ω̂n: μ(ω̂n) > e−n(H−ε)}. The union of the

three macrosequences cover �n,

�n =
3⋃

α=1

Sn
α = Cn

l

⋃
An

ε

⋃
Cn

u,

Sn
α ∩ Sn

β = ∅ for α 
= β, (6)

where Sn
α represents an arbitrary macrosequence. Every se-

quence belonging to the same macrosequence has qualitatively
the same average behavior. Each atypical macrosequence
has a distinct average behavior, motivating the definition of
two atypical macrosequences, Cn

l and Cn
u , instead of just

one. For example, it is often the case that Pr[Cn+1
l |Cn

l ] = 1
and Cl acts as an absorbing state for relatively small n.
In comparison, from the geometric structure to follow, the
self-transition probability for the other atypical macrosequence
is often Pr[Cn+1

u |Cn
u ] = 1 − δ where δ � 1, meaning this

macrosequence will continually leak probability, even for large
n. The macrosequences provide an alternate dynamics for the
sequences. Every sequence can be generated, and the properties
of the typical set calculated directly or, as we show here, the
macrosequences can be evolved to compute the properties of
An

ε (Fig. 2).
To describe how the number of sequences in each macrose-

quence evolves with n, we need to make the idea of transitions
between macrosequences more precise. Every sequence is
given by an ordered list of states, ω̂n = (ω1,ω2, . . . ,ωn). All
sequences of length n + 1 are created by appending ωn+1 to
ω̂n. Since the states are ordered, the sequence ω̂n will be a
subsequence of at most M sequences of length n + 1. We call
this set of length n + 1 sequences the “children” of ω̂n:

C(ω̂n) = {ω̂n+1: ω̂n+1 = ω̂nωn+1}. (7)

In this nomenclature, sequences transition between the typ-
ical and atypical sets by producing “offspring.” The second
generation children are

C2(ω̂n) = {ω̂n+2: ω̂n+2 = ω̂n+1ωn+2, ω̂n+1 ∈ C(ω̂n)}. (8)

FIG. 2. With increasing n, the joint probability tends towards a
uniform distribution and the sample entropy, −n−1 ln μ(ω̂n), distri-
bution concentrates. The changes in distribution occur as individual
sequences move between typical (blue) and atypical (red) macrose-
quences. The dynamics of these macrosequences are an alternative
route to quantify the size and probability in the typical set.

Every sequence ω̂n has M children in the subsequent genera-
tion, M2 children in the next generation, and so on.

The dynamics for the number of sequences in a macrose-
quence is given by the transition probability:

Rαβ(n) = Pr[C(ω̂n) ∈ Sn+1
α | ω̂n ∈ Sn

β]. (9)

The transition matrix is right stochastic,
∑

α Rαβ(n) = 1. The
probability a sequence occupies each macrosequence is

sn(α) =
∣∣ω̂n ∈ Sn

α

∣∣
Mn

(10)

such that
∑3

α=1 sn(α) = 1. The quantity |ω̂n ∈ Sn
α | is the

number of sequences in the macrosequence Sn
α . The transition

matrices can be used to evolve the occupation probabilities sn

from n to n′,

sn′ = R(n′ − 1)R(n′ − 2) · · · R(n + 1)R(n)sn, (11)

where n′ > n. Recall that the rate of growth of all sequences
is given by the topological entropy, htop. Using htop, the size of
each macrosequence is |Sn

α | = sn(α)enhtop .

B. Probability of macrosequences

Unless μ(ω̂n) is a uniform distribution, the total joint
probability in a macrosequence is not equal to sn(α). Just
as we did in the last section, we need to find the overlap of
μ(ω̂n) and the three macrosequences. As the length of the
sequences tends to infinity, the joint probability μ(ω̂n) ∼ e−nhμ

tends to zero due to conservation of probability. The number
of sequences, however, grows exponentially |An

ε | ∼ enhμ. The
entropy rate hμ then uniquely determines the growth in the
number of sequences and the decay of the individual sequence
probability [27]. As n grows, these asymptotic results for the
growth in the number of sequences and the decay of probability
hides the more subtle dynamics between macrosequences.
Thus, we scale the joint probability

μ̄(ω̂n) = μ(ω̂n)p−n
max (12)
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FIG. 3. Plotting Cp[μ̄(ω̂n)] against μ̄(ω̂n) in (a) for a random distribution with M = 10 states. Every point represents the probability of
one of the Mn+1 children. Blue points denote children in An

ε and red denotes Cn
l and Cn

u . The vertical dashed lines mark the scaled bounds on
An

ε , e
−nIl , and e−nIu . Horizontal dashed lines are the scaled bounds for An+1

ε , e−(n+1)Il , and e−(n+1)Iu . These bounds divide Cp[μ̄(ω̂n)]n into nine
cells which determine the transition probabilities for both R(n) and Q(n). The left lower and upper two points highlighted with black circles
are μ̄(ω̂2)p̄1 and μ̄(ω̂2)p̄M , respectively. The right-hand circles highlight μ̄(ω̂2 + 1)p̄1 and μ̄(ω̂2 + 1)p̄M , which become stretched vertically
because μ̄(ω̂2) < μ̄(ω̂2), thereby creating the triangle structure. (b) The hypotenuses of one of the M triangles intersects the probability of Mn

children (highlighted with black circles).

to fix max[μ̄(ω̂n)] = 1, and we scale the marginal p̄j =
pj/pmax so that max[p̄j ] = 1. Scaled distributions are indi-
cated by overbars. The scaled joint is evolved through the
discrete map Cp : [0,1] �→ [0,1],

Cp[μ̄(ω̂n)] = {μ̄(ω̂n) ⊗ p̄}, (13)

where ⊗ is the standard Kronecker product, in this case,
between two vectors. The total joint occupation probability
of belonging to a macrosequence, Sn

α ,

qn(α) = pn
max

∑
ω̂n∈Sn

α

μ̄(ω̂n), (14)

is normalized so
∑3

α=1 qn(α) = 1. Using the definition of
children in this case, Eq. (13), the time-dependent transition
probabilities are

Qαβ(n) = Pr
{
Cp[μ̄(ω̂n)] ∈ Sn+1

α | μ̄(ω̂n) ∈ Sn
β

}
. (15)

These right-stochastic transition matrices evolve the marginal
probability of each macrosequence Sn

α forward in n,

qn′ = Q(n′ − 1)Q(n′ − 2) · · · Q(n + 1)Q(n)qn, (16)

where n′ > n. Together, the set of transition matrices R =
{R(n),R(n − 1), . . . ,R(1)} and the set of macrosequences,
S = {Sn

α,Sn−1
α , . . . ,S1

α} describe how the number of both typi-
cal and atypical sequences change as a function of n. Likewise,
Q = {Q(n),Q(n − 1), . . . ,Q(1)} and S together describe how
probability moves in and out of the macrosequences with n.
These two ordered pairs, (R,S) and (Q,S), are what we wish
to calculate for a given system.

C. Triangle map

A brute force approach to calculating (R,S) and (Q,S) is
to explicitly generate all Mn sequences. To bypass a complete
enumeration, we introduce a geometric picture of μ(ω̂n) and
the resulting children for a simplified description of qn and sn.

Every sequence has M children. The probability of each
child is iterated throughCp, Eq. (13). Because we order the joint
probabilities such that μ̄(ω̂n) � μ̄(ω̂n + 1), plotting Cp[μ̄(ω̂n)]
against μ̄(ω̂n) gives a picture like that shown in Figs. 3(a)–3(b).
Most striking from this picture of the joint probabilities is the
triangular form of the forward mapping in the case of i.i.d.
random variables.

Up to M lines can be drawn from the origin (0,0) to (1,p̄j ).
Each line will intersect the rescaled joint probability of Mn

sequences (see the Appendix), and the children can be thought
of as lying on the hypotenuse of a triangle [46]. One triangle
is shown in Fig. 3(b) in black with the intersecting children
highlighted in green. This geometric picture, where the prob-
ability of sequences lies on the hypotenuses of triangles, will
help us to calculate the number, sn(α), and probability, qn(α),
of sequences in each macrosequence. We will call the mapping
Cp[μ̄(ωn)] the triangle map.

The upper and lower bounds of the typical set at n and
n + 1 over Cp[μ̄(ω̂n)] divides the space μ̄(ωn+1) × μ̄(ωn) into
nine regions (dashed lines in Fig. 3). These regions can be
used to define a dynamics for entrance into and escape from
the macrosequences, including the typical set. The number of
points in each cell defines the transition probability for R(n)
between any two macrosequences. The total probability in each
cell defines the transition probability for Q(n) between any two
macrosequences, Sn

β to Sn+1
α . Vertical dashed lines in Fig. 3

are given by the scaled bounds of the typical set An
ε : the lower

bound e−nIl , where Il = H + ε + ln pmax, and the upper bound
e−nIu, where Iu = H − ε + ln pmax. The horizontal dashed
lines are the scaled bounds at n + 1: e−(n+1)Il and e−(n+1)Iu .

Mapping consecutive joint distributions to a triangle give
a geometric representation of the macrosequence dynamics.
These dynamics are what we wish to predict. One difficulty is
that points along any hypotenuse are not uniform. Accounting
for this distribution of points is qualitatively explained in
the next section. Additional details of our derivation and the
construction of (R,S) and (Q,S) are in the Appendix.
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FIG. 4. The dashed black line is the upper bound en(H+ε−ln M) and
crosses are the ε = 0 bound en(H−ln M) that is guaranteed only for
n → ∞. The fractional size of |An

ε |/Mn from enumeration (solid
black line) and the calculation from our framework (blue line). The
parameter ε is 0.02 in all cases. The method here matches the brute
force calculation of sequences exactly up to where enumeration is
tractable, n ≈ 25, and agrees with the asymptotic limit near n ≈ 50.

IV. EXAMPLES

Now we apply the framework to examples that will illustrate
how the formalism generates the exact size and probability of
the macrosequences over n. These examples also serve to show
how other observables can be calculated from the formalism.

Let us briefly summarize the procedure: Given pj and the
entropy rate hμ = H , the triangle map Cp[μ̄(ω̂1)] can be calcu-
lated. The upper and lower bounds (e−Il ,e−Iu ) and (e−2Il ,e−2Iu )
follow and divide Cp[μ̄(ω̂1)] into nine cells defining the
transition probabilities, Eq. (9) and Eq. (15). In the Appendix
we show that at most (2M + 3)n values of the triangle map
must be known to construct the transition probabilities. From
the structure of the triangle map and the known distribution
pj , the total probabilities of each macrosequence, qn and sn,
can, in principle, be calculated exactly to any desired n.

A. Bernoulli process and the redundancy

The Bernoulli process is a benchmark for the typical set
that can be enumerated completely such that, for sufficiently
large n, the asymptotic bounds begin to converge. This fact
allows us to test the framework. Figure 4 again shows results
for a biased coin where the probability of heads is 0.7 and tails
is 0.3, p = [0.7,0.3]. The joint probability of a sequence is
μ(ω̂n) = ∏n

i=1 p(ωi). The asymptotic bounds for the size of the
typical set can be quite poor for n � ∞. As n becomes larger,
though, both the bound and our measure of |An

ε | converge to
the asymptotic limit (dashed line with crosses). In the limit
μ(ω̂n) � e−nhμ , so the upper bound [dashed line representing
Eq. (4)] will have an error of at least enε . In this example, we
use (2M + 3)n = 300 points on Cp[μ̄(ω̂n)] to calculate |An

ε |
for n = 50. In contrast, 250 ≈ 1014 sequences would have to
be enumerated by brute force calculation.

While the asymptotic upper bound |An
ε | � en(hμ+ε) is poor

for n � ∞, it does motivate an important observable—the

redundancy [28]:

r = ln M − hμ. (17)

The redundancy measures the information carrying capacity
of the alphabet. If r 
= 0, there are correlations in the se-
quences [45]. Loosely speaking, the redundancy measures how
closely a process is to maximizing the information rate over the
alphabet. In general, for finite i.i.d. sequences, the maximum
of the entropy hμ is ln M [19]. The redundancy for finite n can
then be defined as

rn = ln M − 1

n
ln

∣∣An
ε

∣∣. (18)

The quantity rn is a measure of the information per symbol
used by the sequences in the typical set of length n. In the
limit n → ∞, |An

ε | ≈ enhμ and ε can be set arbitrarily close to
zero, meaning rn → r . In the next section, the Schlögl model
illustrates how observables, such as the redundancy, can be
calculated with this framework beyond where enumeration is
tractable.

B. Schlögl model

Biological and chemical systems often obey intricate rela-
tionships, across many spatial and time scales, making these
systems good candidates for the application of the typical set
at finite n. Schlögl’s second model [47] is a well-studied set of
chemical reactions [48,49] defined by

A + 2X � 3X, (19)

X � B. (20)

The second equation is modified [50] from Schlögl’s initial
work. The intermediate species X is commonly the one of
interest when the reactant A and product B have fixed con-
centrations, a and b. Applying the law of mass action, the
kinetic equation for the concentration, x, of X is an ordinary
differential equation:

dx

dt
= k1ax2 − k2x

3 − k3x + k4b. (21)

Setting this equation equal to zero gives the steady-state
solutions. The number of real, steady-state solutions comes
from the discriminant:

4k3
1a

3k3b − k2
1a

2k2
4 + 4k2k

3
4 − 18k2k1ak4k3b + 27k2

2k
2
3b

2.

(22)

Fixing the rate constant parameters, ki, i = 1,2, . . . ,4, but
varying the concentrations a and b, changes the number of
real solutions (Fig. 5). Here, we will look at the bistable region
(green), where two stable steady states are separated by a single
unstable steady state [51]. Though the bistable region will be
our focus, the method is applicable to any region. For input
into the method, we construct a marginal distribution for each
fixed point from the concentrations:

p(s) = s

a + b + x
, where s = {a,b,x}. (23)

We use concentrations of X that correspond to a particular
zero of Eq. (21). From this marginal probability distribution,
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FIG. 5. Holding k1 through k4 fixed and varying a and b, Eq. (21)
generates one, two, or three real fixed points. There are two solutions
at each point on the black line that divides the regions with one and
three steady-state solutions.

we construct the macrosequence dynamics of qn(α) and |Sn
α |

with ε = 0.1, as shown in Fig. 6. As an example, we take
one of the stable fixed points x, and the parameter values
of k1 = 3, k2 = 0.6, k3 = 0.25, k4 = 2.95, a = 1, and b = 1.
Figures 6(a)–6(b) show that we reproduce the exact values
for Sn

α through enumeration (black) from the triangle-map
construction of the dynamics (color). The dashed lines with
circles are the typical set, An

ε , the lines with open circles
are the macrosequence Cn

l , and the lines with stars are the
macrosequence Cn

u . Figure 6(a) shows that |An
ε | is small,

meaning the redundancy is near ln M . This steady state then has
large correlations between the states in a sequence. It should
be noted that the second stable fixed point (not shown) exhibits
qualitatively the same results.

The unstable fixed point for the same parameter values
gives a different picture [Figs. 6(c) and 6(d)]. Now |An

ε |M−n ≈
Pr[An

ε ] ≈ 1 for n > 3, almost all sequences are typical, and
r ≈ 0. The joint distribution for the unstable fixed point is
almost uniform, and there is a lack of correlations in the
sequences. While both examples are fixed points of the steady-
state solution, they illustrate that the information content of
their sequences is quite different.

V. CONCLUSIONS

The probability and size of the typical set are of funda-
mental importance to statistical mechanics and information
theory. However, away from asymptotic limits, the tractable
calculation of the typical set is limited by the exponential
growth in the sequence space. Here we have shown that the
dynamics of macrosequences circumvents this exponential
growth and avoids both enumeration and asymptotic limits.
For independent and identically distributed random variables,
these dynamics, and therefore the future properties of the
typical set, are entirely determined by a single marginal
distribution. We found that the number of points needed
to quantify the macrosequences grows linearly in both the
number of states and the length of sequences as � (2M + 3)n.
As a consequence, this method could be applied to systems
with a larger state space, or to longer sequence lengths, than
the proof-of-principle examples shown here. The method is
computationally efficient, applies to the entire class of i.i.d.
systems, and enables the calculation of information-theoretic

observables, such as the redundancy, for finite length sequences
without asymptotic approximations.
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APPENDIX

There are three ingredients in the exact construction of the
transition probabilities R(n) and Q(n) that avoid the need to
evaluate all Mn sequences. First, all children can be thought
of as lying on the hypotenuse of as many as M triangles.
Using this continuous geometric representation as a set of M

triangles compactly describes all children. Second, we show
that at most 2M + 3 values of the triangle map must be known
to calculate each transition matrix, R(n) and Q(n), for a given
n. To describe the probability and size of macrosequences up to
length n, (2M + 3)n values of the triangle map are necessary.
Third, we use two cumulative density functions (CDFs) to find
these 2M + 3 points. We derive exact formulas for the CDFs
at n in terms of the marginal distribution, p.

1. Children of each sequence intersect similar triangles

We now prove that each child Cp[μ̄(ω̂n)] falls on the
hypotenuse of a triangle, one of (at most) M triangles, which
will be useful later. To prove this, we use the scaled variables
[Eq. (12)] and the fact that the hypotenuse of each triangle is
given by

lj = p̄j x, (A1)

when the continuous variable x ∈ [0,1] and the index j =
1,2, . . . ,M . Note, later we will also refer to the con-
tinuous variable y ∈ [0,1], which will always belong to
the y axis of Cp[μ̄(ω̂n)]. Define the triangle, �j , through
the points (0,0), (1,0), and (1,p̄j ). The length of the hy-

potenuse for �j is rj =
√

1 + p̄2
j , and the angles are θj =

cos−1 [(1 + p̄2
j )−1/2], 90, and 180 − 90 − θj .

Define a second triangle formed from μ̄(ω̂n) and one
child from Cp[μ̄(ω̂n)] as �′ with points (0,0), (μ̄(ω̂n),0), and
(μ̄(ω̂n),μ̄(ω̂n)p̄j ). The length of the hypotenuse for �′ is
r ′ = √

μ̄(ω̂n)2 + [μ̄(ω̂n)p̄j ]2. Meaning that the angles of �′
are, θ ′, 90, and 180 − 90 − θ ′ where

θ ′ = cos−1

[
μ̄(ω̂n)√

μ̄(ω̂n)2 + (μ̄(ω̂n)p̄j )2

]

= θj . (A2)

Therefore, �′ and �j are similar, meaning at least one child
intersects the hypotenuse, Cp[μ(ω̂n)] ∈ lj . The consequence of
forming similar triangles is that, since Cp[μ̄(ω̂n)] = p̄j μ̄(ω̂n),
for each p̄j there are at least Mn points intersecting one line
lj . And, together, the set of lines {lj } must intersect all Mn+1

points on Cp[μ̄(ω̂n)].
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FIG. 6. The (a) size of and (b) the amount of probability in Sn
α for a stable fixed point of the Schlögl model (black lines) when ε = 0.1: Cn

l

(open circles), Cn
u (stars), and An

ε (black dashed line). Colored symbols are the results from the method here. The (c) size and (d) the probability
of Sn

α for the unstable fixed point at the same parameter values. There is a second stable fixed point that exhibits qualitatively the same high
redundancy behavior as the stable fixed point (data not shown).

2. Exact construction of macrosequence dynamics

Now we derive the exact construction of the transition
probabilities (R(n), Q(n)) and show that at most (2M + 3)n
values of the triangle map can describe the size and probability
of the macrosequences for any n, as opposed to the possible
Mn sequences normally needed in a brute force approach.

As described in the main text, the boundaries of the typical
set at n and n + 1, {e−nIl ,e−nIu ,e−(n+1)Il ,e−(n+1)Iu}, divide the
triangle map into nine cells (Fig. 7). Each hypotenuse can
cross a typical set boundary only once. To count how many
sequences or how much probability is in each cell, we need
the points where lj enters and exits each boundary. We use the
location of the intersections mapped to the x axis, xo

j and x
f

j .
These intersection points of lj are given by the logical rules in
Table I. For example, the contribution lj makes to the transition
probability, Pr[Cn+1

l |An
ε ], is determined by where lj crosses the

boundaries at the two points:

x
f

j = min[p̄j e
−nIu ,e−(n+1)Il ]p̄−1

j = lj (x)p̄−1
j ,

xo
j = e−nIl = lj (x). (A3)

Cells of the triangle map, marked by bounds of the typical
set, define the transition probabilities between the macrose-
quences Sn

β and Sn+1
α . To calculate Rαβ = Pr[Sn+1

α |Sn
β] the

number of sequences in each cell must be counted. The goal
is to find R(n) given the scaled distributions for each state

p̄j and each sequence μ̄(ω̂n). For the joint distribution, there
is a cumulative distribution function (CDF) ρn(x), x ∈ [0,∞)
given by

ρn(x) =
{

M−n
∑
ω̂n

∫ x

0 δ[μ̄(ω̂n) − s] ds if x � 1

1 if x > 1
. (A4)

FIG. 7. The cumulative density ρn+1(y) is proportional to all the
sequences which lie below a particular y. Since each sequence lies on
the function lj , the point on lj (y) can be mapped to ρn(x). If y > p̄j , as
is shown with the rightmost gray line covering l1, then the contribution
from ρn at this point is one.
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TABLE I. Rules determining the two points x
f

j and xo
j , which determine the contribution each lj makes to the transition probabilities R(n)

and Q(n).

Sn
y → Sn+1

x x
f

j xo
j

Cn
l → Cn+1

l min[p̄j e
−nIl ,e−(n+1)Il ]p̄−1

j 0
Cn

l → An+1
ε min[p̄j e

−nIl ,e−(n+1)Iu ]p̄−1
j e−(n+1)Il p̄−1

j

Cn
l → Cn+1

u e−nIl e−(n+1)Iu p̄−1
j

An
ε → Cn+1

l min[p̄j e
−nIu ,e−(n+1)Il ]p̄−1

j e−nIl

An
ε → An+1

ε min[p̄j e
−nIu ,e−(n+1)Iu ]p̄−1

j max[p̄j e
−nIl ,e−(n+1)Il ]p̄−1

j

An
ε → Cn+1

u e−nIu max[p̄j e
−nIl ,e−(n+1)Iu ]p̄−1

j

Cn
u → Cn+1

l min[p̄j ,e
−(n+1)Il ]p̄−1

j e−nIu

Cn
u → An+1

ε min[p̄j ,e
−(n+1)Iu ]p̄−1

j max[p̄j e
−nIu ,e−(n+1)Il ]p̄−1

j

Cn
u → Cn+1

u 1 max[p̄j e
−nIu ,e−(n+1)Iu ]p̄−1

j

The analytic expressions for the intersection points correspond
to locations on the CDF ρn(x). The transition probability for
the sequence dynamics is then given by the contribution from
each line lj that enters the same transition cell:

Rαβ(n) = 1

ZR
α

∑
j

[
ρn

(
x

f

j

) − ρn

(
xo

j

)]
. (A5)

The normalization factor ZR
α ensures R(n) is right stochastic,∑

α Rαβ(n) = 1.
The length of the line segment lj in a particular cell

corresponds to a certain amount of cumulative probability,

�n(x) =
{ ∑

ω̂n|μ(ω̂n)�x

μ(ω̂n) if x � 1

1 if x > 1
, (A6)

or Pr[lj (xf

j ) − lj (xo
j )] = pj [�n(xf

j ) − �n(xo
j )], where lj is

written in terms of the unbarred distribution lj = pjx, and
the transition probabilities are built from this CDF:

Qαβ(n) = 1

ZQ
α

∑
j

pj

[
�n

(
x

f

j

) − �n

(
xo

j

)]
. (A7)

Now we show that the number of points needed to construct the
transition matrices grows linearly in M and n. From Table I, the
rule for calculating Cn

u → Cn+1
l (min[p̄j ,e

−(n+1)Il ]p̄−1
j ) means

that in addition to the boundaries of the typical set at n and
n + 1, we also need to consider the end points of each line as a
boundary. Including the end points with (at most) the four other
boundaries lj can cross, we need to evaluate ρn and �n at the set
of points I = {e−nIl ,e−nIu ,1,e−(n+1)Il /p̄j ,e

−(n+1)Iu/p̄j }. Since
R(n) and Q(n) are determined by the set of intersections I, and
the index j runs from 1 to M , at most (2M + 3)n points are
required to determine the macrosequence dynamics up to n.

3. Calculating ρn and �n from p j

In the last section, we showed that the macrosequence
transition probabilities at any n can be calculated from the
distributions (pj , ρn, �n). Now we derive a formula for the
CDFs at n in terms of the marginal and CDFs at n = 1.

Let us start with an important property ofρn+1. Assumingpj

and ρ1 are known, the CDF at n + 1, ρn+1(y), is proportional to
the number of children lying below the point y on Cp[μ̄(ω̂n)].
Figure 7 illustrates this idea for a given y value. The sequences
contributing to the CDF at n + 1 are highlighted in gray.
Summing the number of points with lj � y (black circles)
gives the CDF atn + 1. Each point belowy has a corresponding
value of x on the μ̄(ω̂n) axis, y/p̄j = x. Then, for a given y

value, the CDF ρn+1(y) is given in terms of the previous CDF
ρn(x):

ρn+1(y) = 1

M

M∑
j=1

ρn

(
y

p̄j

)
. (A8)

We note, from the definition of the CDF, Eq. (A4), if y/p̄j >

p̄j , then ρn(y/p̄j ) = 1. Letting y ′ = y/p̄j , ρn(y ′) can be found
the same way using Cp[μ̄(ω̂n−1)]. Substituting ρn−1 into ρn

gives

ρn+1(y) = 1

M2

M∑
j=1

M∑
k=1

ρn−1

(
y

p̄j p̄k

)
. (A9)

Repeating until ρ1 gives

ρn+1(y) = 1

Mn

∑
k1,k2,...,kn

ρ1

(
y

p̄k1 p̄k2 , . . . ,p̄kn

)
. (A10)

This expression gives the exact value of ρn(y) from ρ1 and
p̄j . To find R(n) and Q(n), the points where lj maps to the
elements of I are needed. There are at most 2M + 3 points.
Unfortunately, this CDF has Mn entries in the summation for
each value of y. So while it is a way to exactly calculate the
values needed for the transition probabilities, it is not practical
when n is large. However, Eq. (A10) shows that Cp[μ̄(ω̂n)] and
ρn are a potential way to describe the macrosequence dynamics
for i.i.d. r.v.s when ρ1 and p̄j are known.

To transform Eq. (A10) into a more tractable form, we
will use the fact that the random variables are i.i.d. This
property means some positions in the sum are repeated, such
as y/p̄k1 p̄j2 = y/p̄j1 p̄k2 . Counting the number of times p̄j
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appears, sj , leads to a simplified form of the CDF:

ρn+1(y) = n!

Mn

(M+n−1
n )∑

k=1

ρ1( y

r̄k
)

Nk

. (A11)

The sum runs over all multisets, i.e., combinations where order
is ignored, of the number of times p̄j appears in the constraint∑

j sj = n. The denominator r̄k shifts the position where ρ1

is evaluated, r̄k = ∏M
j=1 p̄

sj

j , and Nk = ∏M
j=1 sj !. Since the

number of multisets for a given M and n grows far slower
than Mn, Eq. (A11) offers substantial computational savings
over enumerating all possible sequences.

Now we turn to �n. We find �n in terms of �1 with an
argument similar to that for ρn and ρ1 above. Only now,
the CDF �n(y/p̄j ) must be multiplied by pj . Again, through
Cp[μ̄(ω̂n)], �n+1(y) can be written in terms of �n(y/p̄j ):

�n+1(y) =
∑

j

pj�n

(
y

p̄j

)
. (A12)

Writing y ′ = y/p̄j gives

�n+1(y) =
∑

j

pj

∑
l

pl�n−1

(
y ′

p̄l

)

=
∑
j,l

pjpl�n−1

(
y

p̄j p̄l

)
. (A13)

Continuing to �1, and again using the fact that the random
variables are i.i.d., gives

�n+1(y) = n!
(M+n−1

n )∑
k=1

rk

Nk

�1

(
y

r̄k

)
. (A14)

Eq. (A14) differs from Eq. (A11) only in that we need�1 instead
of ρ1 and we have the probability rk = ∏M

j=1 p
sj

j associated
with each entry of �1.

[1] J. L. Lebowitz, Physica A (Amsterdam) 194, 1 (1993).
[2] H. Touchette, Phys. Rep. 478, 1 (2009).
[3] R. S. Ellis, Ann. Prob. 12, 1 (1984).
[4] J. M. Meylahn, S. Sabhapandit, and H. Touchette, Phys. Rev. E

92, 062148 (2015).
[5] G. E. Uhlenbeck and G. W. Ford, Lectures in Statistical Mechan-

ics (American Mathematical Society, Providence, RI, 1963),
Vol. 1.

[6] T. L. Hill, An Introduction to Statistical Thermodynamics
(Dover, New York, 1986), Vol. 2.

[7] E. A. Jackson, Equilibrium Statistical Mechanics (Prentice-Hall,
New York, 1968), Vol. 1.

[8] G. E. Crooks, Phys. Rev. E 60, 2721 (1999).
[9] C. Jarzynski, Phys. Rev. Lett. 78, 2690 (1997).

[10] L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasinio, and C.
Landim, Phys. Rev. Lett. 87, 040601 (2001).

[11] E. T. Jaynes, Phys. Rev. 106, 620 (1957).
[12] R. Dewar, J. Phys. A 36, 631 (2003).
[13] B. Yurke, A. Turberfield, A. P. Mills, F. C. Simmel, and J. L.

Neumann, Nature (London) 406, 605 (2000).
[14] R. Golestanian, T. B. Liverpool, and A. Ajdari, Phys. Rev. Lett.

94, 220801 (2005).
[15] M. L. Dekhtyar and V. M. Rozenbaum, J. Chem. Phys. 134,

044136 (2011).
[16] C. Bustamante, J. C. Macosko, and J. L. Wuite, Nat. Rev. 1, 130

(2000).
[17] M. Manosas and F. Ritort, Biophys. J. 88, 3224 (2005).
[18] S. Wennmalm, L. Edman, and R. Rigler, Proc. Natl. Acad. Sci.

U. S. A. 94, 10641 (1997).
[19] T. M. Cover and J. A. Thomas, Elements of Information Theory

(Wiley, New York, 2006), Vol. 2.
[20] S. Nicholson, M. Alaghemandi, and J. R. Green, J. Chem. Phys.

145, 084112 (2016).
[21] M. Alaghemandi and J. R. Green, Phys. Chem. Chem. Phys. 18,

2810 (2016).
[22] R. L. Davidchack, Y. C. Lai, E. M. Bollt, and M. Dhamala, Phys.

Rev. E 61, 1353 (2000).
[23] A. N. Kolmogorov, Dokl. Akad. Nauk SSSR 124, 754 (1959).
[24] Ya. G. Sinai, Dokl. Akad. Nauk SSSR 124, 768 (1959).

[25] P. Gaspard, J. Stat. Phys. 117, 599 (2004).
[26] P. Zegers, A. Fuentes, and C. Alarcón, Entropy 15, 2861 (2013).
[27] J. Crutchfield and C. Aghamohammadi, arXiv:1609.02519

(2016).
[28] C. E. Shannon, Bell Syst. Tech. J. 27, 623 (1948).
[29] B. McMillan, Ann. Math. Stat. 24, 196 (1953).
[30] K. L. Chung, Ann. Math. Stat. 32, 612 (1961).
[31] P. H. Algoet and T. M. Cover, Ann. Prob. 16, 899 (1988).
[32] V. Baccetti and M. Visser, J. Stat. Mech.: Theory Exp. (2013)

P04010.
[33] R. W. Yeung, A First Course in Information Theory, vol. 1

(Springer, 2002).
[34] H. Chernoff, Ann. Prob. 9, 533 (1981).
[35] K.-M. Chung, H. Lam, Z. Liu, and M. Mitzenmacher, in 29th

International Symposium on Theoretical Aspects of Computer
Science (STACS 2012), Leibniz International Proceedings in
Informatics (LIPIcs), edited by C. Dürr and T. Wilke, Vol. 14
(Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 2012), pp. 124–135.

[36] B. P. Rao and M. Sreehari, J. Stat. Planning Inference 63, 325
(1997).

[37] A. D. Healy, Comput. Complex. 17, 3 (2008).
[38] R. L. Adler, A. G. Konheim, and M. H. McAndrew, Trans. Am.

Math. Soc. 114, 309 (1965).
[39] R. Bowen, Trans. Am. Math. Soc. 153, 401 (1971).
[40] C. Beck and F. Schlögl, Thermodynamics of Chaotic Systems

(Cambridge University Press, Cambridge, 1993).
[41] C. Conselice, A. Wilkinson, K. Duncan, and A. Mortlock,

Astrophys. J. 830, 83 (2016).
[42] S. B. Nicholson, M. Alaghemandi, and J. R. Green, J. Chem.

Phys. 148, 044102 (2018).
[43] J. P. Crutchfield and K. Young, Phys. Rev. Lett. 63, 105 (1989).
[44] C. R. Shalizi and J. P. Crutchfield, J. Stat. Phys. 104, 817 (2001).
[45] J. P. Crutchfield and D. P. Feldman, Chaos 13, 25 (2003).
[46] In general, all children will lie on the hypotenuse of a triangle.

An exception is the uniform distribution. Since all sequences are
equally likely, every sequence is typical independent of both ε

and n. In this case, the triangle map would be a single point.
[47] F. Schlögl, Z. Phys. A 253, 147 (1972).

012146-9

https://doi.org/10.1016/0378-4371(93)90336-3
https://doi.org/10.1016/0378-4371(93)90336-3
https://doi.org/10.1016/0378-4371(93)90336-3
https://doi.org/10.1016/0378-4371(93)90336-3
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1016/j.physrep.2009.05.002
https://doi.org/10.1214/aop/1176993370
https://doi.org/10.1214/aop/1176993370
https://doi.org/10.1214/aop/1176993370
https://doi.org/10.1214/aop/1176993370
https://doi.org/10.1103/PhysRevE.92.062148
https://doi.org/10.1103/PhysRevE.92.062148
https://doi.org/10.1103/PhysRevE.92.062148
https://doi.org/10.1103/PhysRevE.92.062148
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1103/PhysRevE.60.2721
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.78.2690
https://doi.org/10.1103/PhysRevLett.87.040601
https://doi.org/10.1103/PhysRevLett.87.040601
https://doi.org/10.1103/PhysRevLett.87.040601
https://doi.org/10.1103/PhysRevLett.87.040601
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1103/PhysRev.106.620
https://doi.org/10.1088/0305-4470/36/3/303
https://doi.org/10.1088/0305-4470/36/3/303
https://doi.org/10.1088/0305-4470/36/3/303
https://doi.org/10.1088/0305-4470/36/3/303
https://doi.org/10.1038/35020524
https://doi.org/10.1038/35020524
https://doi.org/10.1038/35020524
https://doi.org/10.1038/35020524
https://doi.org/10.1103/PhysRevLett.94.220801
https://doi.org/10.1103/PhysRevLett.94.220801
https://doi.org/10.1103/PhysRevLett.94.220801
https://doi.org/10.1103/PhysRevLett.94.220801
https://doi.org/10.1063/1.3544219
https://doi.org/10.1063/1.3544219
https://doi.org/10.1063/1.3544219
https://doi.org/10.1063/1.3544219
https://doi.org/10.1038/35040072
https://doi.org/10.1038/35040072
https://doi.org/10.1038/35040072
https://doi.org/10.1038/35040072
https://doi.org/10.1529/biophysj.104.045344
https://doi.org/10.1529/biophysj.104.045344
https://doi.org/10.1529/biophysj.104.045344
https://doi.org/10.1529/biophysj.104.045344
https://doi.org/10.1073/pnas.94.20.10641
https://doi.org/10.1073/pnas.94.20.10641
https://doi.org/10.1073/pnas.94.20.10641
https://doi.org/10.1073/pnas.94.20.10641
https://doi.org/10.1063/1.4961485
https://doi.org/10.1063/1.4961485
https://doi.org/10.1063/1.4961485
https://doi.org/10.1063/1.4961485
https://doi.org/10.1039/C5CP05125H
https://doi.org/10.1039/C5CP05125H
https://doi.org/10.1039/C5CP05125H
https://doi.org/10.1039/C5CP05125H
https://doi.org/10.1103/PhysRevE.61.1353
https://doi.org/10.1103/PhysRevE.61.1353
https://doi.org/10.1103/PhysRevE.61.1353
https://doi.org/10.1103/PhysRevE.61.1353
https://doi.org/10.1007/s10955-004-3455-1
https://doi.org/10.1007/s10955-004-3455-1
https://doi.org/10.1007/s10955-004-3455-1
https://doi.org/10.1007/s10955-004-3455-1
https://doi.org/10.3390/e15072861
https://doi.org/10.3390/e15072861
https://doi.org/10.3390/e15072861
https://doi.org/10.3390/e15072861
http://arxiv.org/abs/arXiv:1609.02519
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1002/j.1538-7305.1948.tb00917.x
https://doi.org/10.1214/aoms/1177729028
https://doi.org/10.1214/aoms/1177729028
https://doi.org/10.1214/aoms/1177729028
https://doi.org/10.1214/aoms/1177729028
https://doi.org/10.1214/aoms/1177705069
https://doi.org/10.1214/aoms/1177705069
https://doi.org/10.1214/aoms/1177705069
https://doi.org/10.1214/aoms/1177705069
https://doi.org/10.1214/aop/1176991794
https://doi.org/10.1214/aop/1176991794
https://doi.org/10.1214/aop/1176991794
https://doi.org/10.1214/aop/1176991794
https://doi.org/10.1088/1742-5468/2013/04/P04010
https://doi.org/10.1088/1742-5468/2013/04/P04010
https://doi.org/10.1088/1742-5468/2013/04/P04010
https://doi.org/10.1214/aop/1176994428
https://doi.org/10.1214/aop/1176994428
https://doi.org/10.1214/aop/1176994428
https://doi.org/10.1214/aop/1176994428
https://doi.org/10.1016/S0378-3758(97)00031-1
https://doi.org/10.1016/S0378-3758(97)00031-1
https://doi.org/10.1016/S0378-3758(97)00031-1
https://doi.org/10.1016/S0378-3758(97)00031-1
https://doi.org/10.1007/s00037-007-0238-5
https://doi.org/10.1007/s00037-007-0238-5
https://doi.org/10.1007/s00037-007-0238-5
https://doi.org/10.1007/s00037-007-0238-5
https://doi.org/10.1090/S0002-9947-1965-0175106-9
https://doi.org/10.1090/S0002-9947-1965-0175106-9
https://doi.org/10.1090/S0002-9947-1965-0175106-9
https://doi.org/10.1090/S0002-9947-1965-0175106-9
https://doi.org/10.1090/S0002-9947-1971-0274707-X
https://doi.org/10.1090/S0002-9947-1971-0274707-X
https://doi.org/10.1090/S0002-9947-1971-0274707-X
https://doi.org/10.1090/S0002-9947-1971-0274707-X
https://doi.org/10.3847/0004-637X/830/2/83
https://doi.org/10.3847/0004-637X/830/2/83
https://doi.org/10.3847/0004-637X/830/2/83
https://doi.org/10.3847/0004-637X/830/2/83
https://doi.org/10.1063/1.5012760
https://doi.org/10.1063/1.5012760
https://doi.org/10.1063/1.5012760
https://doi.org/10.1063/1.5012760
https://doi.org/10.1103/PhysRevLett.63.105
https://doi.org/10.1103/PhysRevLett.63.105
https://doi.org/10.1103/PhysRevLett.63.105
https://doi.org/10.1103/PhysRevLett.63.105
https://doi.org/10.1023/A:1010388907793
https://doi.org/10.1023/A:1010388907793
https://doi.org/10.1023/A:1010388907793
https://doi.org/10.1023/A:1010388907793
https://doi.org/10.1063/1.1530990
https://doi.org/10.1063/1.1530990
https://doi.org/10.1063/1.1530990
https://doi.org/10.1063/1.1530990
https://doi.org/10.1007/BF01379769
https://doi.org/10.1007/BF01379769
https://doi.org/10.1007/BF01379769
https://doi.org/10.1007/BF01379769


NICHOLSON, GREENBERG, AND GREEN PHYSICAL REVIEW E 97, 012146 (2018)

[48] A. B. Goryachev and A. V. Pokhilko, FEBS Lett. 582, 1437
(2008).

[49] R. G. Endres, PloS ONE 10, e0121681 (2015).

[50] M. Vellela and H. Qian, J. R. Soc. Interface 6, 925 (2009).
[51] J. Tyson, R. Albert, A. Goldbeter, P. Ruoff, and J. Sible, J. R.

Soc. Interface 5, S1 (2008).

012146-10

https://doi.org/10.1016/j.febslet.2008.03.029
https://doi.org/10.1016/j.febslet.2008.03.029
https://doi.org/10.1016/j.febslet.2008.03.029
https://doi.org/10.1016/j.febslet.2008.03.029
https://doi.org/10.1371/journal.pone.0121681
https://doi.org/10.1371/journal.pone.0121681
https://doi.org/10.1371/journal.pone.0121681
https://doi.org/10.1371/journal.pone.0121681
https://doi.org/10.1098/rsif.2008.0476
https://doi.org/10.1098/rsif.2008.0476
https://doi.org/10.1098/rsif.2008.0476
https://doi.org/10.1098/rsif.2008.0476
https://doi.org/10.1098/rsif.2008.0179.focus
https://doi.org/10.1098/rsif.2008.0179.focus
https://doi.org/10.1098/rsif.2008.0179.focus
https://doi.org/10.1098/rsif.2008.0179.focus



