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Memory effects for a stochastic fractional oscillator in a magnetic field
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The problem of random motion of harmonically trapped charged particles in a constant external magnetic
field is studied. A generalized three-dimensional Langevin equation with a power-law memory kernel is used
to model the interaction of Brownian particles with the complex structure of viscoelastic media (e.g., dusty
plasmas). The influence of a fluctuating environment is modeled by an additive fractional Gaussian noise. In the
long-time limit the exact expressions of the first-order and second-order moments of the fluctuating position for
the Brownian particle subjected to an external periodic force in the plane perpendicular to the magnetic field have
been calculated. Also, the particle’s angular momentum is found. It is shown that an interplay of external periodic
forcing, memory, and colored noise can generate a variety of cooperation effects, such as memory-induced sign
reversals of the angular momentum, multiresonance versus Larmor frequency, and memory-induced particle
confinement in the absence of an external trapping field. Particularly in the case without external trapping, if the
memory exponent is lower than a critical value, we find a resonancelike behavior of the anisotropy in the particle
position distribution versus the driving frequency, implying that it can be efficiently excited by an oscillating
electric field. Similarities and differences between the behaviors of the models with internal and external noises
are also discussed.
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I. INTRODUCTION

The harmonic oscillator is the simplest toy model for
different phenomena in nature and as such it is a typical
theoretician’s paradigm for various fundamental conceptions
[1]. Since Chandrasekhar [2] originally considered the problem
of noise-driven dynamics of a Brownian harmonic oscillator,
noisy oscillators have been a subject extensively investigated in
different fields including physics [3,4], biology [5], and chem-
istry [6]. In most of the previous analysis the influence of white
as well as colored noises on oscillators characterized by Stokes
friction dynamics have been considered [7]. Particularly, it is
shown that the influence of colored noise on the oscillator
frequency may lead to different resonant phenomena. First,
it may cause energetic instability, which manifests itself in an
unlimited increase of the second-order moments of the output
with time, while the mean value of the oscillator displacement
remains finite [8–10]. Second, if the oscillator is subjected to
an external periodic force and the fluctuations of the oscillator
frequency are colored, the behavior of the amplitude of the
first moments shows a nonmonotonic dependence on noise
parameters, i.e., stochastic resonance [11–13]. Third, in some
cases a bona fide resonance appears, where the moments and
the signal-to-noise ratio show a nonmonotonic dependence on
the frequency of external forcing [10,14].

A popular generalization of the harmonic oscillator consists
in replacing the usual Stokes friction term in the dynamical
equation for a harmonic oscillator by a generalized friction
term with a power-law memory [15–21]. The dynamical
equation for such an oscillator is a special case of the more
general fractional Langevin equation (see, e.g., [22]). The
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main advantage of this equation is that it provides a phys-
ically transparent and mathematically tractable description
of the stochastic dynamics in systems with slow relaxation
processes and with anomalous slow diffusion (subdiffusion).
Notably, experiments from many different areas reveal that
anomalous diffusion with a mean-square displacement of
particles 〈r2(t)〉 ∼ tα , (α �= 1) is ubiquitous in nature, signal-
ing that slow transport, α < 1, may be generic for complex
heterogeneous materials [23]. Examples of such systems are
supercooled liquids, glasses, colloidal suspensions, polymer
solutions [24,25], viscoelastic media, amorphous semiconduc-
tors [26–28], the cytoplasm of living cells [29], and large
proteins [30]. This method has also been successfully used in
describing anomalous diffusion phenomena for nuclear fusion
reactions [31] and for the interpretation of experimental data
for dusty plasmas [32–35].

Diffusion of particles in plasmas exposed to an external
magnetic field still remains one of the important problems
of plasma physics and controlled fusion [36]. In this context,
the stochastic dynamics of charged Brownian particles as well
as an ordinary harmonic oscillator embedded in a magnetic
field driven by internal or external noises has been a topic of
great interest, widely studied in the literature [2,3,36–38]. It is
important to notice that although the behavior of the stochastic
diffusion process of a charged classical harmonic oscillator in
a constant magnetic field has been theoretically investigated
in detail (see, e.g., Refs. [3,37]), it seems that proper analysis
of the potential consequences of an interplay of colored noise,
external periodic forcing, and memory effects in a fractional
oscillator embedded in a magnetic field is still missing in
literature. This is quite surprising in view of the fact that
the importance of colored fluctuations and a power-law-type
memory (friction with a long-time memory) for dusty plasma
liquids has been well recognized [32–35,39].
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Motivated by the above reasons and the results of
Refs. [3,20], the present paper considers a model similar to the
one presented in Ref. [3], except that the Stokes-type friction
term is replaced with a power-law memory kernel and that
the influence of the fluctuating environment is modeled not by
an additive Gaussian white noise but by an additive Gaussian
fractional noise. Moreover, to make the model more general
we add an external periodic force (e.g., an electric field). Thus
we consider the stochastic dynamics of a charged fractional
oscillator under the action of crossed periodic electric field
and a constant magnetic field.

The main contribution of this paper is as follows. In the
long-time limit (t → ∞), we provide exact formulas for the
analytical treatment of the dependence of the first- and second-
order statistical moments of the fluctuating particle position
and the mean angular momentum of the rotational part of
particle motion in the plane perpendicular to the magnetic
field on system parameters, such as the magnetic induction,
the memory exponent, the intensity of the noise, the friction
coefficient, and the oscillation frequency of the external peri-
odic force. Based on those exact expressions we demonstrate
that sign reversals are manifested in the dependence of the
particle’s mean angular momentum upon the memory exponent
α as well as upon Larmor frequency and the frequency of the
external drive. Furthermore, we show that in certain parameter
regions the angular momentum exhibits a multiresonance
behavior versus the driving frequency, and even versus Larmor
frequency. As one of our main results, we establish, in the
case of high values of Larmor frequency, a memory-induced
strong resonancelike suppression of particles spatial dispersion
at intermediate values of the memory exponent. Moreover, in
the case of external fractional noise we have found a critical
memory exponent αc, which marks the transition between
different dynamical regimes of the oscillator. Namely, for
α < αc, the phenomenon of memory-induced trapping occurs,
i.e., at sufficiently small values of the memory exponent a
bounded (in time) regime of the particle’s dynamics due to the
cage effect [15,21] is possible even if the trapping potential
well in the dynamical equation is absent. For α > αc and
also if the additive noise is internal, such self-trapping of a
particle is impossible and particle dynamics is subdiffusive.
Particularly, in the case of memory-induced trapping we find a
resonancelike behavior of the anisotropy in the particle position
distribution versus the driving frequency, implying that it can
be efficiently excited by an oscillating external force.

The structure of the paper is as follows. In Sec. II we present
the model investigated. Exact formulas are found for the
analysis of the behavior of the first- and second-order moments
and of the mean angular momentum. In Sec. III we analyze
the dependence of the particle distribution characteristics on
system parameters. Section IV contains some brief concluding
remarks. Some formulas are delegated to the Appendices.

II. MODEL AND THE EXACT MOMENTS

A. Model

Consider the combined inertial and diffusive motion of a
charged Brownian particle embedded in a complex viscoelastic
media with memory (e.g., a dusty plasma) under the action of a

constant magnetic field and some time-dependent force fields.
As a model for such a system with memory, strongly coupled
with a noisy environment, we consider a generalized Langevin
equation (GLE) with a harmonic confinement potential U (r):

r̈(t) + γ̃

m

∫ t

0
η(t − t ′)ṙ(t ′)dt ′ + 1

m
∇U (r) − q

mc
ṙ(t) × B

= ξ (t) + A0 cos ωt, (1)

where r = (X,Y,Z) denotes the particle’s position, ṙ ≡
dr/dt, η(t) is the dissipative memory kernel that character-
izes the viscoelastic properties of the medium, γ = γ̃ /m is
the damping coefficient (friction coefficient), ∇ denotes the
gradient operator, q is the charge of the particle with mass m,
and B = (0,0,B) is the intensity of the magnetic field. The
external periodic force A0 cos ω(t) per unit mass is assumed,
for simplicity, to be pointing along the x axis, that is, A0 =
(A0,0,0), and the three-dimensional trapping potential U (r)
with its minimum at r0 = 0 is given by

1

m
U (r) = ω2

0

2
r2, (2)

where ω0 is the trap frequency. Depending on the physical
situation, the zero-centered driving noise per unit mass ξ =
[ξ1(t),ξ2(t),ξ3(t)] can be regarded either as an internal noise, in
which case its stationary correlation function satisfies Kubo’s
second fluctuation dissipation theorem [40] expressed as

〈ξi(t)ξj (t ′)〉 = kBT γ δij η(|t − t ′|), (3)

where δij denotes the Kronecker symbol, kB is the Boltzmann
constant, and T is the absolute temperature of the heat bath,
or an external noise, in which case the driving noise ξ (t) and
the dissipation may have different origins and no fluctuation-
dissipation relation holds, i.e., ξ (t) is not related to the memory
kernel η(t). Hence, in this paper the random force ξ (t) is
assumed to be the sum of two uncorrelated contributions

ξ (t) = ξ (1)(t) + ξ (2)(t), 〈ξ (1)(t)ξ (2)(t ′)〉 = 0, (4)

where ξ (1)(t) is the internal noise due to thermal activity and
ξ (2)(t) is an external stationary fractional Gaussian noise with
the correlation functions given by

C
(2)
ij (τ ) = 〈

ξ
(2)
i (t + τ )ξ (2)

j (t)
〉 = δij

D

	(1 − δ)|τ |δ ,

〈ξ (2)(t)〉 = 0, (5)

where 0 < δ < 1,D characterizes the noise intensity, and 	(·)
is the 	 function. To mimic the viscoelastic properties of the
medium, the dissipative kernel η(t) is supposed to be a power-
law memory [15–17,22]:

η(t) = 1

	(1 − α)|t |α , (6)

with a memory exponent 0 < α < 1. The internal noise ξ (1)(t)
is assumed to be a Gaussian noise with the correlation function
determined by Eqs. (3) and (6). By taking the limit α → 1
in Eq. (6) it follows that η(t) possesses the properties of the
δ function (its δ-functional behavior manifests itself in the
integrals), and thus η(t) at α → 1 corresponds to nonretarded
friction (Stokes friction) in the GLE (1). It should be pointed
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out that this is in fact a singular limit which must be handled
with a special regularization (see, e.g., Ref. [41]). In the case
of Stokes friction (α = 1) and ξ (2)(t) = 0, A0 = 0, i.e., the
external periodic drive is absent, the model (1) reduces to the
model for the harmonically trapped Brownian particle in
the magnetic field previously considered in Ref. [3].

Due to the linearity of the restoring force, −∇U (r), the
z component in Eq. (1) decouples, and the process Z(t)
behaves as a one-dimensional fractional oscillator considered
in Refs. [15,18,42]. Therefore, in the rest of this paper we will
consider the motion in the xy plane. In the xy plane the GLE
(1) can be written as a system of dynamical equations for two
coupled fractional oscillators:

Ẍ + γ
dα

dtα
X(t) + ω2

0X(t) − 
Ẏ (t) = A0 cos(ωt) + ξ1(t),

(7)

Ÿ (t) + γ
dα

dtα
Y (t) + ω2

0Y (t) + 
Ẋ(t) = ξ2(t), (8)

where 
 = qB/mc is Larmor frequency and the operator
dα/dtα with 0 < α < 1 denotes the fractional derivative in
Caputo’s sense given by [43]

dα

dtα
f (t) = 1

	(1 − α)

∫ t

0

ḟ (t ′)
(t − t ′)α

dt ′. (9)

Note that in the case without the magnetic field B the coun-
terparts of the model (1) with Eqs. (5) and (6) are widely used
in fitting experimental data from intracellular microrheology
and from single-molecule experiments probing conformational
fluctuations in proteins [17,44,45].

B. First moments

After averaging Eqs. (7) and (8) over the ensemble of
realizations of the random processes ξ1(t) and ξ2(t) we obtain

d2

dt2
〈X(t)〉+γ

dα

dtα
〈X(t)〉+ω2

0〈X(t)〉−
〈Ẏ (t)〉 = A0 cos(ωt),

(10)

d2

dt2
〈Y (t)〉 + γ

dα

dtα
〈Y (t)〉 + ω2

0〈Y (t)〉 + 
〈Ẋ(t)〉 = 0.

(11)

Thus it turns out that the fluctuating force ξ (t) in Eq. (1)
does not affect the first moments 〈X(t)〉 and 〈Y (t)〉 of the
output of the fractional oscillators (7) and (8) and 〈r(t)〉
remains equal to the noise-free solution. From Eqs. (10)
and (11) one can easily obtain an exact linear system of
four first-order integrodifferential equations for four variables:
x1 ≡ 〈X〉, x2 ≡ 〈Ẋ〉, x3 ≡ 〈Y 〉, and x4 ≡ 〈Ẏ 〉. By applying
the Laplace transformation technique to these equations the
solution of Eqs. (10) and (11) can be represented in the form

xi(t) =
4∑

k=1

Hik(t)xk(0) + A0

∫ t

0
Hi2(t − t ′) cos(ωt ′)dt ′,

i = 1, . . . ,4, (12)

where the constants of integration xk(0) are determined by
the initial conditions and the relaxation functions Hik(t) with
Hik(0) = δik are the Laplace inversions of the Laplace trans-
forms

Ĥik(s) =
∫ ∞

0
e−stHik(t)dt (13)

given by Eqs. (A2)–(A7) in Appendix A. Particularly, integral
representations of the relaxation functions H12(t) and H32(t)
are given by Eqs. (A8)–(A12). For large t the functions Hik(t)
decay as a power law [see Eqs. (A13)–(A15)] and thus in
the long-time limit, t → ∞, the memory about the initial
conditions will vanish as

4∑
k=1

Hik(t)xk(0) ≈ γ xi(0)

ω2
0	(1 − α)tα

+ O(t−(1+α)), i = 1,3,

(14)

and the average particle displacement relaxes to

〈X〉as ≡ 〈X〉|t→∞ = A0|Ĥ12(−iω)| cos(ωt + ϕ1), (15)

〈Y 〉as ≡ 〈Y 〉|t→∞ = A0|Ĥ32(−iω)| cos(ωt + ϕ3), (16)

where the phase shifts ϕ1 and ϕ3 can be represented as

tan ϕk = − Im[Ĥk2(−iω)]

Re[Ĥk2(−iω)]
, k = 1,3. (17)

So, in the long-time limit, t → ∞, the mean trajectory of the
particle positions is characterized by an ellipse around the
minimum of the trapping potential (r0 = 0).

If the trapping potential is absent, ω0 = 0, the asymptotic
behavior of the relaxation functions Hik(t) is different from the
general case considered above [see also Eqs. (A16)–(A18)] and
the memory about the initial conditions will not vanish. In this
case the center of the characteristic ellipse, which describes
the average particle trajectory at t → ∞, is the initial position
(x(0),y(0)) of the particle, i.e.,

〈X〉as = x(0) + A0|Ĥ12(−iω)| cos(ωt + ϕ1), (18)

〈Y 〉as = y(0) + A0|Ĥ32(−iω)| cos(ωt + ϕ3). (19)

C. Second moments

By applying the Laplace transformation to Eqs. (7) and (8)
one can easily obtain formal expressions for the displacements
X(t) and Y (t) in the following forms:

X(t) = 〈X(t)〉+
∫ t

0
[H12(t − t ′)ξ1(t ′) − H32(t − t ′)ξ2(t ′)]dt ′,

(20)

Y (t) = 〈Y (t)〉+
∫ t

0
[H32(t − t ′)ξ1(t ′) + H12(t − t ′)ξ2(t ′)]dt ′,

(21)

where the averages 〈X(t)〉 and 〈Y (t)〉 are given by Eq. (12).
In the following, our interest is focused on the long-

time regime, t → ∞, where the harmonically trapped
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particle (ω0 �= 0) has lost all memory of the ini-
tial conditions. We consider the second moments σxx ≡
〈[X(t) − 〈X(t)〉]2〉, σyy ≡ 〈[Y (t) − 〈Y (t)〉]2〉, σxy ≡ 〈[X(t) −
〈X(t)〉][Y (t) − 〈Y (t)〉]〉, which determine the particle’s posi-
tional distribution function. Since the magnetic field leads
to the rotation of charged particles in the xy plane we
also consider the mean angular momentum of the particles
〈Lz(t)〉 = 〈X(t)Ẏ (t) − Y (t)Ẋ(t)〉.

Using Eqs. (20), (21), and (5) we obtain

σxy(t) = 0 (22)

and

σxx(t) = σyy(t) = 2
∫ t

0
[H12(t1)M1(t1) + H32(t1)M3(t1)]dt1,

(23)

where the involved functions M1 and M3 are given by [see
Eqs. (3) and (5)]

Mk(t) =
∫ t

0
Ckk(t − t1)Hk2(t1)dt1, k = 1,3, (24)

and

Ckk(t) = C
(2)
kk (t) + kBT γ η(t). (25)

To discern the effects caused by additive external and
internal noises in the behavior of the second moments σxx(t)
and 〈Lz(t)〉, we will henceforth consider the cases of external
noise and internal noise separately. Moreover, as the model
(1) driven by an internal noise ξ (t) = ξ (1)(t) can be considered
as a particular case of the model driven by an external noise
ξ (t) = ξ (2)(t) with δ = α and D = kBT γ , we will mainly
restrict our following analysis to the case of external noise. In
the general case ξ (t) = ξ (1)(t) + ξ (2)(t) the second moments
σxx(t) and 〈Lz(t)〉 can be found as the summation of the
contributions generated by ξ (1)(t) and ξ (2)(t), separately.

In the long-time limit, another representation of σxx(t),
which is more convenient for numerical calculations and for
analysis of the dependence on system parameters, is given by
Eqs. (B1) and (B2) in Appendix B. In the case of a free particle,
i.e., ω0 = 0, the asymptotic behavior of the variance σxx(t)
depends strongly on the values of the memory exponent α and
of the noise exponent δ. From Laplace transforms of Mk(t),

M̂k(s) = Dsδ−1Ĥk2(s), k = 1,3, (26)

and Eqs. (A2) and (A3) it follows that in the long-time limit

M1(t) ∼ D

γ	(1 − δ + α)
× 1

t δ−α
,

M3(t) ∼ − D


γ 2	(2α − δ)
× 1

t1+δ−2α
. (27)

Now, taking into account Eqs. (A17) and (A18), one can use
Eq. (27) to obtain that the integral (23) converges to a finite
value only if

2α < δ < 1. (28)

Thus, if the inequalities (28) are valid, the phenomenon of
memory-induced trapping occurs [15,21]; in the opposite case
the dynamics of the Brownian particle is either subdiffusive as

for 2α > δ > 2α − 1 or superdiffusive if δ < 2α − 1, α > 1
2

with

σxx(t) = σyy(t) � 2D

γ 2(2α − δ)	(α)	(1 + α − δ)
t2α−δ,

t → ∞. (29)

In the case of Stokes friction (α = 1) the asymptotic behav-
ior of the variance σxx(t) must be handled with care. The direct
inserting δ = α = 1 into Eq. (29) yields σxx(t) � 2kBT t/γ ,
which is independent of the Larmor frequency 
, but the
correct result reads [46]

σxx(t) � 2kBT γ t

γ 2 + 
2
, α = δ = 1, t → ∞. (30)

In Appendix C we consider some peculiarities of the case of an
internal noise. Particularly, it is pointed out that by α = 1 the
relaxation functions decay exponentially, i.e., a slow relaxation
of power-law order is absent [see also Eq. (C4)]. In this case the
power-law asymptotic formula (29) is not applicable. Thus the
model (1) driven by an internal noise without external trapping,
ω0 = 0, predicts in the asymptotic regime (t → ∞) by absence
of memory (α = 1) a strong dependence of the variance σxx(t)
on the magnetic field, which contrasts with the case of α < 1,
where at t → ∞ the influence of the magnetic field on σxx(t)
is negligible.

In the long-time limit the asymptotic mean angular mo-
mentum 〈Lz〉as is convenient to present as a sum of two
contributions:

〈Lz〉as = 〈Lz〉1 + 〈Lz〉2, (31)

where the first part 〈Lz〉1 corresponds to the case without
noise and the second part 〈Lz〉2 characterizes the noise-induced
angular momentum. According to Eqs. (15), (16), (20), and
(21) we can obtain 〈Lz〉1, which we write as [see also Eq. (A3)]

〈Lz〉1 = A2
0



|Ĥ32(−iω)|2

[
ω2

0 − ω2 + γωα cos

(
πα

2

)]
.

(32)
The noise-induced angular momentum 〈Lz〉2 is obtained from
Eqs. (20) and (21), yielding the following result:

〈Lz〉2 = 2
∫ ∞

0
[Ḣ32(t)M1(t) − Ḣ12(t)M3(t)]dt, (33)

where the functions M1(t) and M3(t) are determined by
Eq. (24). Another representation of 〈Lz〉2, more convenient for
numerical calculations, is given by Eq. (B3) in Appendix B.
It is remarkable that the formulas (32) and (33) are applicable
also in the case without a trapping potential (ω0 = 0) if the
condition

α <
2

3
+ δ

3
(34)

is fulfilled. Particularly, in the case of an internal noise δ = α

this condition is valid for all values of the memory exponent
0 < α < 1.

It is important to note that in the case of an internal noise
the noise-induced angular momentum 〈Lz〉2 vanishes for all
values of other system parameters (see also Appendix C):

〈Lz〉2 = 0, δ = α. (35)
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Thus, in the general case ξ (t) = ξ (1)(t) + ξ (2)(t) the asymp-
totic mean angular momentum 〈Lz〉as is independent of the
temperature T .

III. RESULTS

A. Distribution of the particle position

As the right-hand sides of Eqs. (7) and (8) are Gaussian pro-
cesses ξ (t) = [ξ1(t),ξ2(t)], r(t) = [X(t),Y (t)] is also Gaussian
and therefore completely specified by its mean and correlation
matrix. So in the long-time limit, t → ∞, the particle position
distribution P (r) is Gaussian [see also Eqs. (22) and (23)]:

P (r,t) = 1

2πσxx(∞)
exp

[
− 1

2σxx(∞)
(�X2 + �Y 2)

]
,

(36)

where

�X ≡ X − 〈X(t)〉, �Y ≡ Y − 〈Y (t)〉, (37)

and the averages 〈X(t)〉 and 〈Y (t)〉 are determined by Eqs. (15)
and (16). Since the mean position 〈r(t)〉 of the particles
is described by an ellipse in the xy plane, the distribution
P (r,t) is characterized by an ellipsoidal band with an effective
width 2

√
σxx around the origin of coordinates (see Fig. 1).

The lengths C1 and C2 of the principal axes of the elliptical
distribution and their orientation in space are determined by

C2
1,2 = 1

2

[
A2

x+A2
y±

√(
A2

x − A2
y

)2 + 4A2
xA

2
y cos2(ϕ1 − ϕ3)

]
,

(38)

�3�

3

�3�

φ3

�1�

φ1

�2�

φ2

�0.5 0.0 0.5
�0.6

�0.4

�0.2

0.0

0.2

0.4

0.6

x

y

FIG. 1. The mean position 〈r(t)〉 of particles (ellipsoids) in the
xy plane computed from Eqs. (15)–(17), (A2), and (A3) in the
long-time limit, t → ∞. Parameter values: ω0 = x0 = y0 = 0, γ =
2, α = 0.1, and 
 = 3. Line (1), ω = 0.2; line (2), ω = 2.5; line (3),
ω = 3.85. The angles between the major axis and the x axis are
φ1 ≈ −0.066, φ2 ≈ −1.506, φ3 ≈ −0.163. The shaded ellipsoidal
band with a width of

√
2σxx ≈ 0.089 around curve (3) characterizes

the variance σxx computed from Eq. (B1) at the noise parameter values
δ = 0.6 and D = 0.002.

(a)

0 2 4 6 8
0.0
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0.8

1.0

V

(b)
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−1.5

−1.0

−0.5

0.0

ω

ω

φ

FIG. 2. The ratio V = C2/C1 of the minor and the major axis
of the particles position ellipsoid and the angle φ between the major
axis and x axis as functions of the driving frequency ω. The curves are
computed from Eqs. (A2), (A3), and (38)–(40) for several values of
the Larmor frequency 
. Parameter values: ω0 = 0, α = 0.1, A0 = 1,
and γ = 2. Solid line, 
 = 0.4; dashed line, 
 = 1.5; dotted line,

 = 3.

and

tan φ = AxAy cos(ϕ1 − ϕ3)

C2
1 − A2

y

, (39)

where φ denotes the angle between the major axis with length
C1 and the x axis, the subscript 1 (2) refers to the plus (minus)
sign, and

Ax = A0|Ĥ12(−iω)|, Ay = A0|Ĥ32(−iω)|. (40)

In Fig. 2 we depict, on two panels, the behavior of the ratio
V = C2/C1 of the minor and major axes of the distribution
ellipsoid (an isotropy parameter of the distribution) and the
angle φ versus the driving parameter ω. Both V (ω) and
φ(ω) exhibit a nonmonotonic dependence on ω, i.e., a typical
resonance phenomenon occurs as ω increases. An interesting
peculiarity of Fig. 2(a) is the double resonant peak structure of
the isotropy parameter V versus the frequency ω. The effect
is very pronounced at low values of the memory exponent α.
To throw some light on the physics of this effect we shall now
briefly consider the behavior of V (ω) in the parameter regime
α → 0. In this case, from Eqs. (38), (40), (A2), and (A3) it
follows that the function V (ω) reaches three local extrema:
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two maxima Vmax(ω) = 1 at

ω1,2 =
√

ω2
0 + γ + 
2

4
± 


2
, (41)

where the indices 1 and 2 refer to the plus and minus sign,
respectively, and one local minimum Vmin(ω) = 0 at

ωm =
√

ω2
0 + γ . (42)

From Eq. (41) it is seen that for sufficiently large values of
the Larmor frequency 
, the position of the first minimum
(ω1) grows in proportion to 
 and the position of the second
maximum (ω2) tends to zero. The behavior of the particles
position ellipsoid is characterized by the following scenario.
For small values of the driving frequency ω ≈ 0, the major axis
of the ellipse is finite as

C1 ≈ A0

γ + ω2
0

, ω → 0, (43)

and oriented along the x axis, φ ≈ 0, but C2 ≈ 0, i.e., the
isotropy parameter V ≈ 0. By increasing ω, both C1 and C2

increase up to very large values and the ellipse turns into a
circle, V = 1, at ω = ω2. In this case the angle φ tends to
−π/4. By further increase of ω, the anisotropy of particle
distribution grows and the major axis of the ellipse aligns more
and more with the y axis. At ω = ωm the ellipse reduces to a
line with C2 ≈ 0, φ = −π

2 , and

C1 ≈ A0




√
γ + ω2

0

, ω → ωm. (44)

In the interval ω ∈ (ωm,ω1) the particles position distribu-
tion gets more isotropic again and at ω = ω1 the ellipse is
characterized by C1 ≈ C2 → ∞, V ≈ 1, and φ = −π

4 , i.e., it
has become a circle. Finally, if ω > ω1, the ellipse begins to
stretch along the major axis and aligns more and more with
the x axis as the driving frequency ω increases (the anisotropy
grows). In the limit ω → ∞ the angle φ tends to zero and the
ellipse reduces to a point C1 ∼ 1/ω2 → 0, C2 ∼ 1/ω3 → 0. It
is remarkable that the scenario described above is similar to the
one for the ordinary charged oscillator without a friction term
in the external electromagnetic field. This is a manifestation of
the cage effect, which is due to the viscoelastic memory kernel
present in our model. Namely, for small values of the memory
exponent α, the friction force induced by a viscoelastic medium
is not just slowing down the particle but also causing the
particle to undergo a rattling motion, which can be explained
by the harmonic motion of the particle in a cage formed by
the surrounding particles [15,21]. In this case, at small α

the medium is binding the particle, preventing dissipation but
forcing elastic oscillations.

Formulas (38)–(40) are exactly the same as can be derived
for an ordinary charged oscillator (without memory, α = 1) if
we replace the eigenfrequency ω0 and the friction coefficient
γ with the corresponding effective quantities ω0ef and γef:

ω2
0ef = ω2

0 + γωα cos

(
απ

2

)
,

γef = γωα−1 sin

(
απ

2

)
. (45)

FIG. 3. Dependence of the variance σxx(t) on time t , computed
from Eqs. (A8), (A9), and (C1) in the case of an internal noise. System
parameter values: kBT = 1, γ = 2, and ω0 = 1. Solid line, 
 = 0.1;
dashed line, 
 = 5; dash-dotted line, 
 = 50. (a) The case of low
memory, α = 0.9. (b) The case of strong memory, α = 0.25. In the
limit t → ∞ the variance tends to the equilibrium value 1.

Thus, in this context, our model (with memory) is equivalent to
an oscillator without memory, but with the effective parameters
(45). From Eqs. (45) it can be easily seen that by decreasing α

the effective eigenfrequency increases and the effective friction
coefficient decreases, thus demonstrating the increasing role
of elastic friction. For example, in terms of the effective
parameters γef and ω0ef from the behavior of the model without
memory (α = 1), it follows that the value of the driving
frequency ω at which the isotropy parameter V vanishes (i.e.,
the ellipse reduces to a line) is independent of the magnetic
field and is determined by the equation

ω2 = ω2
0ef = ω2

0 + γωα cos

(
απ

2

)
. (46)

Now we consider the asymptotic evolution of the variance
σxx(t) at large values of the time t � (γ /ω2

0)1/α . The behavior
of an internal noise generated variance σxx(t) by the presence
of a trapping potential, ω0 �= 0, is shown in Fig. 3 for certain
values of the magnetic field and the memory exponent α.

It is important to note that although the temporal process
of the relaxation of σxx(t) to the equilibrium value depends on
the Larmor frequency 
 and on the memory exponent α, the
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asymptotic value of σxx(t) at t → ∞

σxx(∞) = kBT

ω2
0

(47)

only depends on the temperature T of the heat bath and on
the stiffness of the trapping potential [see also Eq. (C3)].
Particularly, the relaxation process gets more rapid as the
memory exponent α increases or as the Larmor frequency 


decreases.
Henceforth our interest is focused on the case of an external

noise, i.e., the internal noise ξ (1)(t) in Eq. (4) is absent. To
avoid misunderstandings we emphasize here that the genuine
asymptotic value of the variance σ (s)

xx (∞) is the sum of an
external noise generated part σxx(∞) and an internal noise
generated part:

σ (s)
xx (∞) = σxx(∞) + kBT

ω2
0

. (48)

In the case of memory-induced trapping, ω0 = 0, the asymp-
totic behavior of σ (s)

xx (t) is always subdiffusive [see Eq. (C4)],
but if the intensity D of the external noise is much larger than
the intensity kBT γ of thermal noise and if the observation time
t satisfies the inequality

t � γ − 1
2−α

(
D

kBT γ

) 1
α

(49)

the evolution of σ (s)
xx (t) in time is mainly determined by the

external noise.
Figures 4 and 5 show, at various values of memory and noise

exponents, the typical forms of the variance σxx(∞) versus the
Larmor frequency 
 [see Eqs. (23) and (B1)]. In Fig. 4(a) the
case of memory-induced trapping (ω0 = 0) for various values
of the noise exponent δ > 2α is considered. It is seen that
at sufficiently large values of the Larmor frequency 
, by
increasing 
 the variance σxx(∞) decays monotonically. In
this regime, for increasing δ the main effect consists in a more
rapid decrease of σxx versus 
. More precisely, at 2α < δ < 1
it follows from Eq. (B1) that for large 
 the variance decays
as a power law

σxx ≈ D

γ 2

(
γ




) δ−2α
1−α

χ (α,δ), 
 → ∞, (50)

where the function χ (α,δ) depends only on the exponents α

and δ, e.g.,

χ (α,δ) ≈ 2

πα
sin

(
πδ

2

)
, δ � 2α,

χ (α,δ) ∼ 2 sin(πα)

π (δ − 2α)
, δ → 2α. (51)

It should be noted that in the vicinity of the critical value
of the noise exponent, δ ≈ δc = 2α, the asymptotic formula
(50) is invalid, since at δ = 2α the system becomes unstable,
i.e., σxx tends to infinity. For moderate and small values of 
,

 � γ

1
2−α , the curves in Fig. 4(a) demonstrate a nonmonotonic

dependence on δ, thus indicating that a stochastic resonance
occurs as the noise exponent increases. This phenomenon
contrasts, in the regime δ > 2α, with the behavior of the model

FIG. 4. The variance σxx vs the Larmor frequency 
 computed
from Eq. (B1) at various values of the noise exponent δ. System
parameter values: γ = 2, α = 0.1, and D = 0.1. Solid line, δ = 0.22;
dot-dashed line, δ = 0.3; dashed line, δ = 0.6; dotted line, δ = 0.9.
(a) The case of memory-induced trapping, ω0 = 0. (b) ω0 = 1. Note
the nonmonotonic dependence of σxx on δ in panel (a).

with external trapping, ω0 �= 0, where such an effect is absent
[see Fig. 4(b)]. Figure 5 depicts, in the case of external trapping,
the typical dependence of σxx on 
 for various values of the

FIG. 5. A plot of the dependence of the variance σxx on the
Larmor frequency 
 at various values of the memory exponent α.
The curves are computed from Eq. (B1). Parameter values: ω0 =
1, γ = 2, D = 0.1, and δ = 0.6. Dot-dashed line, α = 0.1; solid line,
α = 0.3; dashed line, α = 0.6; dotted line, α = 0.9. Note that in the
case of an internal noise (dashed line) the variance σxx is independent
of the Larmor frequency 
.
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memory exponent α. Depending on the parameters α and δ the
following three characteristic regimes can be discerned.

(i) If the noise exponent δ is larger than the memory
exponent α, δ > α, then σxx is a monotonically decaying
function on the Larmor frequency 
.

(ii) If δ = α, the system is subjected to an internal noise
and consequently the variance σxx is independent of 
, being
determined by the temperature of a heat bath instead.

(iii) In the case of δ < α, contrary to the regime δ > α,
the variance σxx increases monotonically as 
 increases. For
example, if α = 1, the asymptotic behavior of σxx is described
by the following equation:

σxx ≈ D
1−δ

γ ω
2(2−δ)
0

sin

(
π

2
δ

)
, 
 → ∞. (52)

So, for the system without memory an increase of the particles
position variance by increasing 
 is expected at any value
of the noise exponent (δ < 1) from Eq. (52). Those findings
may be suggestive of some new possibilities for designing
plasma devices, since, in the case of δ > α, an increase in
the strength of the magnetic field can significantly suppress
the external noise generated part of the spatial dispersion of
charged particles.

Moreover, the graphs in Fig. 5 indicate a stochastic res-
onancelike suppression of σxx versus the memory exponent
α with a local minimum of σxx at α < δ. Let us mention
that we use the term stochastic resonance in a wide sense,
meaning a nonmonotonic behavior of the moments of the
output process in response to the noise parameters [7,12]. The
stochastic resonancelike suppressions of σxx versus δ and α

at various values of 
 are illustrated in Figs. 6(a) and 6(b),
respectively. In the case of ω0 = 0, exposed in Fig. 6(a), the
effect is more pronounced at small values of the Larmor fre-
quency. At sufficiently large values of 
,
 � γ

1
2−α , the effect

disappears. Such behavior of the variance σxx versus the noise
exponent δ contrasts with the phenomenon of memory-induced
resonancelike suppression of σxx at intermediate values of
the memory exponent α for the model with external trapping,
ω0 �= 0 [see Fig. 6(b)]. In the latter case the effect gets more
and more pronounced as the Larmor frequency 
 increases
[see also Eq. (52)]. Finally, we note that in the limit α → 0
the variance σxx increases rapidly to infinity, thus expressively
demonstrating the cage effect: in this limit, due to the cage
effect, the effective damping (friction) coefficient tends to zero
and the fractional derivative in Eqs. (7) and (8) acts like an
elastic force.

B. Angular momentum

Our next task is to examine the mean angular momentum
〈Lz〉as of charged particles in the electromagnetic field [see also
Eqs. (31)–(33)]. To discern the effects caused by an additive
external periodic force and a noise in the behavior of 〈Lz〉as , we
will in the first place consider the corresponding components
〈Lz〉1 and 〈Lz〉2 in Eq. (31) separately. Since in the case of
internal noise the noise-induced part 〈Lz〉2 of the mean angular
momentum vanishes [see Eq. (35)], in the general case the
behavior of 〈Lz〉as only depends on the internal noise indirectly
through the memory kernel η(t) in Eq. (1). Thus, without
loss of generality we can restrict our attention to the case

FIG. 6. The dependence of the variance σxx on the noise exponent
δ and on the memory exponent α computed from (B1). Parameter
values: D = 0.1 and γ = 2. (a) The variance σxx vs δ at ω0 = 0 and
α = 0.1. Solid line, 
 = 0.5; dashed line, 
 = 1.5; dotted line, 
 =
3.5; dash-dotted line, 
 = 7. Note that at the critical value of the
noise exponent δc = 2α = 0.2 the variance σxx tends to infinity, i.e., at
δ � δc the system is unstable. (b) σxx vs α at ω0 = 1 and δ = 0.6. Solid
line, 
 = 0.1; dashed line, 
 = 3.5; dotted line, 
 = 7; dash-dotted
line, 
 = 1000. In the limit α → 0 the variance σxx tends to infinity.
Note that at α = 0.6 all curves intersect, demonstrating that in the
case of an internal noise (δ = α) the variance σxx is independent of
the Larmor frequency 
 [see Eq. (47)].

of external noise, ξ (t) = ξ (2)(t). In Fig. 7 we depict, on two
panels, the typical forms of the graphs 〈Lz(ω)〉1 and 〈Lz(
)〉1

at various values of the Larmor frequency 
 and the driving
frequency ω, respectively. Here we emphasize once again that
〈Lz〉1 is independent of noise parameters (except the memory
exponent α).

Two effects can be discerned from the graphs exposed in
Fig. 7. First, the sign reversals of 〈Lz〉1 versus ω. Relying on
Eq. (32) one can establish the emergence of sign reversals of
〈Lz〉1 due to system parameter variations. Namely, a negative
〈Lz〉1 appears for the parameter values determined by the
equation

ω2 − γωα cos

(
π

2
α

)
− ω2

0 > 0. (53)

From Eq. (53) it follows that sign reversals can be controlled
by varying the frequency of the electric field, the memory
exponent α, and even the friction coefficient γ . Comparing
Eq. (53) with Eq. (46) we see that at the point of a sign
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FIG. 7. Resonance of the noise-independent component 〈L〉1 of
the mean angular momentum [see Eq. (32)] in the case of external
trapping, ω0 = 1. System parameter values: γ = 0.5, A0 = 1, and
α = 0.55. (a) 〈Lz〉1 vs the driving frequency ω at various values of
the Larmor frequency 
. Solid line, 
 = 0.5; dashed line, 
 = 1.5;
dotted line, 
 = 3.0. (b) 〈Lz〉1 vs 
 at various values of ω. Solid line,
ω = 0.5; dashed line, ω = 1.5; dotted line, ω = 3.0.

reversal of 〈Lz(ω)〉1 the isotropy parameter V (ω) of the mean
trajectory of the particle tends to zero. Thus, in this case the
particles position ellipse reduces to a line and consequently
the mean position behaves as a one-dimensional oscillator
subjected to a periodic force. It is important to note that this
phenomenon also occurs in the case without external trapping,
ω0 = 0. This contrasts with the case of Stokes friction (α = 1,
i.e., without memory), where such an effect at ω0 = 0 is
absent. Thus, in some cases the sign reversals of the mean
angular momentum can give an indicator to estimate the
viscoelastic properties of the medium in possible experiments.
Second, a multiresonance of 〈Lz〉1 versus ω and a resonance
of 〈Lz〉1 versus the Larmor frequency 
 appear. Although
the dependence of the positions and height of resonance
peaks on system parameters is generally very complicated
and thus the corresponding formulas are lengthy and not
transparent, it is possible to find simple analytical results for
some particular cases. In particular, for the case ω = ω0 we
obtain that the position of the resonance peak of 〈Lz(
)〉1 is
determined by


ex = γ

ω1−α
0

√
3

√
cos(απ ) +

√
3 + cos2(απ ). (54)

The corresponding extreme value of the mean angular momen-
tum reads as

〈Lz(
ex)〉1 = A2
0ω

1−2α
0

√
3

8γ 2 sin
(

π
2 α

)
sin(πα)

×
⎡
⎣1 + cos(πα)√

cos(πα) +
√

3 + cos2(πα)

⎤
⎦. (55)

Evidently, the maximum of 〈Lz(
)〉1 increases and the position
of the resonance peak 
ex shifts to smaller values of the
Larmor frequency as the friction coefficient γ decreases. The
dependence of 〈Lz(
ex)〉1 on the memory exponent α is more
interesting. In the case without memory, α = 1, the reso-
nance versus 
 is absent, i.e., 〈Lz(
ex)〉1 = 0. If α decreases,
the height of the resonance peak increases monotonically and
the position of the peak is shifted from 
ex = γ√

3
at α ≈ 1

to 
ex = γ /ω0 at α = 0. Notably, at strong memory, α → 0,
the height of the peak tends to infinity, which is in accordance
with the fact that, due to the cage effect, an effective friction
coefficient tends to zero at α = 0. Here we emphasize that
in this regime, ω = ω0, the resonance 〈Lz〉1 versus 
 is a
memory-induced effect, since in the case without memory
〈Lz〉1 is always zero.

Differently from 〈Lz〉1, the noise-induced part 〈Lz〉2 of the
mean angular momentum 〈Lz〉as [see Eq. (31)] is independent
of the driving frequency ω. From Eqs. (33) and (B3), there
follows the somewhat surprising circumstance that the depen-
dence of 〈Lz〉2 on the Larmor frequency 
 is qualitatively
different for the regimes δ > α and δ < α (see Fig. 8).

Although in both cases the function 〈Lz(
)〉2 exhibits a
resonancelike nonmonotonic dependence on 
, in the case
δ > α the local extremum of 〈Lz〉2 is a minimum, but if the
memory exponent α is larger than the noise exponent δ, α > δ,
the local extremum is a maximum. The influence of the noise
exponent δ is characterized by the following scenario: for
small values of δ, δ < α, the maximum of 〈Lz〉2 is positive and
decreases as δ increases. At δ = α the resonance disappears,
〈Lz〉2 = 0. For further increasing values of δ, a negative
resonant minimum of 〈Lz〉2 appears, which gets more and more
pronounced as δ tends to 1. Notably, in the case of an internal
noise, i.e., δ = α, the noise-induced part of the mean angular
momentum vanishes, 〈Lz〉2 = 0, for any values of the other
system parameters. As in both components, 〈Lz〉1 and 〈Lz〉2,
of the mean angular momentum 〈Lz〉as [see Eqs. (31)–(33)] the
resonance phenomena versus 
 are controlled by independent
system parameters, such as the external driving frequency ω

and amplitude A0 for 〈Lz〉1 and the noise parameters δ and D

for 〈Lz〉2, it is obvious that depending on the values of system
parameters the dependence of the total angular momentum
〈Lz〉as on the Larmor frequency can exhibit a variety of
multiresonance structures. The latter claim is illustrated in
Fig. 9 at two parameter regimes.

Both graphs exhibit three local extrema and two sign
reversals. The maximum in Fig. 9(a) corresponds to the
resonance of 〈Lz〉1 and the minima emerge as a result of the
resonant behavior of 〈Lz〉2; in the case exposed in Fig. 9(b)
the situation is vice versa. This is in contrast with the case
of an internal noise, δ = α, where the dependence of 〈Lz〉as
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FIG. 8. Dependence of the noise-induced component 〈Lz〉2 of the
mean angular momentum [see Eqs. (31) and (33)] on the Larmor
frequency 
. System parameter values: ω0 = 1, γ = 2.5, and D =
5. (a) The case of δ > α, α = 0.2. Solid line, δ = 0.9; dashed line,
δ = 0.7; dotted line, δ = 0.5. (b) The case of δ < α, δ = 0.4. Solid
line, α = 0.8; dashed line, α = 0.6; dotted line, α = 0.5. At 
 → ∞,
all curves tend to zero as a power law.

on 
 is always monomodal and sign reversals of the angular
momentum versus 
 are absent.

The effects of resonance and sign reversals are not restricted
to the dependencies of the angular momentum on 
 and ω,
but also occur in the dependence of 〈Lz〉as on other system
parameters, particularly on α.

Figure 10 depicts, at some parameter values, the memory-
induced resonance and sign reversals for 〈Lz〉as versus the
memory exponent α for systems with external trapping, ω0 �=
0, and without trapping, ω0 = 0. At very strong memory,
α → 0, in both systems 〈Lz〉as decreases, due to the cage
effect, rapidly to −∞, i.e., an instability occurs at α = 0. All
graphs 〈Lz(α)〉as demonstrate memory-induced sign reversals
at intermediate values of α. In the parameter regime corre-
sponding to the dotted line in Fig. 10 the contribution of the
noise independent component 〈Lz〉1 in 〈Lz〉as is substantial,
causing a resonancelike peak at relatively small values of α. For
other curves in Fig. 10 the influence of 〈Lz〉1 on the qualitative
behavior of 〈Lz(α)〉as is rather small and thus in these cases
the behavior of 〈Lz〉as reflects mainly an interplay of colored
noise and memory. Particularly, in the case without external
trapping (ω0 = 0) the main difference from the case ω0 �= 0 is
the occurrence of a noise-induced instability, which causes a
rapid unlimited increase of 〈Lz〉as at α ≈ αcr = (2 + δ)/3 [see
also Fig. 10(a)].

FIG. 9. Multiresonance of the particle mean angular momentum
〈Lz〉as vs the Larmor frequency 
 computed from Eqs. (31)–(33) at
the time scaling ω0 = 1. System parameter values: D = 5, δ = 0.4,
and γ = 2.5. (a) The parameter regime: δ > α, ω = 1, α = 0.1, and
A0 = 1. (b) The parameter regime: α > δ, ω = 4, α = 0.6, and A0 =
1.5.

IV. CONCLUSIONS

Motivated by studies of the dynamics of charged particles
in plasmas in the presence of a magnetic field [3,37], we have
considered the stochastic dynamics of a charged fractional
oscillator with a power-law memory kernel under the action
of crossed periodic electric field and a constant magnetic field.
Fluctuations of the input, arising from particles interaction with
environment, are expressed as an additive fractional Gaussian
noise, which is assumed to be the sum of two uncorrelated
contributions: an internal noise with an exponent α and an
external noise with an exponent δ.

The main aim of the present paper was, using the GLE
approach, to obtain the exact formulas for the output first-order
and second-order statistical moments generated by the model
considered. In the long-time limit, we have been able to
derive exact analytical expressions of the particles’ position
distribution and the mean angular momentum.

As our main result we have established that in the inves-
tigated model an interplay of the memory, external periodic
forcing, magnetic field, and colored noise effects can generate
a rich variety of nonequilibrium phenomena, namely, (i) in
the case of an external noise (i.e., without internal noise)
the existence of the critical memory exponent αcr = 0.5 for
an externally unbounded particle, which marks, by certain
conditions for the noise exponent δ [see Eq. (28)], a dynamical
transition from the confined dynamics of the particle to the
subdiffusive (or superdiffusive) regime; (ii) a memory-induced
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FIG. 10. The mean angular momentum 〈Lz〉as as a function of the
memory exponent α computed from Eqs. (31), (32), and (B3). The
system parameter values: ω = 1: 
 = 3.8, δ = 0.6, A0 = 1.5, D =
5. (a) The case of memory-induced trapping, ω0 = 0; solid line, γ =
3; dashed line, γ = 4; dotted line, γ = 5. (b) The case of external
harmonic trapping, ω0 = 1: solid line, γ = 3; dashed line, γ = 3.5;
dotted line, γ = 4. Note that in panel (a) the mean angular momentum
tends to infinity at the critical value αcr of the memory exponent,
αcr ≈ 0.867. All curves tend to −∞ at α = 0.

strong resonancelike suppression of the particles spatial dis-
persion at intermediate values of the memory exponent α in
the case of high values of the Larmor frequency 
; (iii) a
multi-resonance-like behavior of the anisotropy in the particle
position distribution versus the driving frequency, implying

that it can be efficiently excited by an oscillating external force,
even in the case without external trapping; (iv) multiresonance
and sign reversals of the mean angular momentum 〈Lz〉as

of charged particles versus the driving frequency, versus the
Larmor frequency, and even versus the memory exponent; and
(v) by the presence of a trapping potential the existence of
three qualitatively different behaviors of the particles position
variance σxx versus 
, depending on the values of the exponent
of an external noise 0 < δ < 1: if δ > α, then by increasing 
,
the variance σxx decreases to an equilibrium value determined
by an internal noise; if δ = α, i.e., in the case of an internal
noise, σxx is independent of 
 and α; for δ < α, the variance
σxx increases as 
 increases. This contrasts with the case
of Stokes friction (α = 1), where σxx always increases (or
remains constant at δ = 1) by increasing 
. Moreover, another
important effect, perhaps also from an experimental point of
view, is the sign reversals of 〈Lz〉as by increasing 
. Since
in the case of internal noise such sign reversals are absent,
the emergence of a sign reversal of 〈Lz〉as by a variation of
the Larmor frequency is an indication of the domination of
external noise in the random input.

We believe that the results of this paper not only supply
material for theoretical investigations of fractional dynamics
in stochastic systems but also suggest some possibilities for in-
terpreting experimental data, especially in the field of plasmas
[32–35,38]. A further detailed study is, however, necessary,
especially an investigation of the behavior of second moments
in the case of more general internal noises, e.g., a Mittag-Leffler
noise with a characteristic memory time for the memory kernel
[47,48]

Finally, according to the results of Ref. [20], we speculate
that the model discussed in this paper can be expanded to one
suitable for studying systems with an additional multiplicative
noise (e.g., for systems in a fluctuating magnetic field).
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APPENDIX A: FORMULAS FOR THE RELAXATION FUNCTIONS

1. Laplace transforms of the relaxation functions

The relaxation functions Hik(t) in Eq. (12) can be obtained by means of the Laplace transformation technique. From
Eqs. (10)–(13) with the initial conditions

Hik(0) = δik

we obtain the following system of algebraic linear equations for Ĥik(s), i.e., for the Laplace transforms of Hik(t) [see Eq. (13)]:

sĤ1k − Ĥ2k = δ1k,

ω2
0Ĥ1k + (s + γ sα−1)Ĥ2k − 
Ĥ4k = δ2k,

sĤ3k − Ĥ4k = δ3k,


Ĥ2k + ω2
0Ĥ3k + (s + γ sα−1)Ĥ4k = δ4k, (A1)
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where k = 1, . . . ,4. The solution of Eqs. (A1) reads as

Ĥ12(s) = s2 + γ sα + ω2
0

D(s)
, (A2)

Ĥ32(s) = − s


D(s)
, (A3)

Ĥ11(s) = Ĥ33 = 1

s

[
1 − ω2

0Ĥ12(s)
]
, (A4)

Ĥ34(s) = 1

s
Ĥ22(s) = 1

s
Ĥ44(s) = − 1

ω2
0

Ĥ21(s) = − 1

ω2
0

Ĥ43(s) = Ĥ12(s), (A5)

Ĥ14(s) = 1

s
Ĥ24 = −1

s
Ĥ42 = s

ω2
0

Ĥ31 = − s

ω2
0

Ĥ13(s) = 1

ω2
0

Ĥ41(s) = − 1

ω2
0

Ĥ23(s) = −Ĥ32(s), (A6)

where

D(s) = (
s2 + γ sα + ω2

0

)2 + s2
2. (A7)

2. Time dependence of the relaxation functions

To evaluate the inverse Laplace transform of Ĥik(s) [see Eqs. (A2)–(A7)] we use the residue theorem method described in
Ref. [49]. As all other relaxation functions Hik(t) can be found from expressions for H12(t) and H32(t) with the help of simple
time differentiation or integration we confine ourselves here to the relaxation functions H12(t) and H32(t). The inverse Laplace
transform gives

H12(t) = γ sin(πα)

π

∫ ∞

0
dr

rαe−rt

B̃(r)

{
γ 2r2α − r2
2 + (

r2 + ω2
0

)[
r2 + ω2

0 + 2γ rα cos(πα)
]} − Re

[
s1e

s1t

C(s1)
+ s2e

s2t

C(s2)

]
, (A8)

H32(t) = 2γ
 sin(πα)

π

∫ ∞

0
dr

r1+αe−rt

B̃(r)

[
r2 + ω2

0 + γ rα cos(πα)
] + Im

[
s1e

s1t

C(s1)
+ s2e

s2t

C(s2)

]
. (A9)

Here s1 and s2 are the complex zeros of the equation

s2 + γ sα + ω2
0 − is
 = 0, (A10)

where Eq. (A10) is defined by the principal branch of sα . The functions B̃(r) and C(s) are determined by

C(s) = 2ω2
0 + (2 − α)γ sα − i
s (A11)

and

B̃(r) =
{[

r2 + ω2
0 + γ rα cos(πα)

]2 + γ 2r2α sin2(πα) + 
2r2
}2

− 4
2γ 2r2(1+α) sin2(πα). (A12)

The relaxation functions H12(t) and H32(t) can also be represented via a series of Mittag-Leffler-type special functions [43].
But as in the latter case the numerical calculations are very complicated, we suggest, apart from possible representations via
Mittag-Leffler functions, a numerical treatment of Eqs. (A8)–(A12).

3. Asymptotic behavior of the relaxation functions

Now we present the behavior of the functions H11(t),H12(t), and H32(t) at a long-time limit (t → ∞). The asymptotic behavior
of Hik(t) is obtained from Eqs. (A2)–(A7) using the Tauberian theorem [50]:

H11(t) = H33(t) ∼ γ

ω2
0	(1 − α)

× t−α, (A13)

H12(t) ∼ αγ

ω4
0	(1 − α)

× t−(1+α), (A14)

H32(t) ∼ 2α(α + 1)
γ

ω6
0	(1 − α)

× t−(2+α). (A15)

Thus, at a long-time limit the relaxation functions Hik(t) decay as a power law. In the particular case of a “free” particle, i.e.,
without the harmonic trapping field, ω0 = 0, the asymptotic behavior of Hik(t) is different. Namely, at the long-time limit we
obtain

H11(t) = H33(t) = 1, (A16)

H12(t) ∼ 1

γ	(α)
t−(1−α), (A17)
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H32(t) ∼ (1 − 2α)


γ 2	(2α)
t−2(1−α). (A18)

From Eqs. (A16) and (12) it follows that in this case the mean position of the free particle depends strongly on the initial position,
even by t → ∞.

APPENDIX B: INTEGRALS FOR SECOND MOMENTS

Here the exact formulas for calculations of the variance σxx and the angular momentum 〈Lz〉2 [see Eqs. (23) and (33)] at the
long-time limit, t → ∞, are presented. From Eqs. (23), (24), (A8), and (A9) one can conclude that σxx is given by

σxx = 2γ sin(πα)

π

∫ ∞

0

rα

B̃(r)

(
M̂1(r)

{
γ 2r2α − r2
2 + (

r2 + ω2
0

)[
r2 + ω2

0 + 2γ rα cos(πα)
]}

+ 2
rM̂3(r)
[
r2 + ω2

0 + γ rα cos(πα)
])

dr + 2Im

[
s1M̂3(−s1)

C(s1)
+ s2M̂3(−s2)

C(s2)

]
− 2Re

[
s1M̂1(−s1)

C(s1)
+ s2M̂1(−s2)

C(s2)

]
,

(B1)

where

M̂k(s) = Dsδ−1Ĥk2(s), k = 1,3. (B2)

Using formulas (33), (A8), (A9), and (B2) we obtain that the angular momentum 〈Lz〉2 can be evaluated as follows:

〈Lz〉2 = 2γ sin(πα)

π

∫ ∞

0

rα+1

B̃(r)

(
M̂3(r)

{
γ 2r2α − r2
2 + (

r2 + ω2
0

)[
r2 + ω2

0 + 2γ rα cos(πα)
]}

−2
rM̂1(r)
[
r2 + ω2

0 + γ rα cos(πα)
])

dr + 2Im

[
s2

1M̂1(−s1)

C(s1)
+ s2

2M̂1(−s2)

C(s2)

]
+ 2Re

[
s2

1M̂3(−s1)

C(s1)
+ s2

2M̂3(−s2)

C(s2)

]
.

(B3)

In a particular case where the trapping potential is absent (ω0 = 0), the integral in Eq. (B3) converges only if α < 2
3 + δ

3 . If the
memory exponent α > 2

3 + δ
3 , then the mean angular momentum 〈Lz〉2 grows unlimited as

〈Lz(t)〉2 ∼ t3α−δ−2, ω0 = 0, α >
2

3
+ δ

3
, t → ∞. (B4)

APPENDIX C: FORMULAS FOR THE CASE OF AN INTERNAL NOISE

In the internal noise situation (δ = α) the variance σxx(t) can be conveniently simplified using Eqs. (3) and (6) and the double
Laplace transform technique [51]. From Eqs. (3), (6), (20), (A2), and (A3) we obtain

σxx(t) = kBT

{
2

∫ t

0
H12(τ )dτ − H 2

12(t) − H 2
32(t) − ω2

0

[∫ t

0
H12(τ )dτ

]2

− ω2
0

[∫ t

0
H32(τ )dτ

]2}
. (C1)

In the case of an internal noise, the stationary state corresponds to the equilibrium state. Using Eqs. (A2) and (A3) and the
Tauberian theorems [50] the strict t → ∞ limit in Eq. (C1) gives

σxx(∞) = kBT

ω2
0

. (C2)

Applying Tauberian theorems in (C1) it can be deduced that the long-time asymptotic behavior of σxx becomes

σxx(t) = kBT

ω2
0

{
1 − γ 2

ω4
0[	(1 − α)]2t2α

+ 2γ 2
2α(α + 3)

ω8
0[	(1 − α)]2t2(1+α)

}
+ O

(
1

t3α

)
, (C3)

where t � (γ /ω2
0)1/α and the term proportional to 
2 characterizes the main contribution of the magnetic field in the asymptotic

expansion (C3). In the case without a trapping potential (ω0 = 0) the dynamics of the Brownian particle is subdiffusive, the
asymptotic behavior of the variance is given by

σxx(t) = 2kBT tα

γ	(1 + α)

[
1 − 
2	(1 + α)(3α − 1)

γ 2	(3α)t2(1−α)

]
+ O

(
1

tλ

)
, (C4)

where λ = 2(1 − α), if α < 2
3 , and λ = 4 − 5α, if α > 2

3 . Here we emphasize that the asymptotic formulas (C3) and (C4) are
not applicable close to α = 1 (i.e., in the case of a normal diffusion). In this case the relaxation functions H12(t) and H32(t)
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decay exponentially in time [see also Eqs. (A8) and (A9)], i.e., a slow relaxation of power-law order is absent. Note that the
behavior of the normal diffusion process (α = 1) of a charged Brownian particle in a constant magnetic field has been theoretically
investigated in detail (see, e.g., Refs. [3,46]). Particularly, in the case of α = 1 Eq. (C4) reduces to

σxx(t) = 2kBT γ t

γ 2 + 
2
+ O(1), (C5)

which is a result obtained in Ref. [46].
Finally, applying the double Laplace transform technique, from Eqs. (3), (6), (20), (21), (A2), and (A3) it follows that in the

case of an internal noise (δ = α) the noise-induced angular momentum 〈Lz〉2 [see also Eq. (33)] vanishes for all values of other
system parameters, i.e.,

〈Lz〉2 = 0. (C6)
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