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Multispecies exclusion process with fusion and fission of rods:
A model inspired by intraflagellar transport
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We introduce a multispecies exclusion model where length-conserving probabilistic fusion and fission of the
hard rods are allowed. Although all rods enter the system with the same initial length � = 1, their length can keep
changing, because of fusion and fission, as they move in a step-by-step manner towards the exit. Two neighboring
hard rods of lengths �1 and �2 can fuse into a single rod of longer length � = �1 + �2 provided � � N . Similarly,
length-conserving fission of a rod of length �′ � N results in two shorter daughter rods. Based on the extremum
current hypothesis, we plot the phase diagram of the model under open boundary conditions utilizing the results
derived for the same model under periodic boundary condition using mean-field approximation. The density
profile and the flux profile of rods are in excellent agreement with computer simulations. Although the fusion and
fission of the rods are motivated by similar phenomena observed in intraflagellar transport (IFT) in eukaryotic
flagella, this exclusion model is too simple to account for the quantitative experimental data for any specific
organism. Nevertheless, the concepts of “flux profile” and “transition zone” that emerge from the interplay of
fusion and fission in this model are likely to have important implications for IFT and for other similar transport
phenomena in long cell protrusions.

DOI: 10.1103/PhysRevE.97.012138

I. INTRODUCTION

Nonequilibrium stationary state (NESS) of a driven system
[1–3] is the counterpart of the state of equilibrium in a thermo-
dynamic system. Totally asymmetric simple exclusion process
(TASEP) [4–6] is a paradigmatic model for theoretical studies
of the fundamental physical principles underlying NESS in
systems of interacting self-driven particles.

A nonvanishing average unidirectional flow of particles
through the system in its stationary state is a macroscopic
indicator of the fact that steady state of TASEP is never in equi-
librium. Under open boundary conditions (OBC), the density
profile, which depicts the average stationary site occupational
probabilities, is another macroscopic characteristic of the
NESS of TASEP. Both these fundamental macroscopic charac-
teristics of the NESS of TASEP can be computed, as averages,
from the stationary configurational probabilities {P ss(C)}
and the corresponding probability currents {J ss(C → C ′)},
which together provide a complete and unique microscopic
description of each NESS of TASEP [7].

In more general formulations of TASEP, the particles are
replaced by hard rods, each of length �, where the length of
the rods are measured in the units of lattice spacing [8–10].
From now onwards we will refer to particles also as rods
with � = 1. Multispecies TASEP are known to exhibit richer
varieties of phenomena compared to those in single-species
TASEP [11]. Both single-species and multispecies TASEP,
and their various extensions, have also found applications in

*Corresponding author: debch@iitk.ac.in

modeling collective phenomena at many scales, starting from
macroscopic vehicular traffic on highways to molecular motor
traffic on filamentous tracks in living cells [12–25].

The distinct species of rods can be distinguished by either
their length or their distinct kinetics (or both). In this paper we
study a biologically motivated exclusion process with N (N >

1) allowed species of rods, �th species having length � (in the
units of lattice spacing), where the species are interconvertible
because of the ongoing fusion and fission of the rods. Two
rods of length �′ and �′′ (�′,�′′ = 1,2,3, . . . ,N) in contact with
each other are allowed to fuse resulting in a longer rod of
length � = �′ + �′′, provided � � N . Similarly, a rod of length
� (� � N ) can split into two shorter rods of lengths �′′′ and �′′′′.
The constraint imposed on the maximum size of a rod can be
relaxed by allowing the limit N → ∞.

The model developed in this paper is motivated by intraflag-
ellar transport (IFT), which is directed stochastic transport
of molecular cargoes in long protrusions of some eukaryotic
cells. A brief summary of IFT is presented in the next section.
Although the processes of fusion and fission of the rods in our
model is motivated by IFT, this model is not intended to account
for experimental data in any specific flagellated cell. Instead,
the model focusses on the consequences of ongoing fusion and
fission on the collective spatiotemporal organization of the N

species of interconvertible particles in the NESS of the system.
By a combination of mean-field theory (MFT) and Monte

Carlo (MC) simulations, we demonstrate qualitatively distinct
features of the density profile and flux in this model. The
density profile exhibits a “transition zone” (TZ) whose thick-
ness depends on the fusion-fission kinetics. We introduce the
concept of “flux profile” to highlight the relative contributions
of the interconvertible species of particles and rods to the
overall flux as they move forward along the lattice.
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II. BRIEF INTRODUCTION TO IFT

Transport of various types of molecular and membrane-
bound cargoes in eukaryotic cells is carried out by molecular
motors that are driven along filamentous tracks [26,27]. Tubu-
lar stiff filaments, called microtubules (MT), serve as tracks for
two “superfamilies” of molecular motors which move naturally
in opposite directions by consuming chemical fuels. Cargo
transport plays a crucial role in the growth, maintenance and
shrinkage of wide varieties of long protrusions of cells. A flag-
ellum is a membrane-bound cylindrical cell protrusion found
in some eukaryotic cells (for example, unicellular eukaryote
Chlamydomonas reinhardtii). Inside this cylinder nine doublet
MTs, arranged in a cylindrically symmetric fashion, extend
from the base to the tip of the protrusion. The eukaryotic
flagella (not to be confused with bacterial flagella) are also
referred to as cilia.

IFT is the phenomenon of bidirectional transport of mul-
tisubunit protein complexes, called IFT particles, within the
space between the MT and the ciliary membrane, where the
motors hauling the cargoes walk along the MT tracks. Because
of their superficial similarities with cargo trains hauled along
railway tracks, chainlike assemblies formed by IFT particles
are called IFT trains [28–31].

In principle, stochastic stepping of motors can speed up
a following IFT train or slow down a leading IFT train
thereby causing their physical contact that, occasionally, leads
to their probable fusion. Similarly, abrupt tension generation
by asynchronous stepping of motors can, in principle, rupture
the bond between two neighboring IFT particles in an IFT
train which manifests as a probabilistic fission event. Fusion
and fission of IFT trains have, indeed, been observed [28–30].
These stochastic fusion and fission processes are captured by
the model reported in this paper.

Any model intended to account for experimental data on IFT
must describe both anterograde (tipward) and retrograde (base-
ward) IFT within a single theoretical framework. Therefore, it
has to include not only two distinct tracks, representing a MT
doublet, but also allow different values of the model parameters
for the kinetics of anterograde and retrograde IFT trains.
Inadequacy of experimentally measured quantitative data from
the same flagellated cell makes it difficult to assign these rates.
Moreover, the effects of the observed tight association between
the inner surface of the ciliary membranes and the IFT trains
on the structure and dynamics of the latter is not known and,
hence, difficult to model theoretically. Furthermore, complete
specification of such a model of IFT will also require prescrip-
tions for coupling the anterograde and retrograde fluxes at the
flagellar tip as well as at the base; experimental information
available at present are not adequate to prescribe such rules
[32]. Therefore, no attempt is made in this paper to develope
a complete kinetic model that would account for experimental
data on IFT in any specific flagellated cell.

III. MODEL AND METHODS

The track is denoted by a one-dimensional (1D) lattice
where each site is labeled by the integer index i(i = 1, . . . ,L);
the sites i = 1 and i = L correspond to the sites of entrance
and the exit, respectively, at the two boundaries of the lattice

FIG. 1. Model: Only rods of length � = 1 enter the one-
dimensional lattice from the left. Such a rod can occupy the leftmost
site, with rate α, only if it is not already occupied by another at that
instant of time. Then, obeying exclusion, the rods hop forward with
length-independent hopping rate p. In addition, two neighboring rods
can undergo fusion, with rate fu, thereby resulting in a single rod of
length �, provided � � N . Any rod of length � > 1 can suffer a fission,
with rate fi , resulting in two neighboring rods. The rods exit, with rate
β, from the last site. Note that each fusion and fission event conserves
total length (equivalently, mass). All possible combinations of the
pairs that conserve the total length are equally probable result of a
fission event. The probability of fission and that of exit from the last
site are both independent of the instantaneous length of a rod.

(see Fig. 1). Location of the rod is specified by the lattice site
i which the leftmost tip of the rod occupies. The probability of
finding a rod of length � at site i at time t is denoted by P�(i,t);
in a steady state of the system, P�(i,t) becomes independent
of time t . A rod of length � at site i covers site i to i + � − 1
simultaneously, with its leftmost tip at site i. Because of mutual
exclusion, none of the sites can be covered simultaneously
by more than one rod. The mutual exclusion is captured by
the conditional probability ξ (i|i + �) that the site i + � is not
covered by another rod, given that there is a rod of length � at
site i (see the Appendix for derivation).

Only rods of length � = 1 enter the 1D lattice from left
and occupy the leftmost site (i = 1), with rate α, provided
that site is not already occupied at that instant by any other
rod. After entry, obeying exclusion, the rods hop forward with
length-independent hopping rate p.

Two neighboring rods of length �′ and �′′ can fuse, with
rate fu, resulting in a single rod of length � = �′ + �′′ provided
� � N . Similarly, any rod of length � > 1 can split, with rate
fi , resulting in two neighboring particles of lengths �′′′ and �′′′′
such that �′′′ + �′′′′ = �. Thus, each fusion and fission event
is a length-conserving process. All the rods of length � > 1
are equally prone to fission irrespective of their individual
instantaneous lengths; all possible pairs {�′,�′′} that satisfy
�′ + �′′ = � are equally probable result of a fission event. For
convenience, we define a dimensionless “stickiness” parameter
K = fu/fi . Some other possible alternative rules for the
fusion-fission kinetics of the rods, mentioned in the concluding
section, will be explored in a future publication [33].

The rods of all lengths � (� = 1,2, . . . ,N) exit from right
boundary (i = L) with a length-independent rate β. There are
� − 1 dummy sites available beyond i = L (from i = L + 1
to i = L + � − 1). For rods located at i > (L − �), the leading
edge is out of the track (resting on the dummy sites), and these
rods can hop from i to i + 1 with rate p without any hindrance
as dummy sites are always available.
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The entry and exit of rods described above are essential for a
complete specification of the kinetics of the model under open
boundary conditions (OBC). However, by converting the finite
lattice into a closed chain, one can reduce the model to a simpler
version with periodic boundary condition (PBC). Analysing
the system under PBC gives insights into the interplay of
forward hopping and fusion-fission processes. Moreover, as
we show later, important results for the model under the more
realistic OBC can be derived exploiting the results obtained
under PBC.

In the NESS the fraction of each species (which is identical
to their respective probabilities), for a given K , is given by
F� = P�/

∑N
�=1 P� from which the average length 〈�〉 and the

randomness parameter R, which is a measure of the length
fluctuations, can be calculated using

〈�〉 =
N∑

�=1

�F�, R =
√∑N

�=1(� − 〈�〉)2F�

〈�〉 . (1)

The �-dependent number flux J� is defined as the number
of rods of length � passing through a given point per unit time.
The mass flux Jmass is defined as the total mass of the rods
(in our units, a rod of length � is assumed to have a mass �)
which passes through a given point per unit time. Thus, these
two fluxes are given by

J� = pP�ξ (i|i + �), and Jmass =
N∑

�=1

�J�, (2)

respectively.
For a theoretical treatment of the model, the exact multisite

configurational probabilities are approximated, under mean-
field approximation (MFA), by products of single-site occu-
pational probabilities P�(i,t) (1 � i � L). Master equations
governing the time evolution of the probabilities P�(i,t) (1 �
i � L) are written down capturing all the kinetic processes,
namely, entry, exit, hopping, fusion, and fission of the rods.

In the NESS, under PBC, these master equations are
independent not only of time t but also of the site index i.
Because of this additional simplicity, the equations can be
solved analytically to derive the corresponding expressions
for the characteristic quantities introduced above. However,
the master equations remain site dependent even in the NESS
under OBC; consequently, treatments under OBC require
combination of analytical and numerical solutions as described
in the sections below where these results are presented.

In the MC simulation of our model, the lattice sites, which
are denoted by the integers i (1 � i � L), are chosen randomly

with equal probability. The status of the site is then updated
according to the kinetics that defines the model. In other words,
we implement a site-oriented random-sequential updating rule.
A total of L successive updates constitutes a single MC step.
Since we are interested exclusively in the steady state of the
system, it is adequate to express time in the units of MC
steps. Accordingly, all the rates p,α,β,fu,fi are appropriately
converted to the corresponding probabilities per MC step
(MCS).

If the randomly chosen site i happens to accommodate
the leftmost tip of a rod of length �, then one of the three
possible mutually exclusive choices for updating is imple-
mented according to the following rules: (i) with the probability
p/(2fu + fi + p) the the rod hops forward, provided the
downstream site (i + �) is empty; (ii) with the probability
fu/(2fu + fi + p) the rod fuses with the adjacent rod of length
�′ touching its front (or, with the same probability, the rod fuses
with the neighboring rod of length �′ touching its rear) provided
�′ + � � N ; and (iii) with the probability fi/(2fu + fi + p)
a fission of the rod occurs where all possible pairs {�′,�′′}
that satisfy �′ + �′′ = � are equally probable result of a fission
event.

For the case of OBC, additional update rules need to
specified for the entry and exit at the left and right boundaries,
located at i = 1 and i = L, respectively. At the left boundary
of the lattice, entry of only a particle of length � = 1 is allowed,
with rate α, if and only if the site i = 1 is empty. At the right
boundary, if the left edge of a rod is located at i = L, it is no
more allowed to fuse or split, irrespective of its length, but it
can make an exit from the lattice with a length-independent
rate β.

As the state system was updated following the rules listed
above, the flux profile was monitored continuously. Long
before the completion of the first 107 MCS, the flux profile
became steady (except for minor fluctuations around the steady
value) thereby indicating attainment of the NESS. Thereafter
the numerical data for the various properties of interest were
collected for the next 107 MCS to compute the average steady-
state properties.

IV. RESULTS UNDER PBC

We first present the master equations for an arbitrary value
of the integer N . As described above, the probability of finding
a rod of length � at site i at time t is denoted by P�(i,t). Time
evolution of P�(i,t) (1 � � � N ) are given by the following
master equations:

dP�(i,t)

dt
=

HOPPING terms︷ ︸︸ ︷
pP�(i − 1,t)ξN (i − 1|i + � − 1) − pP�(i,t)ξN (i|i + �)

+

gain by FISSION︷ ︸︸ ︷
fi

N∑
s=�+1

(
1

s − 1

)
Ps(i,t)︸ ︷︷ ︸

fission of a rod of length s(> �)
located at i

+ fi

N∑
s=�+1

(
1

s − 1

)
Ps(i − s + �,t)

︸ ︷︷ ︸
fission of a rod of length s(> �)

located at i − s

+

gain by FUSION︷ ︸︸ ︷
fu

�−1∑
s=1

Ps(i)P�−s(i + s)

︸ ︷︷ ︸
fusion of a rod of length s at i

with a rod of length � − s at i + s
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−
loss by FISSION︷ ︸︸ ︷
fiP�(i,t)︸ ︷︷ ︸

fission of a rod of length � located at i

−

loss by FUSION︷ ︸︸ ︷
fu

N−�∑
s=1

P�(i,t)Ps(i + �,t)

︸ ︷︷ ︸
fusion of rod of length � at i

with rod of length s at i + �

− fu

N−�∑
s=1

P�(i,t)Ps(i − s,t)

︸ ︷︷ ︸
fusion of rod of length �

at i with rod of length s at i − s

(3)

for all i (1 � i � L). Although the equations are written above for an arbitrary N > 1, for simplicity, we present our analysis
only for the special cases N = 2 and N = 3. Master equations governing the evolution of rods for N = 2 are

dP1(i,t)

dt
= pP1(i − 1)ξ2 − pP1(i)ξ2︸ ︷︷ ︸

hopping terms

+ fiP2(i,t) + fiP2(i − 1,t)︸ ︷︷ ︸
gain by fission of � = 2

−fuP1(i)P1(i + 1)︸ ︷︷ ︸
loss by fusing with a rod stalled ahead

−fuP1(i)P1(i − 1)︸ ︷︷ ︸
loss by fusing with a rod stalled behind

, (4)

dP2(i,t)

dt
= pP2(i − 1)ξ2 − pP2(i)ξ2︸ ︷︷ ︸

hopping terms

+ fuP1(i)P1(i + 1)︸ ︷︷ ︸
gain by fusion of � = 1

− fiP2(i,t)︸ ︷︷ ︸
loss by fission

. (5)

Master equations governing the evolution of rods for N = 3 are

dP1(i)

dt
= pP1(i − 1)ξ3 − pP1(i)ξ3︸ ︷︷ ︸

hopping terms

+ fiP2(i) + fiP2(i − 1) + fi

2
P3(i) + fi

2
P3(i − 2)︸ ︷︷ ︸

gain by fission of � = 2 and � = 3

−fuP1(i)P1(i + 1) − fuP1(i)P1(i − 1)︸ ︷︷ ︸
loss by fusing with a rod

−fuP1(i)P2(i + 1) − fuP1(i)P2(i − 1)︸ ︷︷ ︸
loss by fusing with a rod

, (6)

dP2(i)

dt
= pP2(i − 1)ξ3 − pP2(i)ξ3︸ ︷︷ ︸

hopping terms

+ fi

2
P3(i) + fi

2
P3(i − 1)︸ ︷︷ ︸

gain by fission of � = 3

+ fuP1(i)P (i + 1)︸ ︷︷ ︸
gain by fusion

− fuP2(i)P1(i + 2) − fuP2(i)P1(i − 1)︸ ︷︷ ︸
loss by fusion

− fiP2(i)︸ ︷︷ ︸
loss by fission

, (7)

and

dP3(i)

dt
= pP3(i − 1)ξ3 − pP3(i)ξ3︸ ︷︷ ︸

hopping terms

−fiP3(i)︸ ︷︷ ︸
loss by fission

+ fuP1(i)P2(i + 1) + fuP2(i)P1(i + 2)︸ ︷︷ ︸
gain by fusion

. (8)

By definition, in the stationary state the probabilities become independent of time, i.e., dP�/dt = 0. Moreover, because of
the translation symmetry of the stationary state under PBC, the site dependence of P�(i) also drops out, i.e., P�(i) = P� for all i.
Therefore, in the stationary state, the master equations for the system under PBC, written in MFA, reduce to

KP 2
1 − P2 = 0 (9)

TABLE I. �-Dependent quantities for N = 2 and N = 3.

N � = 1 � = 2 � = 3

Number density (P�)
N = 2 ζ2,1

1
2 (ρc − ζ2,1)

N = 3 ζ3,1 ζ3,2 − 2
9 ζ3,1

ρc

3 − 5
27 ζ3,1 − 2

3 ζ3,2

Number flux (J�)
N = 2 2p(1−ρc)ζ2,1

(2−ρc )+ζ2,1

p(1−ρc)(ρc−ζ2,1)
(2−ρc)+ζ2,1

N = 3 27p(1−ρc)ζ3,1
16ζ3,1+9(3+2ζ3,2−2ρc )

3p(1−ρc)(9ζ3,2−2ζ3,1)
16ζ3,1+9(3+2ζ3,2−2ρc )

p(1−ρc)(9ρc−5ζ3,1−18ζ3,2)
16ζ3,1+9(3+2ζ3,2−2ρc)

Fraction (F�)
N = 2 2ζ2,1

ρc+ζ2,1

ρc−ζ2,1
ρc+ζ2,1

N = 3 27ζ3,1
9ρc+16ζ3,1+9ζ3,2

27ζ3,2−6ζ3,1
9ρc+16ζ3,1+9ζ3,2

9ρc−5ζ3,1−18ζ3,2
9ρc+16ζ3,1+9ζ3,2
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TABLE II. Other quantities for N = 2 and N = 3.

Quantity N = 2 N = 3

Jmass
2pρc(1−ρc )
(2−ρc )+ζ2,1

27pρc(1−ρc)
16ζ3,1+9(3+2ζ3,2−2ρc )

〈�〉 2ρc

ρc+ζ2,1

27ρc

(9ρc+16ζ3,1+9ζ3,2

σ� (standard deviation)
√

2
√

− ζ2,1(ζ2,1−ρ)
(ζ2,1+ρ)2

√
3

√
−224ζ3,1

2+81ζ3,2(−2ζ3,2+ρc)+ζ3,1(−414ζ3,2+306ρc)
[16ζ3,1+9(ζ3,2+ρc)]2

R

√
ζ2,1(−ζ2,1+ρc )

(ζ2,1+ρc )2
(ζ2,1+ρc )

√
2ρc

[16ζ3,1+9(ζ3,2+ρc)]

√
−224ζ3,1

2+81ζ3,2(−2ζ3,2+ρc )+ζ3,1(−414ζ3,2+306ρc )

(16ζ3,1+9(ζ3,2+ρc ))2

9
√

3ρc

for N = 2, subjected to the constraint

P1 + 2P2 = ρc (10)

while those for N = 3 reduce to

2KP1P2 − P3 = 0

KP 2
1 − P2 = 0 (11)

subjected to the constraint

P1 + 2P2 + 3P3 = ρc. (12)

Thus, under PBC, system of N master equations for the model reduce to N − 1 equations, recast in terms of K , subjected to the
following general mass conservation constraint:

N∑
�=1

�P� = ρc. (13)

In Table I, all the �-dependent quantities and in Table II some other quantities are summarised for N = 2, 3. Number densities and
other quantities are expressed in compact form using the terms ζN,n (n = 1,2, . . . ,N − 1) which are the functions of ρc and K .

These are

ζ2,1 =
√

1 + 8Kρc − 1

4K
, (14)

ζ3,1 = − 1

9K
− 7

9 21/3
(
23K3 + 243K4ρc + 9

√
3
√

5K6 + 46K7ρc + 243K8ρ2
c

)1/3

+
(
23K3 + 243K4ρc + 9

√
3
√

5K6 + 46K7ρc + 243K8ρ2
c

)1/3

9 22/3K2
, (15)

and

ζ3,2 = − 8

81K
+ 49K

81 22/3
(
23K3 + 243K4ρc + 9

√
3
√

5K6 + 46K7ρc + 243K8ρ2
c

)2/3

+
(
23K3 + 243K4ρc + 9

√
3
√

5K6 + 46K7ρc + 243K8ρ2
c

)2/3

162 21/3K3
. (16)

The specific flux profiles under PBC for a few different
values of the stickiness parameterK are plotted in Fig. 2 against
the coverage density ρc for N = 2 and N = 3. The analytical
predictions made by the MFT are in excellent agreement
with the corresponding MC data obtained for the same set
of numerical values of the model parameters. For conventional
single-species TASEP for hard rods of length �, under PBC, the
maximum of Jmass-ρc curve appears at the coverage density
ρ∗

c = √
�/(

√
� + 1). Under PBC, in the limit K → 0, rods

longer than � = 1 are practically nonexistent in the NESS,
irrespective of the initial conditions, and hence ρ∗

c → 1/2.

But in the opposite limit K → ∞, ρ∗
c → √

2/(
√

2 + 1) and
ρ∗

c → √
3/(

√
3 + 1) for N = 2 and N = 3, respectively. Thus,

by tuning K , we can induce a transition from a regime where
the track is populated almost exclusively by particles (i.e.,
rods of length � = 1) to a regime where practically all the
rods on the lattice have length � = N . Hence, over the range
0.1 < K < 10 regime, where fu and fi are comparable, a
heterogeneous dynamic population of all species of rods having
lengths � = 1,2, . . . ,N is observed (see Fig. 3).

Since it is too difficult to carry out the analytical calculations
in the N → ∞ limit, i.e., when the rods can grow by fusion
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FIG. 2. Species specific flux profiles under PBC for different
values of stickiness K for (a) N = 2 and (b) N = 3 (lines, MFT;
dots, simulation).

without constraint on the length, we have obtained the results
in this limit only by MC simulations. Note that the coverage
density ρc is conserved by the dynamics of the system under
PBC. Therefore, under the PBC with track length L and
coverage density ρc, the maximum length to which a rod can
grow is ρcL (which corresponds to a single rod formed by the
fusion of all the particles). As K increases, the mean size < � >

of the rods increases (see Fig. 4). In the limit K 	 1, almost
all the rods do merge to form a single rod of length 
 ρcL.
In Fig. 4(c), which corresponds to K = 500.0 and L = 1000,

FIG. 3. The coverage density ρ∗
C that corresponds to the maxi-

mum of Jmass obtained in mean-field theory under PBC are plotted
against the stickiness K for N = 1,2,3. The number of contiguous
bullets indicate the rod sizes.

the most probable length of the rod for ρc = 0.1 is, indeed,
ρcL = 100, whereas the probability of finding a rod of any
other length is practically vanishingly small. Thus, under PBC,
apart from K, another factor that governs the length distribution
is the coverage density ρc.

V. RESULTS UNDER OBC

The master equations for the model with OBC, under MFA,
in the special case N = 2 are as follows.

For i = 1:

P1(i,t)

dt
= α[1 − P1(i) − P2(i)] − pP1(i)ξ

−f uP1(i)P1(i + 1) + fiP2(i), (17)

P2(i,t)

dt
= f uP1(i)P1(i + 1)

−pP2(i)ξ − fiP2(i). (18)

For i = 2 to i = L − 2:

P1(i,t)

dt
= pP1(i − 1)ξ − pP1(i)ξ − [f uP1(i)P2(i + 1)]

−[f uP1(i)P1(i − 1)] + f iP2(i) + f iP2(i − 1),

(19)

P2(i)

dt
= pP2(i − 1)ξ − pP2(i)ξ

+[f uP1(i)P1(i + 1)] − f iP2(i). (20)

For i = L − 1:

P1(i,t)

dt
= pP1(i − 1)ξ − pP1(i + 1)

× [1 − P1(i + 1) − P2(i + 1)]

− f uP1(i)P1(i − 1) + fiP2(i) + fiP2(i − 1),

(21)

dP2(i)

dt
= pP2(i − 1)ξ − pP2(i) − fiP2(i). (22)

For i = L:

dP1(i)

dt
= pP1(i − 1)[1 − P1(i) − P2(i)]

−βP1(i) + fiP2(i − 1), (23)

dP2(i)

dt
= pP2(i − 1) − βP2(i). (24)

The master equations for the model with OBC, under MFA,
in the special case N = 3 are as follows:
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(a) (b) (c)

FIG. 4. Steady-state distribution of the lengths of the rods in limit N → ∞ under PBC with (a) K = 1, (b) K = 50, and (c) K = 500. For
all the three cases, ρc = 0.1 and L = 1000.

For i = 1:
dP1(i)

dt
= α[1 − P1(i) − P2(i) − P3(i)] − pP1(i)ξ − fuP1(i)P2(i + 1) + fiP2(i)

dP2(i)

dt
= −pP2(i)ξ − fiP2(i) + fuP1(i)P1(i + 1) + fi

2
P3(i) − fuP2(i)P1(i + 2)

dP3(i)

dt
= −pP3(i)ξ + fuP2(i)P 1(i + 2) + fuP1(i)P2(i + 1) − fiP3(i). (25)

For i = 2:
dP 1(i)

dt
= pP1(i − 1)ξ − pP1(i)ξ − fuP1(i)P1(i + 1) − fuP1(i)P1(i − 1)

−fuP1(i)P2(i + 1) + fiP2(i) + fiP2(i − 1) + fi

2
P 3(i)

dP2(i)

dt
= [pP 2(i − 1)ξ − pP2(i)ξ ] + fuP1(i)P1(i + 1) + fi

2
[P3(i) + P3(i − 1)]

−fi

2
P2(i) − fuP2(i)P1(i + 2) − fuP2(i)P1(i − 1)

dP 3(i)

dt
= [pP3(i − 1)ξ − pP3(i)ξ ] + f uP2(i)P 1(i + 2) + fuP1(i)P2(i + 1) − fiP3(i). (26)

For i = 3 to i = L − 3:
dP1(i)

dt
= pP1(i − 1)ξ − pP1(i)ξ − fuP1(i)P1(i + 1) − fuP1(i)P1(i − 1)

−fuP1(i)P2(i + 1) − fuP1(i)P2(i − 2) + fiP2(i) + fiP2(i − 1) + fi

3
P3(i) + fi

2
P3(i − 2)

dP2(i)

dt
= [pP2(i − 1)ξ − pP2(i)ξ ] + fuP1(i)P1(i + 1) + fi

2
[P3(i) + P3(i − 1)]

−fiP2(i) − fuP2(i)P1(i + 2) − fuP2(i)P1(i − 1)
dP3(i)

dt
= pP3(i − 1)ξ − pP3(i)ξ + fuP2(i)P1(i + 2) + fuP1(i)P2(i + 1) − fiP3(i). (27)

For i = L − 2:

dP1(i)

dt
= pP1(i − 1)ξ − pP1(i)[1 − P1(i + 1) − P2(i + 1) − P3(i + 1)] − fuP1(i)P1(i + 1)

−fuP1(i)P1(i − 1) − fuP1(i)P2(i + 1) − fuP1(i)P2(i − 2) + fiP2(i) + fiP2(i − 1) + fi

2
P3(i) + fi

2
P3(i − 2)

dP2(i)

dt
= pP2(i − 1)ξ − pP2(i)[1 − P1(i + 1) − P2(i + 1) − P3(i + 1)] + fuP1(i)P1(i + 1)

+fi

2
[P3(i) + P3(i − 1)] − fi

2
P2(i) − fuP2(i)P1(i − 1)

dP3(i)

dt
= pP3(i − 1)ξ − pP3(i) + fuP2(i)P 1(i + 2) + fuP1(i)P2(i + 1) − fiP3(i). (28)
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For i = L − 1:

dP1(i)

dt
= pP1(i − 1)[1 − P1(i) − P2(i) − P3(i)] − pP1(i)[1 − P1(i + 1) − P2(i + 1) − P3(i + 1)] − fuP1(i)P1(i − 1)

−fuP1(i)P2(i − 2) + fiP2(i) + fiP2(i − 1) + fi

2
P3(i) + fi

2
P3(i − 2)

dP2(i)

dt
= pP2(i − 1)[1 − P1(i) − P2(i) − P3(i)] − pP2(i)[1 − P1(i + 1) − P2(i + 1) − P3(i + 1)]

+fi

2
[P3(i) + P3(i − 1)] − fiP2(i) − fuP2(i)P1(i − 1)

dP3(i)

dt
= pP3(i − 1) − pP3(i) − fiP3(i) (29)

For i = L:
dP1(i)

dt
= pP1(i − 1)[(1 − P1(i) − P2(i) − P3(i))] − βP1(i) + fiP2(i − 1) + fi

2
P3(i − 2)

dP2(i)

dt
= pP2(i − 1) − βP2(i) + fi

2
P3(i − 1)

dP3(i)

dt
= pP3(i − 1) − βP3(i). (30)

The trajectories of the rods, shown in the form of space-time
plots in Fig. 5, clearly show fusion and fission events. Unlike
the results obtained under PBC, which were dependent on fu

and fi only through the ratio K = fu/fi , those under OBC
depend on the individual rates fu and fi . By fixing α = 0.15
andβ = 0.85, we have obtained the number-density profile and
number flux profile plotted in Fig. 6. In the fusion-dominated
regime, as the rods of length � = 1 enter through i = 1 and
move forward, the population of longer rods increase at the
expense of that of smaller rods because of the dominance of
fusion. The populations of all the N species continue to evolve
over a TZ at the end of which, marked by a vertical line in Fig. 6,
they attain their respective stationary values. Rods of length N

dominate the population beyond the TZ if the coverage density
is high enough for facilitating fusion. The dependence of the
width of the TZ on the parameter N and on the rates of the vari-
ous kinetic processes are discussed in detail in the next section.

FIG. 5. Space-time diagram. Each line depicts the position of a
rod, observed as function of time, in the MC simulation of the model
with N = 3. The merging and splitting of the lines, marked by the red
circles, are direct visual evidence of fusion and fission, respectively,
of the rods. Parameters used are L = 1000, α = 0.01, β = 0.5, fu =
fi = 0.05, p = 0.5, MC steps = 1000.

Beyond the TZ, where the populations of the rods of
different length remain stationary, we computed the average
length of the rods 〈�〉 as well as the randomness parameter

FIG. 6. (a) Number-density profile and (b) number-flux profile
under OBC for N = 3 and different combination of fu and fi

mentioned in the figures. α = 0.15 and β = 0.85 for all the cases.
Here we are showing the first 500 sites of system of total length
L = 1000. (Lines, MFT; dots, simulation).
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(a)

(b)

FIG. 7. Mean-field predictions for (a) average length 〈�〉 of rods
and (b) randomness parameter R associated with rod length are
plotted against fusion rate fu for fixed values N = 3 and fi = 10−4.
α = 0.9,β = 0.05 correspond to ρc 
 0.9 (dotted green), whereas
α = 0.05,β = 0.5 correspond to ρc 
 0.1 (continuous blue). (Lines,
MFT; dots, simulation).

R (see Fig. 7). By fixing the magnitude of fi , we varied fu

over several orders of magnitudes. The average length of the
rods varied from 〈�〉 = 1.00 in the fission-dominated regime to
〈�〉 = 3.00 in the fusion-dominated regime (maximum allowed
length beingN = 3). But the randomness parameterR exhibits
a nonmonotonic variation with increasing fu. Since fusion of
two rods is allowed only if they touch each other, a higher
coverage density ρc is expected to facilitate more frequent
fusion. This is consistent with Fig. 7(a), where, for a given
fu, 〈�〉 is higher at higher ρc. Moreover, in Fig. 7(b) the curve
essentially shifts laterally rightward because for attaining the
same value of R at lower coverage density a higher rate of
fusion is required.

VI. TRANSITION ZONE

Entry of monodisperse particles, and their transformation
into polydisperse population, through fusion-fission kinetics,
gives rise to a special region near the entry site that we have
referred to as the TZ. In the fusion-dominated regime, as the

FIG. 8. Transition zone. (a) Number density profiles of all species of rods of lengths � = 1,2, . . . ,N for N = 7. (b) The dotted vertical line
on the number density profile of the particles (i.e., rods of length � = 1) identifies the right boundary of the TZ. (c) Number density profiles of
the shortest rods (of length � = 1) for N = 2–9. (d) Number density profiles of the longest rods (of length � = N ) for N = 2–9. (e) Width of
TZ for N = 2–9. For panels (a)–(e), α = 0.9, β = 0.5, p = 0.5, fu = 0.1, and fi = 0.0001.
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rods of length � = 1 enter through i = 1 and move forward,
the population of longer rods increase at the expense of that
of smaller rods because of the dominance of fusion. The
populations of all the N species continue to evolve over the TZ,
beyond which they attain their respective stationary values.

A. N-Dependence of the transition zone

Since analytical treatment becomes increasingly difficult
with increasing value of N , we have investigated the N

dependence of the width of the TZ only by MC simulation;
the result is shown in Fig. 8. In Fig. 8(a), the number density
profiles for the rods of length � = 1,2, . . . ,7 are shown on a
log-log plot for N = 7. It is clearly visible on Fig. 8(a) that
the last species to achieve stationary density is the particle
(i.e., rod of � = 1). By the distance from the entrance where
the density of the particles achieve stationary value, that of all
the other longer rods have already achieved their stationary
values. Therefore, for quantitative purposes, we identify the
right boundary of the TZ as the location where the density
of the particles (i.e., rods of � = 1) attain its stationary value
[see Fig. 8(b)]. In Fig. 8(c) we have drawn the number density
profile of the shortest rods (i.e., � = 1) and in Fig. 8(d) that of
the longest rods (i.e., � = N ), both for N = 2–9. The variation
of width of the TZ with N is shown on a log-log plot in Fig. 8(e).
The monotonic increase of the width with N arises from the
fact that the broader the possible polydispersity of the rod size,
the longer it takes to reach the steady distribution after the entry
of the rods as a monodisperse population.

B. Fusion dependence of the transition zone

To get an intuitive understanding of the dependence of the
TZ on the kinetic parameters of the model, we first derive
approximate equations for Pμ(x) (μ = 1,2), for the simplest
case of N = 2, in the fusion-dominated regime (fu 	 fi)
where, in addition, fi is negligibly small. The master equation
for P1(x,t) in discrete time and and discretized space is given
by

P1(x,t) = [p{1 − ρ(x)}	t]P1(x − 	x,t − 	t)

+[1 − p{1 − ρ(x + 	x)}	t − fu	t]P1(x,t),

(31)

where 	t is the duration of each time step and 	x = λ is
the separation between the successive points in the discretized
one-dimensional space. The first term on the right-hand side
of Eq. (31) leads to the gain of P1 at x at time t due to
the incoming particles of length � = 1 that were located
at x − 	x at time t − 	t . The second term states that the
particle at x neither hopped out rightwards to x + 	x nor
fused with a neighboring particle. Note that the possibility
of fusion, captured by the last term, requires that another
particle must be adjacent to the particle under consideration
with which fusion can take place. However, that factor does
not appear explicitly in this term implying that the probability
of finding another particle adjacent to the particle of interest
has been assumed to be, effectively, unity; this is a reasonably
good approximation only at sufficiently high values of P1(x).
Similarly, the corresponding master equation in discretized

space and time is given by

P2(x,t) = [p{1 − ρ(x + 	x)}	t]P2(x − 	x,t − 	t)

+[1 − p{1 − ρ(x + 2	x)}	t]P2(x,t)

+{fu	t} P1(x,t)︸ ︷︷ ︸
={ρ−2P2(x,t)}

. (32)

Note that in writing these equations, the gain of P1(x) and
loss of P2(x) that could arise by fission of rods of length
� = 2 is neglected because, in the fusion-dominated regime
of our interest here, fi � fu. Moreover, since N = 2, loss of
P2 by fusion is not possible. Thus, strictly speaking, Eqs. (31)
and (32) are not applicable to any N > 2 even in the fusion-
dominated regime.

The equations (31) and (32) are based on much cruder
approximation than those used in writing Eqs. (17)–(24). How-
ever, as we show below, the analytical solutions of Eqs. (31)
and (32) provide more direct intuitive understanding of the
variation of the TZ with the kinetic parameters of the model
than that conveyed by the numerical solutions of (17)–(24).
Carrying out a straightforward Taylor series expansion and
then imposing the steady-state condition ∂P1(x,t)/∂t = 0 =
∂P2(x,t)/∂t , we get the approximate solutions

P1(x) = P1(0)exp

[
− fu

p{1 − ρ(x)} + fu

(
x

λ

)]

P2(x) = ρ(x)

2
+

{
P2(0) − ρ(0)

2

}

× exp

[
− 2fu

p{1 − ρ(x)} + 2fu

(
x

λ

)]
, (33)

where 	x = λ is the spacing between successive lattice sites
while P1(0) = P1(x = 0) and P2(0) = P2(x = 0) are the prob-
abilities of finding rods of length � = 1 and � = 2, respectively,
at the left edge of the lattice. The solutions (33) also ensure
that

ρ(x) = P1(0) + 2P2(0). (34)

This derivation is based on a crude assumption i.e., ρ(x) =
ρ(0). Moreover, for the subsequent analysis, we treat P1(0)
and P2(0) in (33) as fitting parameters which we fix by using
the values of P1(0) and P2(0) available from MC simulations.
In the fusion-dominated regime, we get very good agreement
between P1(x), P2(x) predicted by (33) and the corresponding
numerical data obtained from MC simulations of the model for
N = 2 [see Fig. 9(a)] over the entire TZ.

The prescription introduced in the preceeding subsection
for identifying the width of TZ and the exponential behavior
of the number density of the rods of length � = 1 imply that
the width of the TZ for N = 2 is

T Zwidth ≈ [p{1 − ρ(0)} + fu]λ

fu

. (35)

Approximate linear variation of the width of TZ with the fusion
rate fu in the log-log plot of Fig. 9(b) is consistent with the
power-law dependence of the width on fu in Eq. (35).
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FIG. 9. (a) Number-density profiles under OBC in the TZ for
N = 2, obtained from the analytical solutions in Eq. (33), are drawn
for fu = 0.1, fi = 0.0001, α = 0.9, and β = 0.1. The distance x is
expressed in the units of the lattice spacing λ. Here we are showing the
first 10 sites of the system of total length L = 1000. (Lines, analytical
solutions in Eq. (33); dots, simulation). (b) Variation of the width of the
TZ with fu, for the fixed values α = 0.9, β = 0.1, and fi = 0.0001,
is displayed on a log-log plot to establish the exponenetial decrease of
the width with the increasing rate of fusion (line, analytical expression
for T Zwidth in Eq. (35); dots, simulation).

VII. PHASE DIAGRAM

The analytical results obtained under PBC are exploited in
plotting the phase diagram under OBC using the extremum
current hypothesis (ECH) [34–39]. For the implementation of
ECH, first, one needs the expression for ρ∗

c (Fig. 3) . Next,
one imagines a scenario where the entry and exit points of the
actual physical system are assumed to be coupled to two mass
reservoirs of densities ρ− and ρ+ respectively (see Fig. 1),
and calculates ρ± using the expressions for flux derived under
PBC. Equating both the incoming and outgoing flux at entry
site 1, we solve for ρ− as a function of entry rate α, fu, and fi .
Similarly, equating the incoming and outgoing flux at exit site
L gives ρ+ as function of exit rate β, fu, and fi .

A. Steps for plotting the phase diagram

1. Expressions for ρ+ and ρ−

Let us assume that sufficiently close to the left boundary
at i = 1, the number density can be approximated by ρ−.
Therefore, at the entry site i = 1, the mass flux J (1)in moving
into this site from the reservoir of density ρ− is

J (1)in = α(1 − ρ−). (36)

The conditional probability of finding an empty site, provided
that � sites on its left are covered by a rod of length �, is

P�(

�︷ ︸︸ ︷
1........1 |0). Therefore, the mass flux J (1)out moving out of

the same site i = 1 is given by

J (1)out = ρ−P�(

�︷ ︸︸ ︷
1........1 |0), (37)

where

P�(

�︷ ︸︸ ︷
1........1 |0)

= 1 − ∑N
j=1

{ ∑j

k=1 Pj (i + k)
}

1 + ∑N
j=1 Pj (i + j ) − ∑N

j=1

{∑j

k=1 Pj (i + k)
} . (38)

Substituting (38) into (37) and then equating the outgoing
flux (37) with in incoming flux (36) at site 1 [J (1)in = J (1)out],
we get an equation for ρ− as a function of fu, fi , and α

ρ− = ρ−(α,fu,fi). (39)

Similarly, P�(1.......1︸ ︷︷ ︸
�

|0) denotes the conditional probability

that, given an uncovered site, there will be � adjacent sites to
the left which are covered simultaneously by a rod of length
�. We also assume that sufficiently close to the right boundary
at i = L, the number density can be approximated by ρ+. So
incoming flux at site i = L is

J (L)in = ρ+P�(1.......1︸ ︷︷ ︸
�

|0), (40)

where

P�(1.......1︸ ︷︷ ︸
�

|0)

=
∑N

j=1 Pj (i + j )

1 + ∑N
j=1 Pj (i + j ) − ∑N

j=1

{∑j

k=1 Pj (i + k)
} , (41)

and the outgoing flux J (L)out is given by

J (L)out = βρ+. (42)

Hence equating the incoming and outgoing fluxes (40) and
(42), respectively, at i = L and solving the resulting equation
for ρ+, we get ρ+ as a function of fu, fi , and β,

ρ+ = ρ+(β,fu,fi). (43)

2. Surface separating LD-MC phases

According to the ECH, at the boundary between the LD and
MC phases

ρ−(α,fu,fi) = ρ∗
c . (44)

Substituting the expressions (39) and appropriate ρ∗
c (fu,fi)

into (44), we get the equation

α∗ = α∗(ρ∗
c ,fu,fi) (45)

for the surface separating the LD and MC phases.

3. Surface separating HD-MC phases

According to the ECH, at the boundary between the HD and
MC phases

ρ+(β,fu,fi) = ρ∗
c . (46)
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TABLE III. Results for conventional �-TASEP.

� ρ∗
c α∗ = β∗

�
√

�√
�+1

1√
�+1

1 0.5 0.5
2 0.58 0.41
3 0.63 0.36

Substituting the expressions (43) and ρ∗
c (fu,fi) into (46) we

get the equation

β∗ = β∗(ρ∗
c ,fu,fi) (47)

for the surface separating the HD and MC phases.

4. Surface separating LD-HD phases

The equation for this surface is obtained by exploiting
the fact that exactly on this surface the LD and HD phases
coexist simultaneously in the system supporting a single

steady-state flux that flows through the system. Therefore, the
corresponding condition can be implemented mathematically
by

JPBC(ρ−(α,fu,fi)) = JPBC(ρ+(β,fu,fi)). (48)

B. Phase boundaries for N = 2

Following the above-mentioned steps, here we obtained the
phase boundaries for our model with N = 2. As α∗ and β∗
represent the surface separating LD-MC and HD-MC phases,
respectively, their expressions are as follows:

α∗ = − 8fuρ
∗
c

fi − 8fu + 4fuρ∗
c − √

fi

√
fi + 8fuρ∗

c

, (49)

β∗ = fi − 4fuρ
∗
c − √

fi

√
fi + 8fuρ∗

c

fi − 8fu + 4fuρ∗
c − √

fi

√
fi + 8fuρ∗

c

, (50)

whereas the equation for the surface separating the HD-LD
phase is as follows:

−α(fi − 8fu − 4fuα) + α
√

fi

√
fi + 8fuα + 4fuα2

fu(8 + 8α + 2α2)
= fi(1 − β) + 4fuβ + 4fuβ

2 + √
fi(−1 + β)

√
fi + 4fuβ + 4fuβ2

fu(2 + 4β + 2β2)
.

(51)

C. Interpreting phase diagram

For conventional � − TASEP, i.e., TASEP with hard rods
of length � only, the known results are presented in Table III.

Now to interpret the phase boundaries of our model with
N = 2 in extreme limit, we reexpress Eqs. (49) and (50)
in terms of ζ2,1(ρ∗

c ,fu,fi) and ρ∗
c in Table IV and give the

approximations in extreme limits of fu.
Results in the extreme limits can be understood as follows:

In fu → 0 limit, the phase diagram matches exactly with the
phase diagram of particles (rods of � = 1) as the particles
on entry have no tendency to fuse. However, for fu > fi , all
the HD-MC boundary shifts downwards as system tends to,
effectively, a single species TASEP with rod-length = N (N =
2, 3 in the present case). But the LD-MC phase boundary shifts
towards right because, in order to form more rods of length � =
N in the fusion-dominated regime, rods of length � = 1 must
enter at a higher rate α so that interparticle distance between
them shorten to facilitate effective fusion. When fu → ∞ the
value of β∗ matches with that of N − TASEP (� i.e., N ) but

TABLE IV. Phase boundaries in extreme limits of fu for the N =
2 case.

Quantity Expression fu → 0 fu → ∞

ζ2,1(ρ∗
c ,fu,fi)

√
1+8(fu/fi )ρ∗

c −1

4(fu/fi ) ρ∗
c ≈ 0

α∗ 2ρ∗
c

2−ρ∗
c +ζ2,1

ρ∗
c = 0.5 2

( ρ∗
c

2−ρ∗
c

) ≈ 0.82

β∗ ρ∗
c +ζ2,1

2−ρ∗
c +ζ2,1

ρ∗
c = 0.5 ρ∗

c

2−ρ∗
c

≈ 0.41

α∗ = Nβ∗ in this limit because for the formation of a rod of
� = N , N particles of � = 1 must enter. Hence, it altogether
shifts the LD-MC phase boundary (α∗) with increasing fu in
such a way that α∗ > β∗ and becomes α∗ ≈ Nβ∗ in fu → ∞
limit. The results for our model for arbitrary N are summarized
in Table V. Another inference from the phase diagram is that
as we increase fu, it is the region of the phase diagram covered
by MC phase shrinks.

Fixing fi = 0.01, and taking constant cross sections of
this 3D phase diagrams for two different values of fu we
plot the projections of these two cross sections onto the α–β

plane, as shown in Fig. 10. In the limit fu � fi the phase
boundaries approach those for single-species TASEP with
� = 1. In the opposite limit fu > fi , all the HD-MC boundary
shifts downwards as system tends to, effectively, a single
species TASEP with rod-length � = N . But LD-MC phase
boundary shifts towards right because, in order to form more
rods of � = 2 and � = 3 (in case of N = 2 and N = 3 cases,
respectively) in the fusion-dominated regime, rods of � = 1
must enter at a higher rate α so that interparticle distance
between them shorten to facilitate effective fusion.

TABLE V. Phase boundaries for arbitrary N in the fu → ∞ limit.

N α∗ β∗

1 0.5 0.5
2 0.82 0.41
3 1.08 0.36
N N√

N+1
1√

N+1
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0.0001

0.1

FIG. 10. Phase diagram of the model under OBC for N = 2 and N = 3 obtained using the extremum current hypothesis. (a) The 3D phase
diagram is plotted in α-β-fu space. (b) Two-dimensional cross sections of the 3D phase diagram, for two values of fu, are projected on the α–β

plane. Value of fi is fixed at 0.01. (Lines, MFT; dots, simulation.)

VIII. SUMMARY, DISCUSSIONS, AND CONCLUSIONS

Motivated by the fusion and fission of cargoes in in-
traflagellar transport (IFT), in this paper we have developed
a multispecies exclusion model where rods enter the lattice as
single particles (i.e., as rods of length � = 1), but their length
change dynamically because of fusion and fission as the rods
hop forward. However, lengths of the rods are not allowed to
grow beyond a maximum length N . Consequently, in principle,
at the exit rods can have lengths ranging from � = 1 to � = N

although not with equal probability. We have also considered
the limit N → ∞ which essentially relaxes the constraint on
the maximum rod size.

Under PBC, we have derived analytical expressions for
several quantities that characterize the NESS of the system.
By a combination of mean-field theory and MC simulations,
we have analyzed the density profile and flux profile of the
rods in this model under OBC. These results establish the
existence of a TZ adjacent to the point of entry into the system.
The term transition zone in our theory should not be confused
with the usage of the term in biology to describe a subcellular

compartment that is believed to be present between the flagellar
base and flagellum.

Carrying out extensive MC simulations, we demonstrate
the dependence of the width of the TZ on the parameter N .
Moreover, based on a set of approximate analytical arguments,
which are well justified for the special case N = 2 at suf-
ficiently high rate of fusion, we also derive an expression
for the width of the TZ. This analytical expression, and its
comparison with MC data, demonstrates how the rates of the
kinetic processes control the width of the TZ.

The agreements between the theoretical predictions and
MC simulations in the NESS of the model are very good, in
spite of the mean-field approximations made in writing the
master equations on which the theory is based. There are
other similar examples of exclusion processes where MFT
performs remarkably well; the extreme case being the TASEP
under PBC with random-sequential updating for which the
mean-field theory turned out to be exact [40]. In this work
we have focused exclusively on the NESS of the model which
is attained in the sufficiently long time limit. The short-time
transient behavior of the model, which has not been studied
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here, may be important from the perspective of IFT and similar
transport phenomena in other types of long cell protrusions.
The MFT may require improvements [41,42], by incorporating
important correlations, to achive sufficiently good agreement
with the corresponding MC data.

The Burger’s equation [43], which is a nonlinear diffusion
equation, is known to provide hydrodynamic description of
TASEP [3,40] and related exclusion models [8,44,45]. In a
future publication, we intend to derive the hydrodynamic
counterpart [46] of the discrete “microscopic” exclusion model
reported here. Since, at least in principle, the fusion and fission
of the rods in our model can be treated as “reactions,” the
hydrodynamic equations are expected to be some generalized
reaction-diffusion equations. Although there are indirect in-
dications in support of this expectation [47–49], the actual
derivation would be a challenging nontrivial task.

The model proposed here may be regarded as a model
that allows both aggregation and fragmentation [3] of self-
driven clusters. In this terminology, each rod is identified as
a “cluster” where a rod of length � = 1 (i.e., a particle) is
an “elemental cluster.” The prescriptions for fusion of the
rods in our model corresponds to mass-conserving binary
reactions of the clusters. Similarly, the fission of a rod in
our model corresponds to binary fragmentation [3]. Recently,
generalizations of TASEP with irreversible aggregation of
particles and rods have also been studied [50]. The IFT trains
are distinct from train-like clusters reported earlier [23,24].

However, there are some crucial differences between
our model and the widely studied models of aggregation-
fragmentation phenomena. The rods are self-driven and, there-
fore, the system can attain only NESS with nonvanishing flux.
Moreover, spatial locations of the rods are very important
because only two contiguous rods can fuse. We do calculate
the distributions of the lengths of the rods in the NESS, which
is the counterpart of cluster-size distribution in aggregation-
fragmentation phenomena. However, our attention is also
focused on quantities that are of primary interest in exclusion
processes, namely flow properties and density profiles that
characterize the phase diagram of the system. So far as the
results are concerned, the most important finding of this paper
is the existence and nature of the TZ.

Another class of exclusion models with “sticky” particles
[51,52] and with sticky rods [53] have been reported in the
literature. “Stickiness” in these models arise from the attractive
interaction among the particles and rods. In contrast, there is
no “attractive interaction” among the particles and rods in our
model. Moreover, in Refs. [51–53] particles in a cluster retain
their distinct identity and hop independently although the rates
of their hop depend whether or not they are part of a cluster
before or after the hop. In contrast, particles and rods lose their
distinct identify on fusion with another particle or rod; the
resulting rod emerges with a new identity and hops as a single
object.

In our model, at each MCS, the probabilities of forward
hopping, fission and exit of a rod as well as the probability
of fusion of two rods are all independent of its length. An
alternative scenario can be envisaged where, in principle, each
of these probabilities can depend on the instantaneous length
of the rod(s). Another variant of the model could allow the
number of allowed fissions of a rod in each MCS proportional

to the length. The current version of the model allows both
“severing” anywhere in the bulk and “chipping” from the edges
of a rod with equal probability. More restrictive models could
allow either “severing” or “chipping.”

As explicitly stated in the Introduction, the model developed
here falls short of a complete reslistic description of IFT. Nev-
ertheless, conceptual and mathematical framework developed
here may serve as foundation of the theoretical approach to be
adopted for a complete description of IFT in near future [33].
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APPENDIX A: DERIVATION OF CONDITIONAL
PROBABILITY

The mutual exclusion in our model is captured by ξN,�(i|i +
�), which denotes the conditional probability that the site
i + � is not covered by another rod, given that site i is
occupied by a rod of length �. In the steady state under
periodic boundary condition, each site is treated under same
footing. In this case, translation invariance follows naturally
and ξN,�(i|i + �) = ξN,�(1|1 + �). So here we present the main
steps of our calculation of ξN,�(1|1 + �).

We first consider the special case N = 2. Let the symbol
Z(L,N1,N2) represent the number of ways of arranging N1

rods of length � = 1, N2 rods of length � = 2, and L − N1 −
2N2 gaps and it is given by

Z(L,N1,N2) = (N1 + N2 + L − N1 − 2N2)!

(N1 + N2)!(L − N1 − 2N2)!
. (A1)

Number of ways in which a rod of length � = 1 occupies
site i = 1 is given by Z(L − 1,N1 − 1,N2). Of these, number
of ways in which a rod of length � = 1[� = 2] can occupy
site i = 2 isZ(L − 2,N1 − 2,N2) [Z(L − 1 − 2,N1 − 1,N2 −
1)]. Therefore, given that there is a rod of length � = 1
occupying site i = 1, probability of finding another rod of
length � = 1 occupying site i = 2 is

P(1|1 + �) = Z(L − 2,N1 − 2,N2)

Z(L − 1,N1 − 1,N2)

= (N1 + N2 − 1)

(L + N1 + N2 − 1N1 − 2N2 − 1)
, (A2)

which is also equal to probability of finding a rod of length
� = 2 occupying site i = 2, given that a rod of length � =
1 occupies i = 1. Therefore, we conclude that probability of
finding site i = 2 uncovered provided site i = 1 is occupied
by a rod of length � = 1 is

ξ2,1(i|i + 1) = (L − N1 − 2N2)

(L + N1 + N2 − N1 − 2N2 − 1)
. (A3)
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It is straightforward to show that

ξ2,1(i|i + 1) = ξ2,2(i|i + 2), (A4)

i.e., conditional probability that the site i + 1 is not covered by another rod, given that there is a rod of length � = 1 occupying
site i is equal to the conditional probability that the site i + 2 is not covered by another rod, given that there is a rod of length
� = 2 occupying site i.

So, for N = 2 using the compact notation ξ2 for ξ2,1 = ξ2,2, which denotes if a rod of length � (� = 1/� = 2) occupies site i,
probability of finding site i + � uncovered is given by

ξ2(i|i + �) = (L − N1 − 2N2)

(L + N1 + N2 − N1 − 2N2 − 1)
. (A5)

Introducing the number densities ρ1(= N1/L) and ρ2(= N2/L), Eq. (A5) can be reexpressed as

ξ2(i|i + �) = 1 − ρ1 − 2ρ2

1 + ρ1 + ρ2 − ρ1 − 2ρ2
. (A6)

Because of fusion and fission, ρ1 and ρ2 keep fluctuating. Therefore, we replace ρ1 and ρ2 with the corresponding occupational
probabilities P1 and P2 getting

ξ2(i|i + �) = 1 − ∑1
s=1 P1(i + s) − ∑2

s=1 P2(i + s)

1 + P1(i + 1) + P2(i + 2) − ∑1
s=1 P1(i + s) − ∑2

s=1 P2(i + s)
. (A7)

Beauty of the conditional probability (A6) is that, when ρ2 = 0, it reduces to (1 − ρ1) which is the conditional probability to
be used for exclusion processes with particles i.e, rods of � = 1. Similarly when ρ1 = 0, the conditional probability (A6) reduces
to 1−2ρ2

1+ρ2−2ρ2
which is the conditional probability to be used for exclusion processes with hard rods of length � = 2.

Proceeding similarly, conditional probability for N = 3 is found to be

ξ3(i|i + �) = 1 − ∑1
s=1 P1(i + s) − ∑2

s=1 P2(i + s) − ∑3
s=1 P3(i + s)

1 + P1(i + 1) + P2(i + 2) + P3(i + 3) − ∑1
s=1 P1(i + s) − ∑2

s=1 P2(i + s) − ∑3
s=1 P3(i + s)

. (A8)

Hence, the generalized conditional probability for arbitrary N is given by

ξN (i|i + �) = 1 − ∑N
j=1

{∑j

k=1 Pj (i + k)
}

1 + ∑N
j=1 Pj (i + j ) − ∑N

j=1

{∑j

k=1 Pj (i + k)
} . (A9)

APPENDIX B: PHASE BOUNDARIES FOR N = 3

Here we present the phase boundaries for our model with N = 3. As α∗ and β∗ represent the surface separating LD-MC and
HD-MC phases, respectively, their expressions are as follows:

α∗ = A1

A2 + A3 + A4 + A5
, (B1)

β∗ = B1 + B2 + B3 + B4

B1 + B2 + B3 + B5
, (B2)

where

A1 = 324fifu
3ρ∗

c φ2/3, (B3)

A2 = 278 21/3fi
4fu

4 + 3 22/3
√

3
√

fi
4fu

6
[
5fi

2 + 46fifu(ρ∗
c ) + 243fu

2(ρ∗
c )2

]
φ1/3, (B4)

A3 = fi
2fu

2φ1/3(81 22/3fu
2ρ∗

c − 32φ1/3), (B5)

A4 = 12fi

{
8 21/3

√
3fu

√
fi

4fu
6
[
5fi

2 + 46fifuρ∗
c + 243fu

2(ρ∗
c )2

] − 9fu
3(−3 + 2ρ∗

c )φ2/3
}
, (B6)

A5 = 21/3fi
3fu

3
[
2592fu

2ρ∗
c − 67(2φ)1/3

]
, (B7)

B1 = 278 21/3fi
4fu

4 + 3 22/3
√

3
√

fi
4fu

6
[
5fi

2 + 46fifuρ∗
c + 243fu

2(ρ∗
c )2

]
φ1/3, (B8)

B2 = fi
2fu

2φ1/3
(
81 22/3fu

2ρ∗
c − 32φ1/3

)
, (B9)

B3 = 12fi

{
8 21/3

√
3fu

√
fi

4fu
6
[
5fi

2 + 46fifuρ∗
c + 243fu

2(ρ∗
c )2

] + 9fu
3ρ∗

c φ2/3
}
, (B10)
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B4 = 21/3fi
3fu

3
(
2592fu

2ρ∗
c − 672φ1/3

)
, (B11)

B5 = 12fi

{
8 21/3

√
3fu

√
fi

4fu
6
[
5fi

2 + 46fifuρ∗
c + 243fu

2(ρ∗
c )2

] − 9fu
3(−3 + 2ρ∗

c )φ2/3
}
, (B12)

and

φ = {
23fi

3fu
3 + 243fi

2fu
4ρ∗

c + 9
√

3
√

fi
4fu

6
[
5fi

2 + 46fifuρ∗
c + 243fu

2(ρ∗
c )2

]}
. (B13)

No analytical expression could be obtained for the surface separating LD-HD phases. For a given value of α, fu, and fi , we
obtained the corresponding ρ− and J PBC(ρ−). On the LD-HD boundary, J PBC(ρ−)=J PBC(ρ+). Hence, from the corresponding
ρ+, we calculated β for given fu and fi . In this way, points (α,β) on the surface separating LD and HD phases were obtained for
given fu and fi .
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