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In a series of papers, we intend to take the perspective of open quantum systems and examine from
their nonequilibrium dynamics the conditions when the physical quantities, their relations, and the laws of
thermodynamics become well defined and viable for quantum many-body systems. We first describe how
an open-system nonequilibrium dynamics (ONEq) approach is different from the closed combined system +
environment in a global thermal state (CGTs) setup. Only after the open system equilibrates will it be amenable to
conventional thermodynamics descriptions, thus quantum thermodynamics (QTD) comes at the end rather than
assumed in the beginning. The linkage between the two comes from the reduced density matrix of ONEq in that
stage having the same form as that of the system in the CGTs. We see the open-system approach having the
advantage of dealing with nonequilibrium processes as many experiments in the near future will call for. Because
it spells out the conditions of QTD’s existence, it can also aid us in addressing the basic issues in quantum
thermodynamics from first principles in a systematic way. We then study one broad class of open quantum
systems where the full nonequilibrium dynamics can be solved exactly, that of the quantum Brownian motion
of N strongly coupled harmonic oscillators, interacting strongly with a scalar-field environment. In this paper,
we focus on the internal energy, heat capacity, and the third law. We show for this class of physical models,
amongst other findings, the extensive property of the internal energy, the positivity of the heat capacity, and the
validity of the third law from the perspective of the behavior of the heat capacity toward zero temperature. These
conclusions obtained from exact solutions and quantitative analysis clearly disprove claims of negative specific
heat in such systems and dispel allegations that in such systems the validity of the third law of thermodynamics
relies on quantum entanglement. They are conceptually and factually unrelated issues. Entropy and entanglement
will be the main theme of our second paper on this subject matter.
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I. INTRODUCTION

In a series of papers, we intend to take the perspective
of open quantum systems (OQS) and examine from their
nonequilibrium (NEq) dynamics the conditions when the
physical quantities, concepts, constructs, and the time-honored
laws of thermodynamics (TD) become well defined and vi-
able for quantum many-body systems. We utilize one broad
class of models where the nonequilibrium dynamics can be
solved exactly, the Brownian motion of strongly coupled (SC)
harmonic oscillators, interacting strongly with a scalar-field
environment, to explore a range of basic issues in quantum
thermodynamics (QTD). The exact solutions possible in these
OQSs enable us to examine and define these conditions more
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precisely in a quantitative, systematic, and transparent way.
This approach hopefully compensates for the rather loose,
qualitative, and at times contrived way thermodynamic de-
scriptions for quantum systems are proposed because of the
need to adhere to the dictum of classical thermodynamics,
which is valid only under very special conditions.

A clarification in the meaning and contents of quantum
thermodynamics (QTD) [1] might be useful before we proceed:
to us, it is the study of the thermodynamic properties of
quantum many-body systems (MBS). Quantum now refers not
just to the particle spin-statistics (boson vs fermion) aspects;
the rather limited meaning of “quantum” in traditional quantum
statistical mechanics (QSM), but also includes in the present
era the quantum phase aspects, such as quantum coherence,
quantum correlations, and quantum entanglement. This is
where quantum information has a hand in QTD [2]. The ther-
modynamics connotation can be extended to include systems
not necessarily in equilibrium at all times, thus encompassing
dissipative and relaxation processes for systems deviating from
equilibrium, including linear or nonlinear response theories
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applied to quantum MBS,1 familiar in condensed matter or
chemical physics and for classical MBS, topics incorporated
in the traditional field of NEq TD [3]. These considerations can
be extended to weakly nonequilibrium conditions but not for
far-from-equilibrium, fully arbitrary time evolutions. That is
when an open quantum system treatment becomes necessary.

The issues addressed in this first paper encompass the
nature of internal energy, heat capacity, and the third law for
a fully nonequilibrium (NEq) system. We demonstrate what
it takes for it to evolve to an equilibrium (Eq) condition, and
from that point establish the connection with traditional TD
theory. The conditions for traditional TD theory to be well
defined and operative for a classical or quantum system are
very specific despite its wide ranging applicability: A system
of relatively fewer degrees of freedom in the presence of a
thermal bath of a huge number or infinite degrees of freedom
(we shall consider only heat but no particle transfer here and
thus the TD refers only to canonical ensembles), the coupling
between the system and the bath is vanishingly small, and the
system is eternally in a thermal equilibrium state by proxy with
the bath which is impervious to any change in the system.2

Already for classical systems, there is a difference between
equilibration and thermalization. Equilibration refers to the
system evolving to a steady state after relaxation. It is broader
than thermalization, which refers to the system approaching
a state described by the Boltzmann distribution. When the
system-bath coupling is nonvanishing, such a difference is
clearly discernible. For example, the potential of mean force
[4] is introduced to deal with such a situation. Details can be
found in Appendix D.

For quantum systems, this difference between equilibra-
tion and thermalization certainly remains (see, e.g., [5]).
New challenges at zero or very low temperatures posed by
non-Markovian environments and in the treatment of non-
Markovian dynamics can become prominent. By virtue of
its ability to provide a first principles derivation of noise
from quantum fluctuations (e.g., for Gaussian noise via the
Feynman-Vernon identity, instead of being put in by hand), and
linking fluctuations and noise with dissipation and relaxation
by dynamical relations (such as the fluctuation-dissipation
relation which can be traced to the unitarity in the original
closed system before one coarse grains the environment to a
description of mean field dynamics and its fluctuations), the
open quantum system approach is also a natural setting for

1Linear response theory considers small variations in the system
while staying in thermal contact with the bath. This is the underlying
assumption in the use of thermal Green’s functions, which is within
the test-field approximation in quantum field theory terms. In a fully
NEq treatment of the open system’s quantum dynamics, both the
system and environment variables are dynamically determined. Thus,
it can cope with situations where the quantum system is small and the
environment is finite.

2This means that action of the system on the bath is excluded from
TD considerations. In fact, in TD the bath variables are not dynamical
variables determined consistently by the interplay between the system
and the bath through their coupled equations of motion, they only
provide TD parameters such as temperature or chemical potential.

incorporating stochastic thermodynamics [6], which has seen
a wide range of chemical and biological science applications.3

The setup: In our opinion, the NEq dynamics of open
quantum systems, e.g., in the tradition of Feynman-Vernon,
Caldeira-Leggett et al. [7–9] even though requiring more
work, is the preferred setting for addressing new issues in
quantum thermodynamics for future challenges.4 This is in
comparison with a popular setup which has been studied more
in the literature, namely, that of a global thermal state (CGTs)
assumed for the combined or closed system (C) = system
(S) + bath (B).5 In the CGTs setup the initial and final states
of C are the same, namely, the combined system remains in
an equilibrium global thermal state, because the dynamics
of the combined closed system is unitary. This is visibly
closest to the setting of thermodynamics and thus naturally
convenient for exploring small extensions of thermodynamics.
By contrast, the open-system NEq (ONEq) approach deals
with time evolution of the open system. It requires the spec-
ification of the initial conditions and the derivation of the
late time behavior of the open system. For those systems
that upon interaction with a bath equilibrate at late times,
one may then connect its behavior with the descriptions of
thermodynamics. For sure, this is a many-to-one relation: many
different initial conditions can produce the same final steady
or equilibrium state, or that there is no common final steady
or equilibrium state. A lot depends on the structures of the
system, the properties of the bath, and the way they interact.
All the above mentioned factors need to be considered for
interacting quantum many-body systems before we construct
thermodynamical quantities, address thermodynamical issues,
and invoke (or hasten to claim success in revoking [29]) the
well-established thermodynamical laws. We will elaborate on
their differences in the following.

3Many physical systems show two intermediate stages between
quantum and classical, namely, stochastic and semiclassical. Conven-
tional stochastic thermodynamics starts from classical or macroscopic
physics. Noise is added in phenomenologically for the consideration
of fluctuations phenomena under different circumstances for specific
purposes. Being rooted in classical physics, conventional stochastic
thermodynamics cannot capture the quantum features so easily. Open
quantum systems approach, on the other hand, starts from micro-
physics at the quantum level. One can derive the stochastic equations
including quantum and thermal noises: Langevin, Fokker-Planck,
or master equations for the description of fluctuations phenomena.
Thus, in the quantum open-system approach the pathway from the
quantum regime to the stochastic regime is well laid out. Taking
the distributional average of noise yields the mean field theories at
the semiclassical level. To go from quantum to classical physics,
one needs to add decoherence considerations, but the pathway is
completely accessible. The challenge is, can we come up with
an appropriate quantum microphysics model for the macroscopic
phenomena of interest?

4Similar viewpoint has been expressed by a few others, notably,
Kosloff [10].

5The CGTs setup is used by many authors, notably [5,11–28].
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A. Main contents

There are three main components in this paper:
(1) Setup and conditions. The physical differences of the

setups, comparing our open-system nonequilibrium (ONEq)
approach (level 2) with traditional TD (level 0) on the one hand,
and with the global thermal (CGTs) state setup (level 1) on the
other. In TD, as mentioned above, the system-bath coupling
has to be vanishingly small whereas in both the level 1 and
2 treatments the system-bath coupling can be strong. We will
mention the CGTs approach as many existing works are based
on this setup, but focus more on how to use an open-system
approach to define and quantify quantum thermodynamics. In
a companion paper [30], we will attempt to build some bridges
between these two approaches, via generating functional and
reduced density matrix formulations. The hope is that from
the open-system perspective, one may be able to identify
which entities and concepts are more suitable for treating new
problems in QTD and which are residues of the old which may
hinder new developments. Other authors using an open-system
approach to quantum thermodynamics include Duarte and
Caldeira [31] who treated a coupled-oscillator system by the
influence functional method, Carrega et al. [32] who treated
a two-level system via moment-generating functionals, and
Esposito et al. [33] using nonequilibrium Green’s functions.

(2) Model with exact solutions. We use a quantum Brownian
motion (QBM) model of harmonic oscillators with strong
coupling both within the system (σ ) and interacting with a
scalar-field bath (γ ). The merit of this model, which represents
a rather broad class of physical problems, is that being a
Gaussian system it can yield exact solutions which enable
us to cross examine the relevant issues, leaving little room
for speculation. Even when familiar quantities like energy
and entropy can be defined in different ways under different
conditions, since we are treating NEq dynamics, if we make
precise specific conditions, these quantities are defined. There
is no worry about ambiguity. The results from this model study
are used for addressing the following issues:

(3) Issues and consequences:
a. Energy extensivity. Thermodynamic functions are well

defined under the conditions when thermodynamics theory
is viable, namely, that the system is very weakly coupled to
the bath, the bath being a passive source which provides a
temperature parameter, not a dynamical variable which can
back-react on the system. It is a meaningful question to ask
if the nice properties we are accustomed to in conventional
thermodynamics, e.g., the extensive property of internal en-
ergy, will still hold for strongly interacting quantum systems.
In the model we studied here, we answer this question in the
affirmative, that the internal energy remains extensive under
strong coupling.

b. Heat capacity. From the internal energy, we calculate the
heat capacity and examine its behavior toward T = 0. We find
a power law, not an exponential decay. This has significant
implications. This aids us to address a version of the third law
and to resolve some puzzles raised in the literature such as
the claimed negative specific heat near absolute zero even in
well-behaved systems [34].

c. Third law. There are several formulations and statements
of the third law. We approach it from the behavior of the heat

capacity near absolute zero, which aids us to resolve some
puzzles raised in the literature such as the claimed negative
specific heat near absolute zero even in well-behaved systems
[34], and address some concerns expressed by Hanggi, Ingold,
Talkner, Weiss et al. [17,18,35–38].

d. Vedral et al. [39,40] invoked heat capacity as an indicator
of entanglement, and raised the issue of how the entanglement
at a system’s ground state bears on the third law. For the
(spin) system they studied they made the claim that “the
validity of the third law of thermodynamics relies on quantum
entanglement.” Using the behavior of the heat capacity at
T = 0 we derived here, combined with our earlier results on the
entanglement between two coupled oscillators interacting with
a zero temperature bath [41], we show that this is not the case at
least for the coupled-oscillator system. There is no connection
between entanglement in the system and the third law.

e. The ONEq approach we adopt for the dynamics of the
system provides means to calculate entropy production, but not
before the meaning and definition of entropy for interacting
quantum systems can be understood and clarified. We say
this because even the most commonly invoked von Neumann
entropy has problems if not used and understood properly. We
shall mention this issue at the end of this paper but leave a
proper treatment of heat, entropy, entanglement, and from it
the first and second laws, to the second paper [42] in this series.

B. Closed-system global thermal state versus open-system
evolved equilibrium state

We begin by stating a few basic facts connecting the three
levels of treatments: level 0 thermodynamics (TD), level 1
closed system (system and environment combined) in a global
thermal state (CGTs), and level 2 open system evolving to an
equilibrium state (ONEq).

(1) Traditional statistical mechanics treats many-body sys-
tems in thermal (canonical distribution) and chemical (grand
canonical) equilibrium. The starting point of quantum statisti-
cal mechanics (QSM) is probability density, no quantum phase
information is invoked. This is encoded in the two funda-
mental postulates of quantum statistical mechanics: equal a
priori probability to all accessible states and random phase
approximation. Thus, from a quantum information viewpoint,
the system of interest to QSM is already fully decohered in the
energy basis and behaves classically in an effective way: what
is quantum in QSM only pertains to quantized energy levels
and particle spin statistics.

(2) Partition function is well defined only for systems in
thermal equilibrium. It is ill defined for systems under nonequi-
librium conditions when the notion of temperature is lacking.
Pathologies may ensue if it is forced upon even perfectly
normal systems (in contradistinction to systems for which the
canonical ensemble does not exist and the heat capacity is
negative in the microcanonical ensemble, such as gravitating
systems). As noted in [43]. if one proceeds from assuming that
the combined system + environment is in a thermal state, the
behavior of the heat capacity of the system is different when it is
derived from the energy of the central system at equilibrium or
from a partition function approach [17,35]. By examining the
open-system nonequilibrium dynamics with no reference to the
partition function, one could avoid these pathologies. Likewise,
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old notions such as the Hamiltonian of mean force [4] are
only meaningful in the conceptual framework of equilibrium
systems [14] as in CGTs.

(3) The oft-heard statement, that the generating functional
(in quantum field theory) is equal to the partition function
(in equilibrium statistical mechanics), is true only for thermal
fields, i.e., there exists a canonical distribution where a thermal
state is well defined for all times. This statement arises from
treating thermal (finite temperature) fields with imaginary
(Matsubara) time quantum field theory. If one uses real time
representation to describe the NEq dynamics of open systems,
the generating functional remains well defined but it is not the
(canonical) partition function defined in imaginary time.

(4) If an open system upon interaction with its environment
can equilibrate at late times, and if it is further thermalized, it
enters a thermal state. But, this equilibrium state is different
from that of a system in contact with a heat bath which behaves
in a totally passive and nondynamical way, in particular, with
no back-action on the system. The latter is where a theory of
quantum thermodynamics is often constructed, namely, from
a simple extension of conventional classical thermodynamics.
The difference lies in the dynamical correlations between
the system and the bath, which conventional thermodynamics
ignores completely by assuming a vanishingly small coupling.

(5) There are important differences between the ONEq and
the CGTs setups in their goals, approaches, and consequences.
There are also key differences between CGTs and thermal-
ization in a closed quantum system in the vein of eigenstate
thermalization hypothesis. Since the latter is an active topic in
the last decade with many important contributions, we can only
focus on the differences from the open-system approach on the
specific issues of interest to us here and cite some representative
references and reviews for interested readers to appreciate the
scope [1,19–28]. We highlight some key features below. In
Appendix C, we will illustrate some aspects of the ONEq and
the CGTs setups with a simple model calculation from the
ubiquitous QBM model.

a. Setup and goals. In this work, we assumed the field
to be in a thermal state prior to its coupling to the system
oscillators, which initially can be in an arbitrary state. Thus,
the system oscillators and the field are generically out of
equilibrium before and after the interaction is turned on. Our
focus is on the subsequent dynamics and relaxation of the
system oscillators, without assuming the coupling to be weak.
The “pure state quantum statistical mechanics” assumes the
whole system is in a pure state throughout. The main goal
in [5] is to derive statistical mechanics and thermodynamics
from quantum mechanics without resorting to the notion of
ensembles. It aims to show that even pure quantum states
of interacting many-body systems can display relaxation to
equilibrium and, in special cases, thermalize.

b. The methods developed in the “pure state quantum
statistical mechanics” literature are usually applied to closed
systems without an intrinsic system-bath distinction. For in-
stance, in Cramer et al. [44], a one-dimensional harmonic
lattice is shown to locally relax to Gaussian states for arbitrary
choice of subsystem and a wide class of initial states. The
authors note the following: “Every part of the system forms
the environment of the other ….” Here, we are only concerned
with the relaxation of the system oscillators and do not require

that any part the environment relaxes. (In fact, in Appendix C
we show that the bath modes never reach a steady state.)

c. There is an important distinction in the meaning of
equilibration. In the pure state quantum statistical mechanics
paradigm equilibration is used more broadly to indicate relax-
ation to a steady state. For instance, depending on the context,
the relaxation of the expectation values of certain operators
to fixed values or of the reduced density matrix is considered
equilibration. In our open-system approach, equilibration has
a very specific meaning [see Eq. (C3)]. In other words, there
exists an environment and an interaction Hamiltonian such that
the equilibrium state is obtained by tracing out the environment
in the global thermal state.

d. Integrability. It has been discussed in [5] that integrable
quantum models indeed equilibrate to a suitable generalized
Gibbs ensemble. Furthermore [45], examine the behavior of
the one- and two-point correlation functions after a quench in
various models, and it is found that the relaxation dynamics
and equilibrium values can be well understood by means of a
generalized Gibbs ensemble.

C. Key results

1. Energy extensivity

In conventional thermodynamics, when the intrasystem
coupling is negligible, the internal energy is extensive in terms
of the number of the oscillators, like the case of the dilute
gas. When this coupling is finite, we may instead understand
the extensive property of the internal energy in terms of the
normal modes of the coupled oscillators. We have shown that
with this definition of extensivity the internal energy becomes
extensive after the system reaches equilibrium, as implied by
(3.8). It is interesting to note that the degrees of freedom of
the oscillators used to describe the extensive property of the
internal energy are neither the original degrees of freedom
associated with each oscillator, nor the modes that decouple
their equations of motion. Rather, they are the degrees of
freedom that diagonalize the oscillation frequency matrix ���2

p.
In this regard, the extensive property of the internal energy
in the final equilibrium state is the same as that of coupled
oscillators in conventional thermodynamics, that is, in the
vanishing system-bath coupling limit. This offers an explicit
theoretical justification, from the open-system viewpoint, of
conventional thermodynamics when applied to such a many-
body system.

2. Heat capacity

When the system of N coupled oscillators in a shared
scalar-field bath reaches equilibrium, its heat capacity is shown
to be always non-negative for all nonzero bath temperatures,
and it moves towards zero only if the bath temperature ap-
proaches zero. These properties are independent of the spatial
arrangement of the oscillators, the interoscillator coupling, and
the system-bath interaction strength, as long as the collective
non-Markovian motion of the system is stable.

3. The third law

Therefore, from the viewpoint of behavior of the heat capac-
ity at T = 0 for this class of systems in an equilibrium state, the
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third law is not violated. In this connection we also addressed
the issue of entanglement and the third law pertaining to
heat capacity. It was stated in [39] the following: “One may
therefore say that in these systems the validity of the third law
of thermodynamics relies on quantum entanglement ….” Our
view is that the third law depends on the nondegeneracy of the
ground state manifold and has nothing to do with entanglement
directly. Indeed, it has been shown [41] in the case of two spa-
tially separated but coupled oscillators in a zero-temperature
shared bath that the equilibrated state of this two oscillator
system is not always entangled. For example, with sufficiently
strong oscillator-bath interaction, the reduced state of the two
oscillators is separable. (See Fig. 3 in [41].) Here, we have
shown that the heat capacity of the coupled harmonic oscillator
system goes to zero independent of the system-bath interaction
strength. Thus, it offers a counterexample to the above claim
that the validity of the third law of thermodynamics relies on
quantum entanglement.

II. BROWNIAN MOTION OF SYSTEMS OF OSCILLATORS
STRONGLY COUPLED TO AN ENVIRONMENT

We now begin our detailed model study for considering the
viability in the establishment of a thermodynamics theory of
open quantum systems.

Consider a collection of coupled quantum harmonic os-
cillators in a shared finite-temperature β−1 bath modeled by
a massless scalar field in 1 + 3 Minkowski space-time. The
action of such a system is given by

S =
∫

dt
∑

i

[
m

2
χ̇2

i (t) − mω2
b

2
χ2

i (t)

]

−
∫

dt
∑
j>i

mσ χi(t)χj (t) +
∫

d4x j (x)φ(x)

+
∫

d4x
1

2
∂μφ(x)∂μφ(x), (2.1)

with x = (t,x). Each oscillator is located at a fixed spatial
coordinate zi , and has the same mass m and bare natural fre-
quency ωb. The “current” j (x) in the oscillator-bath interaction
term takes the form j (x) = e

∑
i χi(t) δ(3)(x − zi), with e the

coupling strength between the oscillator and the bath. The
parameter σ is the strength of direct coupling between two
oscillators and assumed to be positive for concreteness.6

Here, we suppose that the initial state of the combined
system is a factorized state, given by

ρi = ρ
(χ)
i ⊗ ρ

(φ)
β , ρ

(φ)
β = Z−1

φ e−βH (φ)
, Zφ = Trφ{e−βH (φ)},

(2.2)

where H (φ) is the free Hamiltonian of the scalar field. While
the field is initially prepared in a thermal state, the initial state
ρ

(χ)
i of the system can be quite arbitrary. Thus, in the beginning

6It can take either sign, which only affects the interpretation of
the normal modes. In addition, the numerical values of e and σ are
confined to ranges where instability in the dynamics is avoided. We
will comment on this point later.

the system and the bath are not in equilibrium, nor correlated.
We will let them interact and evolve in time. We will explore
and make explicit the conditions when the system can and will
reach equilibration.7 This equilibrium state in general will have
no resemblance to the thermal state of the combined system,
nor of the reduced system. Thus, the setup here is in strong
contrast to the closed-system globally thermal state (CGTs)
often adopted in the discussions of quantum thermodynamics.
There, for the total Hamiltonian of the combined system H =
H (χ) + Hint + H (φ), it is assumed that

ρi = ρβ, ρβ = Z−1 e−βH , Z = Trχ, φ {e−βH }. (2.3)

In the global thermal state, the system has already established
correlation with the bath, and the interaction between the
system and the bath is such that it maintains this correlation
throughout. Since they are in thermal equilibrium, the com-
bined system will remain in the global thermal state unless an
external disturbance is introduced to bring the system out of
equilibrium.

The evolution of the combined system is governed by the
unitary evolution operator U :

U (tf ,ti) = T exp

[
−i

∫ tf

ti

ds H (s)

]
, (2.4)

where T denotes chronological time ordering and H is the
Hamiltonian operator of the combined system that corresponds
to the action (2.1). Given the initial state (2.2) of the total
system, the density matrix of the reduced system of interest is
then given by

ρ(χ)(tf ) = Trφ{U (tf ,ti) ρ(ti) U †(tf ,ti)}, (2.5)

after we trace out the degrees of freedom of the bath. The
reduced density matrix of the system enables us to calculate
the quantum expectation values of the operators, say O(χ ),
associated with the system by

〈O(χ)〉 = Trχ {ρ(χ)(tf )O(χ)}, (2.6)

from which we may construct the quantum thermodynamics
of the system in a nonequilibrium setting.

When the initial state (2.2) is Gaussian, Eq. (2.5) can be
evaluated analytically and exactly for the combined system
described by (2.1). Using a path-integral representation of U

and U †, the reduced density matrix elements in (2.5) become

ρ(χ)(χf ,χ ′
f ,tf ) =

∫ ∞

−∞
dχi dχ ′

i ρ(χ)(χi,χ
′
i ,ti)

∫ χf

χi

Dχ+

×
∫ χ ′

f

χ ′
i

Dχ− exp{i S(χ)[χ+] − i S(χ )[χi]}

×F[χ+,χ−], (2.7)

where S(χ) is the action of the system alone and χ± denotes
the system variable in the respective forward and backward
time branches. This is where the “closed-time-path” integral

7The equilibration issue for classical coupled-oscillator systems was
studied before by, e.g., Agarwal [46].
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(CTP) and “in-in’ formalism [47] or its close kin, the Feynman-
Vernon [7] influence functional (IF) F[χ+,χ−], become par-
ticularly useful.

For a Gaussian bath, its influence on the system can be
understood as caused by a classical noise by way of the
Feynman-Vernon Gaussian identity: the imaginary part of
the IF can be represented by a stochastic source term which
inherits the quantum statistics of the bath. Using techniques
from the CTP formalism, a revised imaginary part combined
with the original real part of the influence functional, together
with the action of the system, form a new effective action which
is real, known as the stochastic effective action. Variation of this
stochastic effective action produces a Langevin equation which
describes the evolution of the reduced system. For details and
working examples in this functional approach to open quantum
system dynamics, please refer to Appendix A. In what follows,
we will adopt the Langevin equation approach in the discussion
of quantum thermodynamics at strong coupling.

A. Langevin equation for the reduced system

Following this well-established procedure, the Langevin
equation for the stochastic dynamics of the ith oscillator
(strongly) interacting with other oscillators and their shared
bath with action (2.1) is given by

m χ̈i(t) + mω2
b χi(t) +

∑
j �=i

mσ χj (t)

− e2
∫ t

0
ds

∑
j

G
(φ)
R (t − s,zi − zj ) χj (s) = e ξi(t). (2.8)

In addition to the drag force and the quantum fluctuations
of the bath found in a single oscillator system, a new factor
entering in the present coupled-oscillator shared-bath system
is the induced interaction between the oscillators through
their respective interaction with the scalar-field bath. The
field-environment mediated effect is non-Markovian in nature
(see, e.g., [48–50]), often absent8 in a shared bath modeled by
a collections of oscillators9 (see, e.g., [51,52]). This feature
introduces additional complications and brings forth new
physics in analyzing the stochastic dynamics of the quantum
many-body system, as well as its quantum thermodynamics.

The statistics of the Gaussian noise field ξi(t) = ξ (t,zi) is
determined completely by the first two moments

〈ξi(t)〉 = 0, 〈ξi(t)ξj (t ′)〉 = G
(φ)
H (t − t ′,zi − zj ). (2.9)

All the higher even moments can be expressed by the second
moment with the Wick expansion while all the odd moments
vanish. The 〈. . . 〉 notation denotes either an ensemble aver-
age or expectation value, depending on whether the variable
under consideration is stochastic or quantum. The two kernel
functions G

(φ)
R (x − x ′) and G

(φ)
H (x − x ′) are most relevant for

8Unless the spatial information is retained in the system-bath
interaction.

9The differences between a oscillator bath and a field bath will be
discussed in Appendix E.

our present study: They are the retarded and the Hadamard
functions of the scalar field φ in its thermal state, defined by

G
(φ)
R (x − x ′) = i θ (t − t ′) [φ(x),φ(x ′)]

= 1

4πr
θ (τ ) [δ(τ − r) − δ(τ + r)], (2.10)

G
(φ)
H (x − x ′) = 1

2
〈{φ(x),φ(x ′)}〉

= − 1

8πβr

[
coth

π (τ − r)

β
− coth

π (τ + r)

β

]
,

(2.11)

with τ = t − t ′ and r = |x − x′|. Since they are time-
translation invariant, their Fourier transforms with respect to
the τ variable satisfy the well-known relation

G̃
(φ)
H (ω; r) = coth

βω

2
Im G̃

(φ)
R (ω; r), (2.12)

where the Fourier transformation of the function f (τ ) is
defined by

f̃ (ω) =
∫ ∞

−∞
dτ e+i ωτ f (τ ), f (τ ) =

∫ ∞

−∞

dω

2π
e−i ωτ f̃ (ω).

(2.13)

Introducing the matrix representation of the equation of
motion (2.8),

��� =

⎛
⎜⎜⎝

χ1

χ2
...

χn

⎞
⎟⎟⎠, ���2

b =

⎛
⎜⎜⎜⎝

ω2
b σ . . . σ

σ ω2
b . . . σ

...
...

. . .
...

σ σ . . . ω2
b

⎞
⎟⎟⎟⎠, ξξξ =

⎛
⎜⎜⎝

ξ1

ξ2
...
ξn

⎞
⎟⎟⎠,

(2.14)

where [G(τ )]ij ≡ G(τ,zi − zj ), we obtain a matrix equation

�̈��(t) + ���2
b · ���(t) − e2

m

∫ t

0
ds G(φ)

R (t − s) · ���(s) = e

m
ξξξ (t).

(2.15)
The solution generically takes the form

���(t) = d1(t) · ���(0) + d2(t) · �̇��(0) + e

m

∫ t

0
ds d2(t−s) · ξξξ (s),

(2.16)

where {���(0),�̇��(0)} are the initial conditions and di(t) are a
special set of homogeneous solutions to (2.15). The actual
form of d1 is not important but the Fourier transform of d2(t) is

d̃2(ω) =
[
���2

b − ω2I − e2

m
G̃(φ)

R (ω)

]−1

. (2.17)

Later, it will be shown that for certain choices of parameters,
the solution to (2.15) can exhibit instability and grows
indefinitely when t approaches infinity. In these cases, the
homogeneous solutions di(t) are not integrable,∫ ∞

−∞
dt |di(t)| �< ∞, (2.18)
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so their Fourier transforms do not exist in the usual sense.
Thus, when results are expressed in terms of d̃i(ω), it pays to
be careful about their interpretations.

Finally, we note from (2.16) that the oscillator is driven not
only by the local noise at its very location, but is also affected
by the quantum fluctuations of the bath at the locations of the
other oscillators. This intriguing feature is essential in keeping
the energy balance of the reduced system after it equilibrates.
This will become clearer when we calculate the energy balance
in Sec. III C.

B. Covariance matrix

From (2.16), if there exists an equilibrium state10 for the
reduced system, then the moment

σσσχχ (t) = 1
2 〈{���(t),���T (t)}〉 (2.19)

at late time, after the reduced system completely relaxes, is
well defined and given by

lim
t→∞σσσχχ (t) = e2

m2

∫ ∞

−∞

dω

2π
d̃2(ω) · G̃(φ)

H (ω) · d̃†
2(ω), (2.20)

where the superscripts T and † denote the transposition and
Hermitian conjugate of the matrix, respectively.

Since d2 is a symmetric matrix, we observe that

d̃2(ω) − d̃†
2(ω) = 2i Im d̃2(ω)

= 2i
e2

m
d̃2(ω) · Im G̃(φ)

R (ω) · d̃†
2(ω), (2.21)

with the help of the matrix identity

A−1 − B−1 = A−1 · (B − A) · B−1, (2.22)

for two nonsingular matrices A, B. Thus, we can writeσσσχχ (∞)
in (2.20) as

σσσχχ (∞) = 1

m

∫ ∞

−∞

dω

2π
coth

βω

2
Im d̃2(ω)

= Im
∫ ∞

−∞

dω

2π
coth

βω

2
G̃(χ)

R (ω), (2.23)

where the retarded Green’s function G̃(χ)
R (ω) of the reduced

system is in fact

G̃(χ)
R (ω) = 1

m
d̃2(ω). (2.24)

Similarly, we introduce

σσσυυ(t) = 1
2 〈{�̇��(t),�̇��

T
(t)}〉, (2.25)

and at late times it becomes

σσσυυ(∞) = Im
∫ ∞

−∞

dω

2π
ω2 coth

βω

2
G̃(χ)

R (ω). (2.26)

10The existence of the equilibrium state is related to the fact that the
complex poles of d̃2(ω) lie on the upper half of the complex ω plane
(see Sec. III E). This is also the very basis on which we can discuss the
fluctuation-dissipation relation of the reduced system and the energy
balance among the dissipative, retarded, and noise force terms.

This integral in general is not well defined due to the presence
of ultraviolet (UV) divergence, so regularization is needed.

C. Internal energy

We define the internal energy of the system as its total
mechanical energy. The total mechanical energy E of the
coupled oscillators is

E(t) =
∑

i

[
m

2

〈
χ̇2

i (t)
〉 + mω2

p

2

〈
χ2

i (t)
〉]

+
∑
j>i

mσ 〈χi(t)χj (t)〉

= m

2
Tr

{
σσσυυ(t) + ���2

p · σσσχχ (t)
}
. (2.27)

Here, Tr is the matrix trace, and the matrix ���2
p is defined

in a way similar to ���2
b except that the elements ω2

b in ���2
b

are replaced ω2
p, where ωp is the renormalized or physical

frequency, which will be determined by the system preparation
at the experimental energy scale. The difference between them
is not necessarily large and depends on the choice of the cutoff
frequency �, such that

ω2
p − ω2

b = −4γ�

π
, (2.28)

where the damping constant γ is equal to γ = e2/(8πm). In
the equilibrium state (note it is not necessarily the Gibbs state
[53]), the total mechanical energy becomes

E(∞) = m

2
Tr

{
σσσυυ(∞) + ���2

p · σσσχχ (∞)
}

= 1

2
Im

∫ ∞

−∞

dκ

2π
coth

βκ

2
Tr

{[
κ2I + ���2

p

] · d̃2(κ)
}
.

(2.29)

The heat capacity C is then given by

C = ∂E

∂T
= −β2 ∂E

∂β
. (2.30)

The evaluation of E(∞) can be trickier than expected if
regularization is not properly introduced.

At this point, it may be desirable to get some physical
feel of the dynamics and thermodynamics of the system.
In Appendix B, we treat a simpler system of one and two
oscillators so that we can see the subtleties involved in the
non-Markovian dynamics and thermodynamics of a strongly
interacting open quantum system. Otherwise, we may proceed
to the formal development for the N oscillator system.

III. THERMODYNAMICS OF OPEN QUANTUM SYSTEMS

As mentioned in the beginning, in this paper we use the
model of an N coupled-oscillator system interacting with a
scalar-field bath to address the energy and heat capacity issues
and discuss the third law of thermodynamics.

Before we launch our studies of the N coupled-oscillator
model in full rigor, it would be useful to gain some feeling
of the anticipated physical results for simpler cases. Hence,
we summarize what we have learned from the one and two
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FIG. 1. We compare the difference in predictions from the equi-
librium and nonequilibrium approaches. The blue (solid) curve de-
scribes the temperature dependence of the mechanical energy of the
oscillator in the equilibrium thermal state. The other two curves give
the temperature variations of the mechanical energy of the oscillator
which interacts with a bath that is initially in the thermal state. As an
illustration of the nontrivial effect in the choice of the cutoff scale,
these two curves have different cutoff scales.

coupled harmonic oscillators examples below. Details for these
two cases are placed in Appendix B.

For a system containing just one harmonic oscillator cou-
pled to a thermal bath with finite coupling strength, the
heat capacity behaves qualitatively different at low temper-
atures from traditional thermodynamics, which assumes that
the system-bath coupling is vanishingly small. A new scale
associated with the coupling strength γ appears. As shown
in (B11), the heat capacity approaches zero following a
power law when the bath temperature is lowered to zero. In
contrast, quantum statistical mechanics calculations assuming
vanishing system-bath coupling predict in (B16) that the heat
capacity approaches zero exponentially as the bath temperature
is lowered to zero. This is mostly transparently seen in
Figs. 1 and 2.

FIG. 2. We show the difference of the heat capacity of the
single oscillator obtained from equilibrium Ceq and nonequilibrium
approaches Cneq . The difference is more significant for stronger
coupling between the oscillator and the bath. At low temperature, Ceq

approaches zero exponentially, while Cneq has an algebraic fall-off.

With a mere increase of the number of system oscillators
from one to two, the physics of the reduced system becomes
more intricate because the two oscillators will have, on top
of their direct coupling, also an indirect coupling mediated by
the ambient scalar-field bath, which introduces non-Markovian
effects in the reduced system dynamics. As for quantum en-
tanglement, in addition to the system-bath entanglement in the
one-oscillator case, one needs to consider also entanglement
between the constituent oscillators. Noteworthy on this issue
is, as shown in Eq. (B33) and Fig. 3(c) of Appendix B, the
behavior of the heat capacity for the two-oscillator system near
absolute zero temperature does not depend on the presence
or the absence of quantum entanglement between the two
system oscillators. The heat capacity still approaches zero no
matter what, and has a qualitatively similar behavior as the
one-system-oscillator case.

A. System of N coupled oscillators in a common bath

Now, we consider a system that contains N coupled
harmonic oscillators in a shared thermal bath. Their spatial
locations, specified by zi , with i = 1, . . . , N , is arbitrary,
and their initial states can be far from equilibrium. From the
previous discussions, we have learned that their motion is
highly non-Markovian and intertwined, so it is not obvious
whether systems that contain a large number of constituents
always equilibrate. This would be the most important issue to
address, namely, identify the conditions, or lack thereof, for an
N coupled harmonic oscillator in a shared thermal bath to reach
in time an equilibrium (note different from thermal) state. We
will show that indeed it exists. Then, in this equilibrium state,
we can discuss for this non-Markovian system the fluctuation-
dissipation relation and the energy balance. We then advance
towards the thermodynamics issues, beginning with a proof of
the extensivity of the internal energy, the positivity of the heat
capacity, and, finally, the behavior of the heat capacity as the
temperature approaches to zero, pertaining to the issues of the
third law.

The number N of the system constituents can be arbitrary
but cannot be infinite because when it is comparable with the
number of degrees of freedom of the bath, (1) it may lose the
character of a system in contradistinction to its environment,
as the basic definition of open systems calls for. (2) The
system and environment should in this situation be considered
as two equal subsystems interacting with each other which
have a very different dynamics from open systems, e.g., re-
currence. More seriously, (3) the system may never equilibrate
because any oscillator will be continually perturbed by the
non-Markovian influences from its faraway counterparts all the
time. This will make the motion of the system difficult to settle
down.

For a finite N , following our earlier analysis outlined in the
two-oscillator case, we note there are exceptional cases that
equilibration may not be always possible. For example, we
exclude those arrangements where some of the oscillators are
placed remotely from all others because such a setup can render
the relaxation time unusually long. From these considerations,
we assume the number N is much smaller than the number of
degrees of freedom of the bath, and that the oscillators are all
localized within a finite region. As a reminder, this still does not
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exclude the possibility that when the non-Markovian effects are
sufficiently strong, albeit not enough to induce instability, the
system might still have an extraordinarily long relaxation time
so as to behave almost like an undamped one.

Since analytical results for the N oscillator system are
unavailable, we will provide a qualitative but general analysis
based on the mathematical properties of positive matrices.
We start with two simpler topics by first examining the
fluctuation-dissipation relation of the reduced system in the
final equilibrium state, and then the energy balance between
the reduced system and the bath. They provide the basis for
extensivity of internal energy and positivity of heat capacity.
We will save the discussion on the existence of this equilibrium
state for the end.

B. Fluctuation-dissipation relation, stationarity

We direct our attention now to the correlation function
of χi(t) and derive the corresponding fluctuation-dissipation
relation when the reduced system reaches equilibrium. From
(2.16), we find the correlation function, namely, the Hadamard
function of ���(t) given by

G(χ)
H (t,t ′) = d1(t) · dT

1 (t ′)
〈
χ2

i (0)
〉 + d2(t) · dT

2 (t ′)
〈
χ̇2

i (0)
〉

+ d1(t) · dT
2 (t ′) 〈χi(0)χ̇i(0)〉

+ d2(t) · dT
1 (t ′) 〈χ̇i(0)χi(0)〉

+ e2

m2

∫ t

0
ds

∫ t ′

0
ds ′ d2(t − s) · G(φ)

H (s − s ′)

· dT
2 (t ′ − s ′). (3.1)

Again, [G(φ)
H (s − s ′)]ij = G

(φ)
H (s − s ′,zi − zj ). It is not invari-

ant in time translation so the intermediate state is not an equi-
librium state. If we choose the parameters of the configuration
in such a way that no runaway solution is allowed, then di(t)
exponentially decays with time. Thus, in (3.1), those terms that
are not inside integrals will be exponentially small at late times.
The double integrals in (3.1) can be written as∫ t

0
ds

∫ t ′

0
ds ′ d2(t − s) · G(φ)

H (s − s ′) · dT
2 (t ′ − s ′)

≈
∫

dκ

2π
d̃∗

2(κ) · G̃(φ)
H (κ) · d̃T

2 (κ) e−iκ(t−t ′), (3.2)

among which we have ignored terms that are exponentially
small at late times and have used the approximation that when
t is sufficiently large,∫ t

0
ds d2(t − s) e−i κs = e−i κt d̃∗

2(κ) + O(e−αt ), (3.3)

with α being some positive number to describe the generic
decaying behavior of d2 with time. Thus, we see the nonsta-
tionary components in G(χ)

H (t,t ′) become negligibly small as
t, t ′ → ∞. We can then focus on the stationary component

lim
t→∞
t ′→∞

G(χ )
H (t,t ′) = G(χ)

H (t − t ′)

=
∫

dκ

2π
coth

βκ

2
Im

{
G̃(χ)

R (κ)
}
e−i κ(t−t ′),

(3.4)

where we have invoked the fluctuation-dissipation relation of
the free (standalone) scalar field

G̃(φ)
H (κ) = coth

βκ

2
Im G̃(φ)

R (κ). (3.5)

In (3.4), we notice that the integrand in fact is G̃(χ )
H (κ) by the

definition of the Fourier integral, and thus we arrive at

G̃(χ)
H (κ) = coth

βκ

2
Im G̃(χ)

R (κ), (3.6)

when the reduced system reaches equilibrium. Thus, from the
derivation we see that the correlation function of the reduced
system is not stationary in time during the nonequilibrium
evolution, but dissipation causes the nonstationary component
of the correlation to decay with time such that when the dynam-
ics of the reduced system is relaxed, the correlation becomes
stationary. This reflects the presence of a final equilibrium state.

Stationarity enables us to express the fluctuation-dissipation
relation of the reduced system in the frequency domain,
similar to that of the bath. However, even though they appear
deceptively similar in structure, they are utterly different in
physical contents. Essentially, (3.5) is based on the initial
thermal state of the bath, while (3.6) is established only because
there exists a final equilibrium state, which by no means is
necessarily a Gibbs thermal state; however, it still inherits the
information of the initial thermal state of the bath. This is
related to the fact the late-time statistics of the reduced system
is governed by the bath. A similar behavior is also observed for
the case when a charged oscillator interacts with a quantized
electromagnetic field, initially prepared in a squeezed vacuum
[54]. The only difference is that the proportionality constant in
the fluctuation-dissipation relation like (3.6) takes a different
form and depends on the squeeze parameters of the bath’s
initial squeezed vacuum state.

C. Energy balance in the equilibrium state

Now, we turn to the energy balance of the reduced system
described by (2.8) in the equilibrium state

m χ̈i(t) + m
(
���2

b

)
ij

χj (t) − e2
∫ t

0
ds G

(φ)
R (t − s,0) χi(s)

− e2
∫ t

0
ds

∑
j �=i

G
(φ)
R (t − s,zi − zj ) χj (s) = e ξi(t), (3.7)

where complexity arises from the frequency renormalization
and the nonlocal causal influence among oscillators. In the
single oscillator case, when equilibrium is reached, the net en-
ergy flow between the oscillator and the bath stops. The energy
flowing in from the noise force of the bath is counterbalanced
by the energy flowing out of the oscillator due to the frictional
force, as captured by the fluctuation-dissipation relation. In
the multioscillator case, it is then interesting to ask whether
only the same two factors are needed to balance the energy
flow in the course of equilibration, or other mechanisms are
also involved? If so, what are their roles in the fluctuation-
dissipation relation?
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We will show that

lim
t→∞

∑
i

m

2

〈
χ̇2

i (t)
〉 + m

2

∑
i,j

(
���2

p

)
ij
〈χi(t)χj (t)〉 = const,

(3.8)

that is, the energy transfer mediated by the shared bath ceases
after the motion of the reduced system reaches equilibrium.

We first rewrite the third term in (3.7) as

− e2
∫ t

0
ds G

(φ)
R (t − s,0) χi(s)

= −e2�(φ)(0) χi(t) + e2
∫ t

0
ds �(φ)(t − s) χ̇i(s), (3.9)

where �(φ)(t) vanishes for a scalar-field bath at late times, and
we have introduced a kernel function �(φ)(τ ):

G
(φ)
R (τ,0) = [

G(φ)
R (τ )

]
ii

= − d

dτ
�(φ)(τ ) ⇔

G̃
(φ)
R (ω,0) = i ω �̃(φ)(ω). (3.10)

In what follows, we will calculate the power delivered to the
ith oscillator in the equilibrium state.

Each of the terms in (3.9) gives a contribution with a distinct
physical interpretation. The first term on the right-hand side of
(3.9) will be absorbed into the bare frequency ωb to form the
physical frequency ωp:

ω2
p = ω2

b − e2

m
�(φ)(0). (3.11)

The second term on the right-hand side of (3.9) thus represents
the dissipative force whose mean power delivered to the ith
oscillator is

P (i)
γ (t) = −e2

∫ t

0
ds �(φ)(t − s) 〈χ̇i(s)χ̇i(t)〉. (3.12)

The mean power exerted by the noise force on the ith oscillator
is

P
(i)
ξ (t) = e 〈ξi(t)χ̇i(t)〉. (3.13)

Finally, the net power delivered by the other oscillators to the
ith oscillator via the nonlocal causal influence transmitted by
the field is given by

P (i)
c (t) = e2

∫ t

0
ds

∑
j �=i

G
(φ)
R (t − s,zi − zj ) 〈χj (s)χ̇i(t)〉.

(3.14)

These three contributions look very distinct in nature, but we
will show that at late times after the system of oscillators
relaxes, their sum vanishes. Let us rewrite (3.12)–(3.14) in
the limit t → ∞:

(i) P (i)
γ (∞): It is given by

P (i)
γ (∞) = i e2

∫ ∞

−∞

dκ

2π
κ Im

[
G̃(φ)

R (κ)
]
ii

[
G̃(χ)

H (κ)
]
ii
, (3.15)

where we have used several facts:
(a) In general, G(χ)

H (t,s) = 〈{χi(t), χi(s)}〉/2 is not in-
variant with time translation unless t, s are sufficiently large.

That is, the nonstationary components will decay with time,
so when t, s → ∞, we can write G(χ)

H (t,s) into G(χ )
H (t − s).

(b) The real part of the Fourier transform of a retarded
Green’s function G̃(φ)

R (κ) is an even function in κ ∈ R, but
the imaginary part is an odd function.

(c) Im[G̃(φ)∗
R (κ,0)]ii = − Im[G̃(φ)

R (κ,0)]ii .
(ii) P

(i)
ξ (∞): It is given by

P
(i)
ξ (∞) = −i e2

∑
j

∫ ∞

−∞

dκ

2π
κ Im

[
G̃(χ)

R (κ)
]
ij

[
G̃(φ)

H (κ)
]
ij
,

(3.16)

where we have made use of the fluctuation-dissipation relation
(3.6) for the reduced system.

(iii) P (i)
c (∞): It is given by

P (i)
c (∞) = i e2

∑
j �=i

∫ ∞

−∞

dκ

2π
κ Im

[
G̃(φ)

R (κ)
]
ij

[
G̃(χ )

H (κ)
]
ij
.

(3.17)

We observe that unlike the one-oscillator case,

P (i)
γ (∞) + P

(i)
ξ (∞) �= 0, (3.18)

so in the multioscillator case, the energy balance is more
delicate. On the other hand, the contribution P (i)

γ (∞) can be
combined with P (i)

c (∞) to form

P (i)
γ (∞) + P (i)

c (∞)

= i e2
∑

j

∫ ∞

−∞

dκ

2π
κ Im

[
G̃(φ)

R (κ)
]
ij

[
G̃(χ)

H (κ)
]
ij
, (3.19)

which turns out to be the negative of P
(i)
ξ (∞). We thus see in

fact we should have

P (i)
γ (∞) + P (i)

c (∞) + P
(i)
ξ (∞) = 0 (3.20)

if both of the fluctuation-dissipation relations

G̃(φ)
R (κ) = coth

βκ

2
Im G̃(φ)

R (κ),

G̃(χ)
R (κ) = coth

βκ

2
Im G̃(χ)

R (κ) (3.21)

hold.
Equation (3.20) immediately implies (3.8). Here, we see

additional mechanisms are at play in the energy transfer
between coupled oscillators. The motion of any oscillator is,
apart from direct coupling, causally affected by all the other
oscillators via the shared bath. These coherent and correlated
contributions from the other oscillators, depending on their
individual evolution history, do not necessarily induce a drag
nor a push force on that very oscillator. The net effects of the
retarded influence are thus highly complicated, hinging on the
distance between any two oscillators and their states of motion.
It is not obvious how they participate in balancing the energy
flow between each system oscillator and the bath. However,
we have mentioned earlier that each oscillator, in addition to
experiencing the disturbance from the noise of the bath locally,
is also affected by the bath fluctuations at the locations of the
other oscillators. We can see that the correlations of the bath
fluctuations will be passed on to the oscillators such that their
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motions are also correlated. These correlated noises can be the
counterparts of the causal influences, both of which are the
off-diagonal elements in the fluctuation-dissipation relation of
the bath (3.21), in the roles of either the fluctuation-dissipation
relation or the energy balance of the system. Moreover, once
we observe that the retarded influence is in fact related to
the Liénard-Wiechert–type radiation of the scalar field as a
consequence of the oscillators’ motion, it is clear that the
damping force is of the same physical origin as the non-
Markovian causal influences. Thus, grouping P (i)

γ (∞) and
P (i)

c (∞) together in (3.19) becomes natural, and from that
(3.20) follows.

Equation (3.8) says that even with the presence of non-
Markovian influences in the motion of the reduced system, the
interaction of the system with the bath is such that when the
system settles down in its equilibrium state, its total mechanical
energy becomes constant in time. Hereafter, the reduced
system acts as a collection of coupled undamped oscillators,
oscillating at the physical frequency ωp, and can be completely
described by the final equilibrium density matrix. That is, the
reduced system becomes self-contained and free from any
further intervention from the bath. This motivates us to assign
the total mechanical energy as the internal energy of the system.

Next, we will discuss the extensive property of the internal
energy of a system of N coupled oscillators in a shared bath.

D. Extensivity of internal energy

Before proceeding to the coupled system in a nonequilib-
rium configuration, we first delineate the extensivity of the
internal energy in the simpler equilibrium case.

Formally, equilibrium thermodynamics is realized in the
limit γ → 0, whereby the matrix G̃(χ)

R (ω) reduces to

lim
γ→0

G̃(χ )
R (ω) = 1

m

[
���2

p − ω2 I
]−1

→ 1

m

[
���2

p − (
ω + i ε

)2
I
]−1

, (3.22)

where in order to preserve the retarded property of G(χ)
R (τ ),

we have let ω → ω + i ε with ε > 0. Since the matrix ���2
p is

real and symmetrical, we may find a real orthogonal constant
matrix U, independent of ωp and σ , to diagonalize it, that is,

���2
p = U · W2

p · UT , U · UT = I. (3.23)

The matrix Wp is real and diagonal and we have assumed
that its diagonal elements remain positive definite, with the
appropriate choice of ωp and σ to avoid instability in motion.
Thus, we write (3.22) as

lim
γ→0

G̃(χ)
R (ω) = 1

m
U · [W2

p − (
ω + i ε

)2
I
]−1 · UT

= U · G̃GG(χ)
R, 0(ω) · UT , (3.24)

with the diagonalized GGG
(χ)
R, 0(ω) matrix given by

G̃GG
(χ )
R, 0(ω) = 1

m

[
W2

p − (ω + i ε)2 I
]−1

. (3.25)

Now, since the symmetric matrices σσσχχ (∞) and σσσυυ(∞) are
related to G̃(χ )

R (ω), according to (2.23) and (2.26), we can write

them into the diagonal forms as well with the help of U:

σσσχχ (∞) = U · n(∞) · UT and σσσυυ(∞) = U · m(∞) · UT ,

(3.26)

in which the diagonal matrices n, m are

n(∞) = Im
∫ ∞

−∞

dω

2π
coth

βω

2
G̃GG

(χ)
R, 0(ω), (3.27)

m(∞) = Im
∫ ∞

−∞

dω

2π
ω2 coth

βω

2
G̃GG

(χ)
R, 0(ω). (3.28)

So far what we have done is equivalent to expressing the results
in terms of the normal modes of the coupled oscillators when
their interaction with the shared bath is almost nonexistent. The
matrices n, m are nothing but the position and velocity uncer-
tainties of the normal-mode coordinates. This decomposition
implies that the mean mechanical energy in the equilibrium
thermal state, due to the presence of the trace, is invariant under
the orthogonal transformation acted by U:

E(∞) = m

2
Tr

{
σσσυυ(∞) + ���2

p · σσσχχ (∞)
}

= m

2
Tr

{
m(∞) + W2

p · n(∞)
}
. (3.29)

The advantage of the form (3.29) is that since every matrix in
it is diagonal, (3.29) can be literally and formally written as

E(∞) =
∑

i

Ei(∞), (3.30)

where

Ei(∞) = m

2

{
mii(∞) + (

W2
p

)
ii nii(∞)

}
(3.31)

is essentially the mechanical energy associated with each
normal mode. That is, the total mechanical energy is the sum of
the mechanical energy of each normal mode. Thus, when the
interaction between the coupled oscillators and the shared bath
is negligible, the mechanical or internal energy is extensive, at
least with respect to the normal modes. This is the limiting
condition underlying conventional thermodynamics.

When the oscillator-bath interaction is not negligible, the
Green’s function matrix G̃(χ)

R (ω) of the oscillators contains the
contribution from the retarded Green’s function matrix G̃(φ)

R (ω)
of the free scalar field

G̃(χ)
R (ω) = 1

m

[
���2

b − ω2I − e2

m
G̃(φ)

R (ω)

]−1

. (3.32)

Since the values of the elements of the matrix G̃(φ)
R (ω) depend

on the locations of the coupled oscillators,[
G̃(φ)

R

]
ij

(ω) = G̃
(φ)
R (ω,zi − zj ) , (3.33)

the orthogonal matrix U that can diagonalize ���2
b in general

cannot diagonalize G̃(φ)
R (ω) because the latter two matrices do

not commute in general unless the locations of the oscillators
are especially arranged. That is, in general the matrices

G̃GG
(φ)
R (ω) = UT · G̃(φ)

R (ω) · U ⇒ G̃GG
(χ)
R (ω) = UT · G̃(χ )

R (ω) · U

(3.34)
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are not diagonal, neither are n and m in this case. Even though
(3.29) always holds, and it will give an impression that the
total mechanical energy can still be expressed as a sum like
(3.30), here Ei does not enjoy the special significance of the
mechanical energy of each normal mode for the full equation
of motion (2.15):

�̈��(t) + ���2
b · ���(t) − e2

m

∫ t

0
ds G(φ)

R (t − s) · ���(s) = e

m
ξξξ (t).

(3.35)

This may be most easily understood if we apply the transfor-
mation U to the coupled equations of motion (3.35), and it
becomes

Ẍ(t)+W2
b · X(t) − e2

m

∫ t

0
dsGGG

(φ)
R (t−s) · X(s) = e

m
UT ·ξξξ (t),

(3.36)

where X = UT · ��� represents the coordinates of the normal
modes of the coupled oscillators in the absence of the bath as
is discussed earlier, but is not the normal modes of the coupled
oscillators in the presence of the shared bath. The off-diagonal
elements GGG(φ)

R (t − s) will link up any given element in X with
all other elements.

Therefore, from (3.8) we arrive at some interesting con-
clusions. When the coupled oscillators interact with a shared
bath, after the coupled system reaches equilibrium, the internal
energy of the system oscillators becomes extensive; however,
this extensivity is expressed by neither its original degrees
of freedom nor the decoupled degrees of freedom. Instead,
the extensive property of the system’s internal energy is only
manifested by a specified set of modes obtained from the
orthogonal transformation that diagonalizes���2

p, as can be seen
from Eq. (3.8). Moreover, before the motion of the reduced
system equilibrates, this special extensiveness property does
not hold, as is implied by (3.8). Thus, we are not able to
discuss the extensive property of the system’s internal energy
during the nonequilibrium evolution of the reduced system,
until the final equilibrium state of the reduced system is
attained.

In particular, this seemingly mundane conclusion, together
with (3.8), justifies or explicitly demonstrates, in the weak
oscillator-bath coupling, why conventional thermodynamics
(at least for the system that constitutes coupled oscillators)
works, why we need only the density matrix of the system to
describe the behaviors of the system, and why we need not
be concerned with renormalization, relaxation, damping, bath
noise.

E. Positivity of heat capacity and existence
of the equilibrium state

Now, we would like to discuss the positivity of the heat
capacity for a system of N coupled oscillators in a shared bath
in the context of nonequilibrium thermodynamics. The posi-
tivity of heat capacity, the decaying behavior, and the retarded
nature of d2(t) all hinge on the existence of the equilibrium
state. Thus, in this section, we will also address the conditions

that a nonequilibrium system settles into an equilibrium state
at late times.

Given the internal energy (2.29) when the system reaches
equilibrium, we proceed to examine the positivity property of
the heat capacity C(∞), given by

C(∞) = 1

2
Im

∫ ∞

−∞

dκ

2π

( βκ

2

sinh βκ

2

)2 1

κ
Tr

× {[
κ2I + ���2

p

] · d̃2(κ)
}
e− |κ|

� , (3.37)

from (2.29) and (2.30). The damping factor e− |κ|
� , with � →

+∞, is necessary to regularize the integral.
If we consider only the case that there is no runaway solution

in the motion of the system, such as with the inverted oscillator,
then this requires that the matrix ���2

p should be at least positive
definite.11 This allows us later to define a matrix that would be
the square root of κ2I + ���2

p. The imaginary part of d̃2(κ) can
be written as

Im d̃2(κ) = d̃2(κ) ·
[

2γ κ I + e2

m
Im /̃G

(φ)
R (κ)

]
· d̃†

2(κ).

(3.38)
Using (2.17) we know that d̃2(κ) takes the form

d̃2(κ) =
[
���2

b − κ2I − e2

m
G̃(φ)

R (κ)

]−1

=
[
���2

p − κ2I − i 2γ κ I − e2

m
/̃G

(φ)
R (κ)

]−1

,

with the help of (2.22). The matrix /̃G
(φ)
R (κ) is G̃(φ)

R (κ) with its
diagonal elements removed:

[
/̃G

(φ)
R (κ)

]
ij

=
{

0, i = j[
G̃(φ)

R (κ)
]
ij
, i �= j.

(3.39)

The diagonal elements of G̃(φ)
R (κ) account for the usual damp-

ing term and the frequency renormalization. Now, we introduce
the matrix D̃2(κ) by[

κ2I + ���2
p

] 1
2 · d̃2(κ) ≡ D̃2(κ), (3.40)

such that

Im Tr
{[

κ2I + ���2
p

] · d̃2(κ)
}

= Tr

{[
2γ κ I + e2

m
Im /̃G

(φ)
R (κ)

]
· D̃†

2(κ) · D̃2(κ)

}
,

(3.41)

where we have used the cyclic property of the matrix trace.
The product of the last pair of matrices is positive, so we would
like to examine whether the matrix sandwiched by d̃2(κ) and

11Positive semidefiniteness can be too weak because the non-
Markovian contributions can easily induce instability in the strong
system-bath coupling regime or in the limit of extremely short
separations among the oscillators.
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d̃†
2(κ) in (3.38) is positive as well. In general, it takes the form

2κ ��� = 2γ κ I + e2

m
Im /̃G

(φ)
R (κ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2γ κ
2γ

�12
sin κ�12

2γ

�13
sin κ�13 . . .

2γ

�12
sin κ�1N

2γ

�21
sin κ�21 2γ κ

2γ

�23
sin κ�23 . . .

2γ

�2N

sin κ�2N

2γ

�31
sin κ�31

2γ

�32
sin κ�32

. . .
...

...
...

. . .
...

2γ

�N1
sin κ�N1

2γ

�N2
sin κ�N2 . . . . . . 2γ κ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (3.42)

where �ij = �ji = |zi − zj |. Here, we assume that the choices
of the parameters ωp, σ , and �ij are such that the matrix ��� is
strictly diagonally dominant, that is, its elements satisfying

|�ii | >
∑
j �=i

|�ij |. (3.43)

At the first sight, this assumption looks pretentious; however,
we observe that the strictly diagonally dominant matrix has
a nice property of being positive definite [55]. That is, its
eigenvalues are all positive. Thus, this assumption, together
with positive definiteness of ���2

p, implies that the integrand in
(3.37) is always positive. Since the integral is well defined, we
conclude the value of the heat capacity C(∞) remains positive
for all temperatures β−1 with one exception that β → ∞. In
that limit, the factor (

βκ

2

sinh βκ

2

)2

goes to zero,12 so it indicates that the heat capacity for the
system of coupled oscillators will be zero at zero temperature;
otherwise, it is always positive.

Physically, the assumption (3.43) amounts to the existence
of the effective damping constants for all modes of motion, and
thus the motion of the system, described by d̃2, reduces to that
of a collection of coupled damped oscillators. This can be read
off from the denominator of d̃2(κ). Suppose the real matrix ���

can be diagonalized by the orthogonal matrix V:

V · ��� · VT = ���′ = diag(γ1,γ2, . . . ,γN ). (3.44)

The matrix V in general cannot diagonalize ���2
p unless ���2

p

commutes with ���, but it will transform ���2
p to another symmet-

ric, positive matrix, which we denote by WWW2
p. The diagonal

elements of WWW2
p describe the same physical frequencies ωp

of the transformed modes and the off-diagonal ones account
for the coupling among them. The mode-mode couplings
are usually different among pairs of modes. Explicitly, the

12We can generalize the more sophisticated arguments in the context
of the two-oscillator system to the current case.

denominator of d̃2(κ) is transformed to

κ2I + i 2κ ���′ −WWW2
p

=

⎛
⎜⎜⎜⎜⎝

κ2 0 . . . 0

0 κ2
...

...
. . . 0

0 . . . 0 κ2

⎞
⎟⎟⎟⎟⎠ + i 2κ

⎛
⎜⎜⎜⎜⎝

γ1 0 . . . 0

0 γ2
...

...
. . . 0

0 . . . 0 γN

⎞
⎟⎟⎟⎟⎠

−

⎛
⎜⎜⎜⎜⎝

ω2
p σ12 . . . σ1N

σ21 ω2
p

...
...

. . . σN−1,N

σN1 . . . σN,N−1 ω2
p

⎞
⎟⎟⎟⎟⎠, (3.45)

and the zeros of its determinant

det
(
κ2I + i 2κ ���′ −WWW2

p

) = 0 (3.46)

identify the eigenmodes of the motion of the system. The
signs of the imaginary part of the solutions to (3.46) provide
information about the stability of the motion. If there exists
a solution whose imaginary part is positive, then instability
of the collective motion13 will occur. Equation (3.45) in fact
corresponds to a simultaneous set of equations of motion that
describes a system of coupled damped oscillators

�̈��(t) + 2���′ · �̇��(t) +WWW2
p · ���(t) = 0. (3.47)

Thus, the stability condition associated with (3.47) is equiva-
lent to whether the characteristic polynomial (3.46), when κ =
−i s, is a (strict) Hurwitz polynomial [56], whose zeros are all
located on the left half of the complex s plane. In other words,
the motion described by (3.47) is stable if the characteristic
polynomial associated with the Laplace transformation of the
left-hand side of (3.47),

p(s) = det
(
s2I + 2s ���′ +WWW2

p

)
, (3.48)

is Hurwitz. In general, a sufficient and necessary condition is
provided by the Routh-Hurwitz stability criterion [57], which
states that all principal minors of the Hurwitz matrix associated
with p(s) are positive.

13Unless the unstable mode is not excited, and that is highly unlikely
for a generic initial state.
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HSIANG, CHOU, SUBAŞI, AND HU PHYSICAL REVIEW E 97, 012135 (2018)

This criterion becomes computationally cumbersome as n

grows, and it is very hard to establish an apparent connection
between this criterion and the physically meaningful matrices
���′ and WWW2

p. For this reason, we turn to finding arguments
to directly relate the properties of the matrices ���′ and WWW2

p

with the stability condition of motion described by (3.47).
These arguments, although mathematically less rigorous, are
physically more transparent. The idea is that solving the
polynomial p(s) = 0 is equivalent to finding the eigenvalue
s of the system [58]

(s2I + 2s ���′ +WWW2) · x = 0, (3.49)

with the normalized column eigenvector x, with xT · x = 1. We
multiply (3.49) from the left with xT , transforming the matrix
expression (3.49) to an ordinary quadratic equation of s,

s2 + 2bs + c = 0, b = xT · ���′ · x, c = xT ·WWW2
p · x
(3.50)

so that

s = −b ± i
√

c − b2. (3.51)

Since we have required that ���′ and WWW2
p are (strictly) positive

definite, the variables b and c are also positive by construction.
This implies that

b2 − c < b2 ⇒ Re s < 0. (3.52)

Thus, the positive definiteness of ���′ and WWW2
p is sufficient

to ensure the stability of the motion (3.47) which in turn
signals the existence of an equilibrium state. In addition, the
expressions in (3.50) resemble those we have seen for the case
of one oscillator interacting with a bath, where

√
c − b2 ∝√

ω2
p − γ 2 is related to the resonance frequency.

In summary, the requirement that ���′ and WWW2
p are positive

matrices implies that d2(τ ) is indeed a retarded Green’s
function and d̃2(κ) does not have any pole along the real
axis of κ and on the upper half of the complex κ plane.
Therefore, the integrand in (3.37) is positive and bounded,
so the heat capacity (3.37) is positive and approaches zero as
β → ∞. In addition, it ensures the existence of the equilibrium
state, which is needed (a) for the reduced system to have a
meaningful fluctuation-dissipation relation, (b) to show the
energy balance between the system and the bath, (c) to ensure
the extensive nature of the internal energy of the system, and
finally (d) for the associated heat capacity to be positive definite
in our framework of open-system nonequilibrium dynamics
approach to quantum thermodynamics.

IV. SUMMARY AND DISCUSSIONS

A. Summary of major results

As a preamble we bring up the rather special conditions
whereupon the foundation of thermodynamics is laid, from an
open-system perspective: A small open system interacting with
a vast environment (whose thermal properties can be captured
by a few physical parameters, its temperature, chemical poten-
tial), it is in the limit of vanishing coupling between them, only
when the system can equilibrate and thermalize at late times,
that thermodynamics makes sense. These considerations can

be extended to nonequilibrium conditions but not for far from
equilibrium, fully arbitrary time evolutions. We mentioned
the important differences in the setups for treating quantum
thermodynamics (QTD), namely, between level 1 assuming
the closed system (comprising the system and its environment)
remains in a global thermal state (which we call CGTs) and
level 2, an open system approaching equilibrium at late times
(we call it ONEq), which is the preferred approach we adopt for
the discussion of level 0. The centroid of this paper is a detailed
model study, that of a system of N coupled, spatially separated
quantum oscillators interacting with a common scalar quantum
field bath at finite temperature, where the existence of exact
solutions can provide unambiguous quantification of physical
variables, thermodynamic relations, and help to clarify many
basic issues in QTD. The set of issues we addressed include
the following.

1. Gateway to thermodynamics: The existence
of an equilibrium state

(i) Equilibrium state at late times. Let the system initially
be prepared in a state that is not in thermal equilibrium with
the shared bath; it has been known that if the coupling between
the system and the bath is vanishingly weak, the reduced
system will equilibrate at late times. This is the precondition for
talking about its thermodynamic behavior. The new challenge
is whether the system will equilibrate for strong coupling.
This point has been emphasized in, e.g., [53] who used the
quantum Brownian motion model where the system consists
of N quantum harmonic oscillators and the environment is an
infinite-oscillator bath.

(ii) Equilibration, not thermalization. The strong coupling
regime poses new challenges: Allowing the coupling between
the system oscillators and the interaction between the system
and the bath to be strong, and assuming that the dynamics of the
system remains stable, the first and foremost statement is that
due to nonweak system-bath interaction, this final state (of the
system) is not described by a density matrix of the Gibbs form
with respect to the system Hamiltonian. Therefore, one should
refrain from using the word thermalization to describe the end
result, and note that conventional thermodynamics need not
apply. The tough question is, when will TD remain a viable
theory for this equilibrated strongly coupled system.

(iii) Environment-induced non-Markovian interoscillator
interaction. The newer challenge which we need to take on
here is to show equilibration for a system of strongly coupled
N quantum oscillators at finite spatial separation and strongly
interacting with an environment composed of a quantum scalar
field. The case of N oscillators in the same spatial location
is easier to prove because one need not worry about the
field-induced non-Markovian effects. However, beware of the
pathology of even two oscillators stacked up at the same spatial
location, as described in Appendix E. The added complication
is due to the non-Markovian nature of the induced interaction
discovered in [41,49,50] amongst the system oscillators (or
qubits) mediated by the field environment. This issue has not
been dealt with in this context before, as far as we know.

(iv) The existence of an equilibrated state for the case of
two coupled oscillators has been demonstrated. The conditions
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for N oscillators are discussed in Sec. III E. We argue that
certain positive-definiteness requirements must be satisfied
to the effect that the effective damping constants of the
oscillators stay positive and the effective oscillator frequencies
remain real.

(v) With the assurance of an equilibrated state, many nice
properties follow. Specifically, the extensivity of the internal
energy and the positivity of the heat capacity. The absence of
such a state for open quantum systems severs the linkage to
thermodynamics. QTD in the form described here does not
exist for these systems.

2. Internal energy, heat capacity and the third law

(i) The internal energy for certain strongly bounded sys-
tems may not be straightforward to define (e.g., the presence
of self-energy as when gravity is involved) but fortunately
not so in the model we studied: it is the sum of the kinetic
energy of each oscillator, the harmonic potential energy, and
their coupling energy. Heat capacity is the derivative of the
internal energy with respect to the bath temperature.

(ii) We examine the third law from the behavior of the heat
capacity at low and zero temperatures. We are concerned with
(a) low-temperature behavior, (b) the positivity, and (c) the
extensivity of heat capacity.

(iii) The internal energy and the heat capacity for a system
consisting of only one harmonic oscillator have been derived
before in the CGTs setup [35]. They are derived here in an
open quantum system ONEq setup, which in the epoch after
equilibration, can be compared, in the weak oscillator-bath
coupling limit, with the quantities derived in the CGTs and in
the conventional thermodynamics. They all agree with each
other.

(iv) Complexity arises when the system has more than one
constituent. The bath-induced non-Markovian effects cannot
be properly described in conventional thermodynamics. This
also brings in question the validity of energy extensivity
because the system constituents are not only directly coupled
(which is easy to deal with by normal mode separation) but are
indirectly coupled or intertwined in a non-Markovian way by
the induced interaction through their common environment.

(v) With the proven existence of an equilibrated state for
N spatially separated but mutually coupled system oscillators,
we have shown that even a strongly coupled system can still
have asymptotic extensivity of the internal energy, and the heat
capacity remains positive as long as the motion is stable.

(vi) To compare results calculated in the three different
levels, CGTs, ONEq, and conventional thermodynamics, we
need to beware of their respective regimes of validity and iden-
tify their common denominators, e.g., the common physical
quantities and the states they are in. We work here with an
open-system ONEq set up, namely, we allow the system to
evolve from a nonequilibrium initial state to a final equilibrium
state. If the system thermalizes, then the results obtained in
the ONEq setup can be compared to results in conventional
thermodynamics, as we did. Since the reduced density matrix
of the ONEq after equilibration and that of the system in the
CGTs setups are the same [53], the results from these two
setups can be compared using this quantity.

B. Heat capacity and third law

For the same system we have studied here, there are claims
of negative heat capacity in variance to our findings. For
example, the author of [34] working with a global thermal
state CGTs setup claims that the heat capacity of the system
of multiple quantum harmonic oscillators can be negative at
low temperatures for (1) stronger system-bath interaction, or
(2) smaller number of system constituents. However, we have
demonstrated under rather general conditions that after the
system reaches equilibration, the heat capacity of the system
is always positive and approaches zero, for the full range of
system-bath interaction strength. Thus, the third law, from the
aspect of low-temperature behavior of the heat capacity of
the system, is not violated. Our findings of the extensivity of
the energy and the positivity of heat capacity for N coupled-
oscillator system should hold in all three levels of inquiry.

C. On entanglement witnesses and heat capacity

In Ref. [39] Wieśniak et al. have “shown that the low-
temperature behavior of the specific heat can reveal the pres-
ence of entanglement in bulk bodies in the thermodynamical
equilibrium.” They drew this conclusion by showing that the
heat capacity is an entanglement witness for some spin models.
This involves finding a lower bound on heat capacity that can
be achieved by separable states of the system. The third law
requires the heat capacity to approach zero asymptotically with
the temperature. This means that at low enough temperatures,
the behavior of heat capacity is not compatible with separable
states, and is thus an indicator of entanglement.

Here, we find that specific heat is not a reliable indicator of
entanglement for our model.14 We see no requirement [41] that
the zero-temperature state is always entangled. For example,
when the coupling between the constituents in the system is
sufficiently strong, the system tends to relax to an entangled
state at zero temperature. However, for sufficiently strong
system-bath coupling, the system can relax to a separable state
even at zero temperature. In this equilibrium state, the system
oscillators are disentangled among themselves, but can get
entangled with the bath oscillators. This can be understood
as a consequence of the monogamy of entanglement.

At the same time, we have shown that the third law is valid
for our model in all parameter regimes. There is no connection
between the third law and entanglement. Moreover, even in the
models or parameter regimes in which this connection exists,
we do not interpret this observation as the third law relying on
quantum entanglement. The third law stands. The claim that
the third law implies the existence of entanglement could well
be affected by the use of entanglement witness as a criterion.

14It is worth mentioning that the models studied in Ref. [39] differ
from the ones studied in this paper in two important aspects. First, we
are studying harmonic oscillators with infinite-dimensional Hilbert
spaces as opposed to the finite-dimensional spin systems. Second,
we are taking an open-system approach, allowing the system-bath
coupling to be finite, and we are dealing with equilibrium states as
opposed to thermal states.
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D. Relation with global thermal state formulation,
sequel on heat, energy, and entropy

1. Relation to global thermal state formulation: Seifert’s
systematics of energy heat and entropy for quantum systems

Much work on QTD has been done under the closed system
in a global thermal state (CGTs) setup. It would be useful to
find a link between it and our open-system nonequilibrium
(ONEq) approach. We have carried out a first step towards
this goal. We focused on Seifert’s rendition of energy and
entropy for classical thermodynamics [15] in a closed system
global thermal state (CGTs) setup. In a companion paper [30],
we have generalized his results for the thermodynamics of
classical systems to quantum systems. This may enable us to
use his systematics for discussing the first and second laws for
quantum systems.

The diversity of how thermodynamic functions are defined
is both a resource of adaptivity and at times a source of
confusion. To show how the thermodynamic functions are
used and how they enter into the TD relations, in this same
companion paper we studied the approach of Gelin and Thoss
[12] who also work in the CGTs setup but adopt a different
set of thermodynamics functions from Seifert’s. Consulting
Seifert’s systematics and allowing for varying thermodynamic
functions, we hope to construct more links between our
open-systems ONEq formulation and the prevailing CGTs
formulations of quantum thermodynamics.

2. Sequel: On heat, entropy, entanglement, and the second law

The issues of heat, entropy, and entanglement in strongly
coupled open quantum systems will be the center of attention
in our second paper. Notice the subtle yet important difference
between energy and heat. In this paper, we have focused on
the internal energy and heat capacity of the system, but not
heat, which is the energy transfer between the system and the
environment. This is because heat transfer as energy change
contains ambiguities in an open-system context. For example,
Esposito et al. [68] found that any heat definition expressed
as an energy change in the reservoir energy plus any fraction
of the system-reservoir interaction is not an exact differential
when evaluated along reversible isothermal transformations,
except when that fraction is zero. Even in that latter case the
reversible heat divided by temperature, namely entropy, does
not satisfy the third law of thermodynamics and diverges in the
low-temperature limit.

We also have reservations in some claims of violation of the
second law for quantum systems [29]. For example, if one uses
the Clausius inequality representation for the second law, we
know it is only valid for classical systems at high temperatures.
One needs to scrutinize the different definitions of entropy
for strongly coupled quantum systems to make sure they are
physically sound in the quantum regimes (such as at low
temperatures), including possible non-Markovian behaviors,
before adopting them to address foundational issues.

The relevant issues ranging from quantum correlations,
entanglement, information to entropy production, and heat can
be sampled in these references of the last 15 years [43,59–69],
which span the scope of our sequel studies using the paradigm
established in this paper.
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APPENDIX A: INFLUENCE FUNCTIONAL FORMALISM
FOR QUANTUM THERMODYNAMICS

For the study of the thermodynamical properties of a system,
one mainly focuses on the dynamics and thermal properties of
the system under the influence of a thermal bath it interacts
with, not particularly about the bath itself. This is the arena
where the open-system conceptual framework is most suited.
When the system of interest interacts with the bath strongly,
one needs to take into account not only the influence of
the bath on the system, but also the back-reaction of the
system on the bath. The influence functional formalism is
particularly adept for this description because it respects the
self-consistency of the system-bath evolutionary dynamics (an
example being the fluctuation-dissipation relation) which has
increased significance for treating systems with nonvanishing
coupling with its environment.

In this Appendix, we give a self-contained description of the
influence functional formalism used in this series of papers for
obtaining the thermodynamic properties of physical quantities
of a system interacting strongly with a thermal bath. Over and
beyond the standard classic sources of Feynman-Vernon [7]
and Caldeira-Leggett [8], we also provide additional materials
in the use of the coarse-grained effective action [70] and
stochastic effective action [71] developed in the 1990’s and
2000’s. And, from the stochastic effective action, as a further
development, we follow a recent work [48] to expound the
different advantages of using the Langevin equation route
which is more intuitive versus the more formal route via
the reduced density operator, which can account for the full
quantum dynamics of the reduced system and enforce the
operator ordering. This system of tools was used to describe
the thermodynamics of quantum many-body systems in a
nonequilibrium steady state. The reader can find more details
of this formalism and examine its application to a more
complex problem in [48]. In this paper, we shall use it for the
development of quantum thermodynamics at strong coupling,
starting with the third law.

1. Influence functional for open quantum systems

Consider for our system a quantum harmonic oscillator
(called an Unruh-DeWitt detector in relativistic quantum infor-
mation) moving along a prescribed spatial trajectory z in 3 + 1
Minkowski space-time. We can call z its external degree of
freedom, while its internal degree of freedom is the oscillator’s
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displacement χ . The bath is represented by a massless scalar
field φ. The action of the combined system is

S[χ,φ] = Sχ [χ ] + SI [χ,φ] + Sφ[φ], (A1)

where Sχ, Sφ, SI are the actions which describe the free
quantum oscillators, the bath field, and their interaction, given
respectively by

Sχ [χ ] =
∫ t

0
ds

m

2

[
χ̇2(s) − ω2

bχ
2(s)

]
,

Sφ[φ] =
∫ t

0
d4x

1

2
∂μφ(x) ∂μφ(x),

SI [χ,φ] =
∫ t

0
d4x e χ (s) δ3[x − z(s)]φ(x),

where x = (t,x), ωb is the bare natural frequency of the
oscillator, and an overdot denotes taking the time derivative
of a variable. The internal degree of freedom of the quantum
oscillator is assumed to be linearly coupled to its bath with
coupling strength e, which can take on a finite (nonvanishing)
value.

Assume that the combined system at time t = 0 is in a
product state15

ρ(0) = ρ(χ) ⊗ ρ
(φ)
β , (A2)

where ρ(χ) is the initial density operator for the internal degree
of freedom, and has a Gaussian form

ρ(χ)(χi,χ
′
i ; 0) =

(
1

πς2

)1/2

exp

[
− 1

2ς2

(
χ2

i + χ ′2
i

)]
. (A3)

The parameter ς is the width of the wave packet, and χi, χf are
shorthands for χ at the initial time t = 0 and the final time t ,
respectively, that is, χi = χ (0) and χf = χ (t). This subscript
convention will be adopted for the other variables. The bath is
initially in its own thermal state at temperature β−1, with the
density matrix

ρ
(φ)
β (0) = e−βH (φ)

Zφ

, Zφ = Trφ e−βH (φ)
. (A4)

Here, Hφ[φ] is the free scalar-field Hamiltonian associated
with the action Sφ[φ].

The time evolution of the density matrix operator of the
combined system is then described by the unitary evolution
operator U (t,0) associated with the action (A1):

ρ(t) = {U (t,0) ρ(0) U−1(t,0)}. (A5)

In the path-integral representation, the total density matrix at
time t is related to its values at an earlier moment t = 0 by

ρ(χf ,χ ′
f ; φf ,φ′

f ; t) =
∫ ∞

−∞
dχidχ ′

i

∫ ∞

−∞
dφidφ′

i

∫ χf

χi

Dχ+
∫ χ ′

f

χ ′
i

Dχ−
∫ φf

φi

Dφ+
∫ φ′

f

φ′
i

Dφ−

× exp{i S[χ+,φ+] − i S[χ−,φ−]} ρ(χ)(χi,χ
′
i ; 0)ρ(φ)

β (φi,φ
′
i ; 0). (A6)

The variables evaluated along the forward and backward time paths, respectively corresponding to U and U−1 in (A5), will be
distinguished by the subscripts +,−.

2. Reduced density operator and coarse-grained effective action

When we are interested only in the dynamics of the system as influenced by the bath, we can work with the reduced density
matrix of the system, obtained by tracing out the microscopic degrees of freedom of the bath in the total density matrix, namely,

ρ(χ)(χf ,χ ′
f ; t) = Trφ ρ(χf ,χ ′

f ; φf ,φ′
f ; t)

=
∫ ∞

−∞
dχidχ ′

i ρ(χ)(χi,χ
′
i ,0)

∫ χf

χi

Dχ+
∫ χ ′

f

χ ′
i

Dχ−

× exp{i Sχ [χ+] − i Sχ [χ−]} exp

{
i

2
e2

∫ t

0
ds ds ′([χ+(s) − χ−(s)]G(φ)

R (s,s ′)[χ+(s ′)

+χ−(s ′)] + i[χ+(s) − χ−(s)]G(φ)
H (s,s ′)[χ+(s ′) − χ−(s ′)]

)}
, (A7)

where the retarded Green’s function G
(φ)
R of the scalar field φ is defined by

G
(φ)
R (s,s ′) = i θ (s − s ′) Tr(ρβ[φ(z(s),s),φ(z(s ′),s ′)]), (A8)

15For a discussion of the physical consequences of factorizable initial conditions and generalizations, see, e.g., [9,71–73].

012135-17
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and the Hadamard function G
(φ)
H by

G
(φ)
H (s,s ′) = 1

2 Tr(ρβ{φ(z(s),s),φ(z(s ′),s ′)}). (A9)

The Hadamard function is the expectation value of the anti-
commutator of the quantum field φ, and is hence temperature
dependent. The retarded Green’s function, on the other hand,
does not have any temperature dependence. The exponential
containing G

(φ)
R and G

(φ)
H in (A7) is called the Feynman-Vernon

influence functional F , and we may write it as

F[χ+,χ−] = ei SIF[χ+,χ−] , (A10)

where SIF is called the influence action. It consistently incorpo-
rates all the influences of the bath on the system of our interest.

From (A7), we may view the time evolution of the reduced
density matrix as a map from its initial value ρχ (0) to its final
value ρχ (t) by a superoperator J :

ρ(χ)(χf ,χ ′
f ; t) =

∫ ∞

−∞
dqidriJ (qf ,rf ,t ; qi,ri,0) ρ(χ)(qi,ri ; 0).

(A11)

The matrix elements of the superoperator J are expressed by

J (qf ,rf ,t ; qi,ri,0) =
∫ qf

qi

Dq

∫ rf

ri

Dr exp{i SCG[q,r]},
(A12)

where q, r are, respectively, the relative coordinate and the
center-of-mass coordinate:

q = χ+ − χ−, r = 1
2 (χ+ + χ−). (A13)

Here, SCG, called the “coarse-grained” effective action, gov-
erns the dynamics of the reduced system under the influence of
the bath. It contains the actions of the system plus the influence
of the bath on the system described by the influence action SIF:

SCG[q,r] = Sχ [χ+] − Sχ [χ−] + SIF[χ+,χ−]

=
∫ t

0
ds {mq̇(s)ṙ(s) − mω2q(s)r(s)}

+ e2
∫ t

0
ds ds ′

[
q(s)G(φ)

R (s,s ′)r(s ′)

+ i

2
q(s)G(φ)

H (s,s ′)q(s ′)
]
. (A14)

The path integral in the evolutionary operator J can be
evaluated exactly because the coarse-grained effective action
(A14) is quadratic in q and r .

3. Stochastic effective action and Langevin equations

With the help of the Feynman-Vernon identity, we can
express the imaginary part of the coarse-grained effective
action SCG in (A14) in terms of a Gaussian noise ξ ,

exp

[
−e2

2

∫ t

0
ds

∫ t

0
ds ′ q(s)G(φ)

H (s,s ′)q(s ′)
]

=
∫

Dξ P[ξ ] exp

[
i e

∫ t

0
ds q(s)ξ (s)

]
, (A15)

with

〈ξ (s)〉 = 0, 〈ξ (s)ξ (s ′)〉 = G
(φ)
H (s,s ′). (A16)

Here, the angular brackets represent the ensemble average
over the probability distribution functional P[ξ ]. Thus, the
exponential of the coarse-grained effective action SCG can be
expressed as a distributional integral

ei SCG[q,r] =
∫

Dξ P[ξ ] ei SSE[q,r;ξ ], (A17)

where SSE is the stochastic effective action

SSE[q,r; ξ ] =
∫ t

0
ds

{
m q̇(s)ṙ(s) − mω2

b q(s)r(s) + q(s)ξ (s)

+ e2
∫ s

0
ds ′ q(s)G(φ)

R (s,s ′)r(s ′)
}
. (A18)

At this point, we may use the stochastic effective action
to either derive the Langevin equation, or to construct the
stochastic reduced density matrix. We first take the former
route.

a. Langevin equations

Taking the variation of SSE with respect to q and then letting
q = 0, we arrive at the Langevin equation

m χ̈ (s) + mω2
b χ (s) − e2

∫ s

0
ds ′G(φ)

R (s,s ′)χ (s ′) = e ξ (s).

(A19)

It describes the time evolution of the reduced system under the
non-Markovian influence of the bath. In this case, the influence
is manifested in the form of the local stochastic driving noise
ξ and the nonlocal dissipative force

e2
∫ s

0
ds ′G(φ)

R (s,s ′)χ (s ′).

In general, this nonlocal expression implies the evolution of
the reduced system is history dependent. However, in this one-
oscillator example, the retarded Green’s functions matrix has
a simple form

G
(φ)
R (s,s ′) = − 1

2π
θ (s − s ′) δ′(s − s ′), (A20)

so the Langevin equation reduces to a purely local expression

m χ̈(s) + 2mγ χ̇(s) + mω2 χ (s) = e ξ (s), (A21)

where the renormalized frequency ω is obtained by lumping the
divergence term of G

(φ)
R (s,s ′) with the original bare frequency

ωb, and γ = e2/8πm > 0 is the damping constant, which
serves as a convenient measure for the system-bath coupling
strength. Equation (A21) is seen to be the Langevin equation
for a driven, damped oscillator, as anticipated.

The reduced system is superficially nonconservative with
the presence of friction and noise forces, which originate from
the interaction between the system and its environment. These
two processes are, however, connected by the fluctuation-
dissipation relation. This relation plays a fundamental role
in the energy flow balance between the system and the bath:
fluctuations in the bath show up as noise and its back-action
on the system gives rise to dissipative dynamics.
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The general solution to (A19) or (A21),

χ (s) = d1(s)χ (0) + d2(s)χ̇(0) + e

m

∫ s

0
ds ′d2(s − s ′)ξ (s ′),

(A22)

is expanded in terms of fundamental solution matrices d1

and d2. They are simply the homogeneous solutions of the
corresponding equation of motion but satisfy a particular set
of initial conditions

d1(0) = 1, ḋ1(0) = 0, (A23)

d2(0) = 0, ḋ2(0) = 1. (A24)

This can be the starting point for computing the physical
observables of the reduced system. For example, the power
delivered by the noise ξ at any given time t > 0 is given by

Pξ (t) = e 〈ξ (t)χ̇(t)〉 = e2

m

∫ t

0
ds ḋ2(t − s) 〈ξ (t)ξ (s)〉 (A25)

= e2

m

∫ t

0
ds ′ḋ2(t − s ′) G

(φ)
H (t − s ′) (A26)

since initially the oscillator’s displacement χ is not correlated
with the noise force ξ . Likewise, the power output at time t

due to the dissipative self-force is given by

Pγ (t) = −2mγ 〈χ̇2(t)〉, (A27)

where the velocity uncertainty 〈χ̇2(t)〉 takes the form

〈χ̇2(t)〉 = ḋ2
1 (t) 〈χ2(0)〉 + ḋ2

2 (t) 〈χ̇2(0)〉

+ e2

m2

∫ t

0
ds

∫ t

0
ds ′ḋ2(t − s)ḋ2(t − s ′) 〈ξ (s)ξ (s ′)〉,

(A28)

if initially χ (0) and χ̇ (0) are not correlated. The first two terms
in (A28) exponentially decay with time, so at late times the
third term dominates. This reflects the fact that at late times
the dynamics of the reduced system is governed by the bath.

b. Stochastic reduced density matrix

The Langevin equation approach illustrated above to obtain
the desired physical quantities associated with the dynamics
of the reduced system is less formal, but more flexible and
physically intuitive. It is particularly convenient if the quanti-
ties at hand involve noise either from the bath or externally
introduced. Alternatively, a more systematic and complete
approach is by means of the reduced density operator, which
accounts for the full quantum dynamics of the reduced system
and enforces the operator ordering. The drawback is that since
the influence functional does not have explicit dependence on
the noise, it is not straightforward to implement it for the cases
that explicitly depend on the bath noise. An example is the
average power input by the noise shown in (A26). Only after
invoking the Feynman-Vernon identity could the bath noise
be made explicit. Next, we will show a way to combine the
advantages of these two approaches, by incorporating the noise
from the bath in the reduced density matrix.

Let us rewrite the reduced density matrix (A11) in terms of
the stochastic effective action SSE in (A18):

ρ(χ)(qf ,rf ; t) =
∫ ∞

−∞
dqidriρ

(χ)(qi,ri ; 0)
∫ qf

qi

Dq

∫ rf

ri

Dr

× exp{i SCG[q,r]}
=

∫
Dξ P[ξ ] ρ(χ)(qf ,rf ,t ; ξ ]. (A29)

The ρ(χ)(qf ,rf ,t ; ξ ] is called the stochastic reduced density
matrix, which has explicit dependence on the noise ξ of the
bath

ρ(χ)
χ (qf ,rf ,t ; ξ ] =

∫ ∞

−∞
dqidriρ

(χ)(qi,ri ; 0)

×
∫ qf

qi

Dq

∫ rf

ri

Dr ei SSE[q,r,ξ ], (A30)

with the stochastic effective action given by (A18). In this
representation, we see that the reduced system, now driven
by a classical stochastic force of the bath, is described by the
stochastic density matrix. For each realization of the bath noise,
the reduced system evolves to a state described by the density
matrix (A30). Different realizations make the system end up
at different final states with probability given by P[ξ ].

To compute the quantum and stochastic average of a
dynamical variable, say, f (χ ; ξ ] at time t , which depends on
both the stochastic variable ξ and the quantum operator χ of
the reduced system, we simply evaluate the trace associated
with the system variables and the ensemble average associated
with the bath noise:

〈f (χ ; ξ ]〉 =
∫

Dξ P[ξ ] Trχ {ρ(χ)(t ; ξ ] f (χ ; ξ ]}. (A31)

The procedure in (A31) is understood as follows: for each
specific realization of the stochastic noise ξ , we first calculate
the expectation value of the quantum operator f (χ ; ξ ] for the
state described by the reduced density operator ρ(χ )(t ; ξ ]. The
obtained result, still dependent on the stochastic variable, will
then be averaged over according to the probability distribution
P[ξ ] of the noise.

As an example, we will compute the same average power
Pξ delivered by the stochastic force ξ from bath as in (A26).
Once we note that p = mχ̇ , the power Pξ is then given by

Pξ (t) = e

m
〈 ξ (t) p(t) 〉

= −i
e

m

∫
Dξ P[ξ ]

∫ ∞

−∞
dqf drf δ(qf ) ξ

× ∂

∂χf

ρ(χ)(qf ,rf ,t ; ξ ), (A32)

where the momentum p canonical to the coordinate χ is given
by

p = −i
∂

∂χ
, (A33)
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and the trace over the dynamical variables of the reduced
system is defined as

Trχ =
∫ ∞

−∞
dqf drf δ(qf ). (A34)

Since the initial state of the reduced system is a Gaussian
state and the stochastic effective action is quadratic in the
system’s variables, the final state will remain Gaussian and the
corresponding reduced density operator thus can be evaluated
exactly. To derive the explicit form of the reduced density
matrix, we first evaluate the path integrals in (A30),∫ qf

qi

Dq

∫ rf

ri

Dr exp

{
i

∫ t

0
ds

[
m q̇(s)ṙ(s)

−mω2
b(s) q(s)r(s) + q(s)ξ (s)

+ e2
∫ s

0
ds ′q(s)G(φ)

R (s,s ′)r(s ′)
]}

= N exp[i m qf ṙf − i m qi ṙ i], (A35)

where N is the normalization constant, and can be determined
by the unitarity requirement. It is given by

N =
(

m

2π

)2

det μ̇(0). (A36)

Note that the mean trajectories q, r are solutions to the
Langevin equation (A21) with the boundary conditions q(t) =
qi, q(0) = qi and r(t) = rb, r(0) = ri . Thus, they and their
time derivatives are functionals of the stochastic noise ξ .
Explicitly, in terms of the boundary values, we can write r(s) as

r(s) = ν(s) ri + μ(s) rf + Jr (s) (A37)

for 0 � s � t . The functions μ(s), ν(s) are

μ(s) = d2(s)

d2(t)
, ν(s) = d1(s) − d2(s)

d1(t)

d2(t)
, (A38)

and the current Jr (s) is given by

Jr (s) = e

m

∫ s

0
ds ′d2(s − s ′)ξ (s ′)

− e

m

∫ t

0
ds ′ d2(s)

d2(t)
d2(t − s ′) ξ (s ′). (A39)

Moreover, we can write the partial derivative ∂/∂χ as

∂

∂χ
= ∂

∂q
+ 1

2

∂

∂r
. (A40)

Now, we are ready to evaluate the power delivered by the
stochastic force ξ , Eq. (A32) becomes

Pξ (t) = N
det μ̇(0)

(
2π

m

)2∫
Dξ P[ξ ] ξ

[
J̇r (t)− μ̇(t)

μ̇(0)
J̇r (0)

]
.

(A41)

The expressions in the square brackets can be reduced to

J̇r (t) − μ̇(t)

μ̇(0)
J̇r (0) = e

m

∫ t

0
ds ′ḋ2(t − s ′) ξ (s ′). (A42)

Thus, the power delivered to the system from the bath is equal to

Pξ (t) = e2

m

∫
Dξ P[ξ ] ξ (t)

∫ t

0
ds ′ḋ2(t − s ′) ξ (s ′)

= e2

m

∫ t

0
ds ′ḋ2(t − s ′) G

(φ)
H (t − s ′). (A43)

This is exactly the same as (A26).

APPENDIX B: THERMODYNAMICS OF SIMPLE
SYSTEMS IN A COMMON BATH

1. System of one harmonic oscillator

We first examine the one-oscillator system. The absence
of mutual interaction between the constituents of the system
renders it exactly and fully solvable without approximation.
It can readily be compared with the corresponding case in
conventional thermodynamics, where the system is extremely
weakly coupled to and assumed to be always in thermal
equilibrium with a heat bath, whose dynamics is of no concern
to the system beyond its being in a thermal state with a
temperature parameter. In this case, the mechanical energy is
given by

E(∞) = 1

2
Im

∫ ∞

−∞

dκ

2π
coth

βκ

2

(
κ2 + ω2

p

)
d̃2(κ), (B1)

where d̃2(κ) is given by

d̃2(κ) = 1

ω2
b − κ2 − e2

m
G

(φ)
R (κ)

= 1

ω2
p − κ2 − i 2γ κ

. (B2)

The integral in (B1) is logarithmically divergent, so we will
introduce a regularization scheme in due course. In addition
since it is much more difficult to evaluate the integral of the
hypertrigonometric function, we write the factor coth βκ

2 as
the summation of the algebraic function of the Matsubara
frequency νn,

coth
βκ

2
= 2

β

∞∑
n=−∞

κ

κ2 + ν2
n

, νn = 2nπ

β
, (B3)

in hope that the resulting integral contains only the algebraic
function.

On account of regularization, we may assume it valid to
exchange the order of integration and summation, so that (B1)
becomes

E(∞) = Im
2

β

∞∑
n=−∞

∫ ∞

−∞

dκ

2π

κ

κ2 + ν2
n

i γ κ − ω2
p

κ2 − ω2
p + i 2γ κ

.

(B4)

The evaluation of the integral in (B4) is straightforward except
for the contribution of the zero mode n = 0, which needs a
separate treatment from the n �= 0 case. The contribution from
the (n = 0) zero mode has an infrared (IR) divergence. We
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introduce an IR cutoff δ and obtain∫ ∞

−∞

dκ

2π

1

κ

i γ κ − ω2
p

κ2 − ω2
p + i 2γ κ

= lim
δ→0+

∫ ∞

−∞

dκ

2π

κ

κ2 + δ2

i γ κ − ω2
p

κ2 − ω2
p + i 2γ κ

= i

2
. (B5)

For n �= 0, the integral in the summation is well defined and it
gives∫ ∞

−∞

dκ

2π

κ

κ2 + ν2
n

i γ κ − ω2
p

κ2 − ω2
p + i 2γ κ

= i

2

(
γ νn + ω2

p

ω2
p + 2γ νn + ν2

n

)
.

(B6)

Now, Eq. (B4) becomes

E(∞) = 1

β

∞∑
n=−∞

γ |νn| + ω2
p

ω2
p + 2γ |νn| + ν2

n

. (B7)

The summation including infinitely high Matsubara frequen-
cies will give an inevitable UV logarithmic divergence, as
expected from (B1). We insert a damping factor e−νn/�, with
� > 0, to regularize the summation and arrive at

2

β

∞∑
n=1

γ νn + ω2
p

ω2
p + 2γ νn + ν2

n

e−νn/�

= 2e
− 2π

β� Im

{
w+

1 − i βw+
2F1

(
1, 1 − i βw+,

× 2 − i βw+; e
− 2π

β�

)}
, (B8)

where w± = (W ± i γ )/2π and W is the resonance fre-
quency, given by W =

√
ω2

p − γ 2. The hypergeometric func-
tion 2F1(a, b, c; z) is defined by

2F1(a, b, c; z) =
∞∑

k=0

(a)k(b)k
(c)k

zk

k!
,

(a)k =
k−1∏
n=0

(a + n) = (a + k − 1)!

(a − 1)!
, (B9)

and has a branch cut on the complex z plane along the real axis
from 1 to ∞.

In the limit � → +∞, the mechanical energy of the
oscillator becomes

E(∞) = 1

β
− γ

π
ln

2π

β�
− 2 Im{w+ H(−i βw+)}, (B10)

where H(n) is the nth harmonic number. The cutoff parameter
� defines the highest energy scale in the problem. Its presence
can be understood as the consequence that the oscillator
couples with a bath that contains a huge number of degrees
of freedom. It results from the bath contribution on very short
length scales. Since ln � is accompanied by the damping
constant γ , the cutoff-dependent term in (B10) is negligible for
weak oscillator-bath interaction while it can have a significant
contribution in the strong interaction limit. Thus, the internal
energy E(∞) in principle can depend on the cutoff scale.
Note that since the cutoff-dependent term does not depend
on temperature, it will not appear in the heat capacity.

This yields for the heat capacity

C = 1 − γβ

π
− 2 Re{β2w2

+ ψ (1)(1 − i βw+)}

=
{

1 − γβ

π
+ O(β2) , βω � 1

2πγ

3βω2
p

+ O(β−2) , βγ � 1
(B11)

when γ < ωp. We thus see the heat capacity grows alge-
braically from zero at low temperature and then saturates to
unity at high temperature. The function ψ (n)(z) is the nth
derivative of the digamma function.

Next, we examine the weak oscillator-bath coupling limit
γ → 0. In this limit, the mean mechanical energy (B10)
becomes

lim
γ→0

E(∞) = ωp

2
coth

βωp

2
− γ

π
ln

2π

β�
+ O(γ ), (B12)

where O(γ ) contains the finite contribution of the order γ .16

We can compare results for different values of the system-bath
interaction strength γ .

Following this protocol, the corresponding heat capacity is
then given by

lim
γ→0

C =
( βωp

2

)2

sinh2 βωp

2

+ O(γ ) . (B13)

It is divergence free due to the fact that the logarithmic
divergence does not depend on temperature.

Let us now compare this expression with the corresponding
heat capacity in conventional thermodynamics. Consider a
harmonic oscillator in its thermal state

ρ
(χ)
β = Z−1

χ e−βH (χ)
with H (χ) = m

2
χ̇2 + mω2

p

2
χ2. (B14)

Its mean mechanical energy is given by

E = Tr
{
ρ

(χ)
β H (χ)

} = ωp

2
coth

βωp

2
. (B15)

It does not depend on the coupling between the oscillator and
the bath (because of this, one may not realize that conventional
thermodynamics is an open-system theory) and in fact this

16It also contains the cutoff-dependent contributions but they are
of the order �−1 and higher. In principle as γ → 0, the physical
frequency ωp will approach to the bare value ωb. This seems
innocuous at first sight for the weak oscillator-bath interaction regime,
but their values can be drastically different in the strong interaction and
the large cutoff scale limit. In particular, since ωp and ωb are related
by (2.28), the choice of γ and � must be restricted so that ω2

p remains
positive definite to prevent unstable dynamics. In fact, the physical
frequency ωp is determined by experimental preparation; thus from
the operational viewpoint we can let the physical frequency be fixed
at the energy scale of measurement. Alternatively, in the action (2.1),
we can assume the system parameters take the physical values, and
we introduce counterterms to cancel contributions due to interactions
with the bath [74]. Both approaches eventually produce equivalent
results.
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expression is the same as the dominant term of (B12) in the
weak coupling limit. For this system, the heat capacity in
conventional thermodynamics is exactly given by

C = −β2 ∂E

∂β
=

( βωp

2

)2

sinh2 βωp

2

=
{

1 − β2ω2
p

12 + · · · , βωp � 1

β2ω2
p e−βωp + · · · , βωp � 1

(B16)

and is equal to the leading term of (B13) in the weak coupling
limit. Note that it has a different low-temperature asymptote
from that in (B11). This is central to the consideration of
the third law. Similar results have been obtained for the
same configuration, which is nonetheless initially prepared
in the equilibrium global thermal state [35], but the physical
contents are different. The similarity in outcomes based on
the nonequilibrium initial state and equilibrium global thermal
state is not a coincidence, as has been discussed in [53].
Essentially, it is the consequence of the damped, stable motion
of the reduced system due to the interaction with the bath.

For nonvanishing oscillator-bath coupling, there is a stark
difference between the conventional thermodynamical equi-
librium and our open-system nonequilibrium approaches.
In general, the results in the open-system framework may
have cutoff-dependent contributions, as a result of the huge
number of degrees of freedom in the bath. Since this
cutoff-dependent term is proportional to the oscillator-bath
interaction strength, it tends to be ignored in the weak
coupling approximation. The second distinction is related
to the observation that there is one more scale γ in the
open-systems nonequilibrium framework, in addition to ω

and β−1 already existent in the conventional equilibrium
thermodynamics framework. This introduces an additional
subtlety in defining the low-temperature limit βω � 1.
In the open-systems nonequilibrium framework, there may be
a more stringent criterion such as βγ � 1 when γ /ω < 1, or
βf (γ,β) � 1, where f (γ,β) is a dimensional function of γ, ω

and [f ] = L−1, that is, inversely proportional to the length
scale L. The presence of this additional scale contributes to
different predictions of the heat capacity between the two
frameworks in the low-temperature regime, as can be seen from
(B11) and (B16).

The low-temperature behavior of the heat capacity in (B11)
has been argued [75], for the global thermal state case, to be
related to the density of the state of the harmonic oscillator in
the thermal bath. There it has been shown that if the combined
system is initially in the equilibrium global thermal state, then
the original discrete energy spectrum of the undamped oscilla-
tor will become a continuous one with a unique ground level.
That is, the oscillator-bath interaction renders the oscillator
a gapless system. This interesting observation has not been
proven for a nonequilibrium initial state. It may still apply
because the spectrum depends on the effective Hamiltonian
(Lagrangian) instead of the prepared initial state.

2. System of two coupled oscillators in a common bath

When the system has two or more oscillators, the dynamics
of the reduced system becomes much more intricate. Other

than their direct coupling, the oscillators also interact with each
other indirectly through their shared bath. This indirect influ-
ence by one oscillator will propagate in the form of the bath or
field disturbance exerted onto all the other oscillators. In turn,
more and more subsequent repercussions will be proliferated
among the perturbed oscillators. Thus, the total effect on the
system as a whole depends on the history of each oscillator,
leading to very complex evolution. In addition to this, further
complication in the interpretation of the results arises from the
reduced (environment-influenced) system’s parameter space
containing regions where its motion is unstable. We need to
identify and exclude this case, then expound the results of the
reduced system in an equilibrium state after its motion is fully
relaxed.

a. Dynamics

From (2.8), the equations of motion for two coupled
oscillators are

χ̈1(t) + ω2
p χ1(t) + σ χ2(t) + 2γ χ̇1(t)

− 2γ

�
θ (t − �) χ2(t − �) = 1

m
ξ1(t), (B17)

χ̈2(t) + ω2
p χ2(t) + σ χ1(t) + 2γ χ̇2(t)

− 2γ

�
θ (t − �) χ1(t − �) = 1

m
ξ2(t), (B18)

where the oscillators 1, 2 are, respectively, located at z1, z2 so
that � = |z1 − z2|. It is convenient to reorganize the coupled
motion of these two oscillators to an uncoupled motion of a
fast mode � = (χ1 + χ2)/2 and a slow mode � = χ1 − χ2:

�̈(t) + ω2
+ �(t) + 2γ �̇(t) − 2γ

�
θ (t − �) �(t − �)

= 1

2m
[ξ1(t) + ξ2(t)], (B19)

�̈(t) + ω2
− �(t) + 2γ �̇(t) + 2γ

�
θ (t − �) �(t − �)

= 1

m
[ξ1(t) − ξ2(t)], (B20)

with ω2
± = ω2

p ± σ . Although in appearance the variables �

and � satisfy separate equations (B19) and (B20), it does not
mean that their motions are decoupled. This is because the
right-hand sides of (B19) and (B20) indicate that the noises
from two locations get mingled together. This clearly shows
that the two oscillators are correlated due to arbitration of the
ambient quantum field bath.

Their solutions are most easily found if we perform the
Laplace transformation over this set of equations of mo-
tion and turn them into a simultaneous set of algebraic
equations[

z2 + 2γ z + ω2
+ − 2γ

�
e−z�

]
�̃(z)

= (z + 2γ )�(0) + �̇(0) + 1

m
ξ̃+(z), (B21)
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[
z2 + 2γ z + ω2

− + 2γ

�
e−z�

]
�̃(z)

= (z + 2γ )�(0) + �̇(0) + 1

m
ξ̃−(z), (B22)

where ξ+ = (ξ1 + ξ2)/2 and ξ− = ξ1 − ξ2. Unstable motion
occurs when the solutions to

z2 + 2γ z + ω2
± ∓ 2γ

�
e−z� = 0 (B23)

have the positive real parts. The solution that corresponds to
unstable (runaway) motion can be shown to be always located
on the positive real axis of the complex z plane. Since (B23) is
not a simple algebraic equation, it will have an infinite number
of solutions, symmetrically distributed on both sides of the real
axis, except for the previously mentioned runaway solution.
It reflects the mutual undulant disturbance mediated by the
field from each oscillator. Thus, we expect the spatial non-
Markovianity renders the motion of two oscillators much more
intricate than that of one oscillator. Finding the solutions to
(B23) is then nontrivial, but since the details about locating the
perturbative or the asymptotic solutions have been discussed
in [41,50,76,77], they will not be repeated here.

However, a word of caution about the choice of �: When
� is extremely small such that 2γ /� � 1, the contribution
from the retardation term is comparable with the frequency
renormalization due to the interaction of the oscillator with the
bath. Therefore, the expression for the equation of motion like
(B23) becomes dubious in the sense that (1) a point particle
model is not always feasible in the context of the self-force,
as was long pointed out by Rohrlich and others [78], (2) the
equation of motion has a different damping term, proportional
to the third-order time derivative, instead of the first-order one
[41]. Thus, the effect of finite size of the oscillator must be
taken into consideration.

In summary, instability of motion occurs when the formal
effective oscillating frequencies of at least one of the two modes

ω
(±)
eff = ω2 ± σ ∓ 2γ

�
cos z� (B24)

become negative. It is likely to happen when (1) the oscillat-
ing frequencies of the normal mode ω± become imaginary,
and/or (2) the non-Markovian field-induced effect becomes
too extreme. Finally, we remark that the ratio ς = σ�/(2γ )
measuring the relative strength between the direct interoscil-
lator coupling and the indirect environment-induced non-
Markovian effect is a useful quantity for this consideration, as
was introduced in [41] for expounding the competing physical
mechanisms determining the quantum entanglement between
two coupled oscillators in a shared bath.

b. Internal energy, heat capacity

In the matrix notations (2.15) for this two-oscillator system,
we have

���2
b =

(
ω2

b σ

σ ω2
b

)
, G(φ)

R (κ) =
(

δ(0)
2π

+ i κ
4π

ei κ�

4π�

ei κ�

4π�

δ(0)
2π

+ i κ
4π

)
,

(B25)

where � = |z1 − z2|, and from (2.10), we can find G̃
(φ)
R (ω; r)

given by

G̃
(φ)
R (κ; r) =

∫ ∞

−∞
dτ G

(φ)
R (τ, r) ei κτ

=
{

ei κr

4πr
, r �= 0

δ(0)
2π

+ i κ
4π

, r = 0.
(B26)

In the diagonal elements of e2

m
G(φ)

R (κ), the divergent or cutoff-
dependent term will be absorbed with the diagonal elements ω2

b

in ���2
b to form the physical frequency ω2

p. The remaining term

in the diagonal elements of e2

m
G(φ)

R (κ) will then give i 2γ κ .
Thus, d̃2(κ) in (2.17) becomes

d̃2(κ) =
(

ω2
p − κ2 − i 2γ κ σ − 2γ

�
ei κ�

σ − 2γ

�
ei κ� ω2

p − κ2 − i 2γ κ

)−1

. (B27)

This is essentially what we need to compute the total mechani-
cal energy (2.29) of two oscillators when their motion reaches
equilibrium after relaxation.

We have assumed somewhat artificially that σ is a constant
independent of the separation between the two oscillators. We
may relax this restriction to allow it to be a function of �ij =
|zi − zj |, namely,

σ = f (�ij ). (B28)

Here, f (z) is a monotonically decreasing function of z, except
for the case z = 0, where we require f (0) = 0, i.e, no self-
interaction.

The total mechanical energy for the two coupled-oscillator
system is then given by

E(∞) = 1

2
Im

∫ ∞

−∞

dκ

2π
coth

βκ

2

{
ω2

+ + κ2

ω2+ − κ2 − i 2γ κ − 2γ

�
ei κ�

+ ω2
− + κ2

ω2− − κ2 − i 2γ κ + 2γ

�
ei κ�

}
e− |κ|

� ,

and the corresponding heat capacity is

C(∞) = Im
∫ ∞

−∞

dκ

2π

(
βκ

2

sinh βκ

2

)2

× 1

κ

{
ω2

+ + κ2

ω2+ − κ2 − i 2γ κ − 2γ

�
ei κ�

+ ω2
− + κ2

ω2− − κ2 − i 2γ κ + 2γ

�
ei κ�

}
e− |κ|

� . (B29)

Let us examine the sign of the generic expression

1

κ
Im

1

ω2 − κ2 − i 2γ κ ± 2γ

�
ei κ�

(B30)
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�

� �

(a) (b) (c)

FIG. 3. The case of two coupled quantum oscillators in a common thermal bath. (a) The general behaviors of the motions of the fast mode
�(t) and the slow mode �(t). (b) The behaviors of |d̃ (�)

2 (z)| and |d̃ (�)
2 (z)|: the divergence signifies the presence of the pole, and the positive

pole implies instability in motion. (c) The temperature dependence of the heat capacity in the equilibrium vs nonequilibrium approaches. The
parameters are chosen such that the resonance frequency ωr =

√
ω2

p − γ 2 = 1, γ = 0.2, σ = 0.5, � = 1, and the cutoff scale �−1 = 0.01.

for all κ because it will determine the sign of the heat capacity.
Explicitly, it takes the form

2γ �2
[
1 ∓ sin κ�

κ�

]
[(κ2 − ω2)� ∓ 2γ cos κ�]2 + 4γ 2[κ� ∓ sin κ�]2

, (B31)

which is obviously positive for all κ . Note that the integrand
in (B29) is nowhere negative and the integral is well defined.
Thus, the heat capacity C(∞) in (B29) is always positive for all
nonzero temperatures even with the presence of bath-induced
non-Markovian effects between the oscillators. We observe
that in the low-temperature limit β → ∞, the factor(

βκ

2

sinh βκ

2

)2

(B32)

goes to zero. Thus, it implies that the heat capacity must vanish
at zero temperature since the integral in (B29) is regular. This
argument may be too simplistic. In fact, when β → ∞, the
major contributions to the integral in (B29) come from the
interval |κ| < O(β−1), within which the rest of the integrand
is slowly varying. Thus, we may pull the slowly changing

component out of the integral and write (B29) as

lim
β→∞

C(∞) � 4γω2
+(

ω2+ − 2γ

�

)2

∫ β−1

−β−1

dκ

2π

(
βκ

2

sinh βκ

2

)2

= K β−1,

(B33)

where K is a finite positive constant independent of β. Thus,
indeed the heat capacity vanishes algebraically fast as the
temperature approaches zero. Most important of all, the heat
capacity vanishes for all permissible choices of oscillator sepa-
ration, interoscillator coupling, and oscillator-bath interaction
strength.

The analytical expression of the heat capacity for the two-
oscillator system cannot be given without resort to approxi-
mation due to the retarded non-Markovian effect. However, its
low-temperature behavior is expected to be more complicated
than its one-oscillator counterpart because of additional scale
� dependence. A numerical example is given in Fig. 3. In
particular, in Fig. 3(c), we compare the temperature depen-
dence of heat capacity of this system between the conventional
thermodynamics and the present nonequilibrium approaches.

FIG. 4. Non-Markovian effect of heat capacity of system at short interoscillator separations. The nonmonotonic behavior of the heat
capacity with respect to the damping constant is most pronounced in the high-temperature limit β → 0. The plots are drawn with the choices
of ωp = 5, σ = 10, � = 0.08, and �−1 = 0.01. Note that the heat capacity in the right plot may take values greater than 2. This is related to
strong fluctuations of the bath at short distance and will be discussed later.
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(a) (b)

FIG. 5. Here, we show that at high temperature T → ∞, how the heat capacity at the final equilibrium state C(∞) varies with the oscillator
separation �. In (a) we fix the interoscillator coupling σ and in (b) the oscillator-bath interaction strength γ is fixed. Generically, we see the
heat capacity is not monotonically decreasing when we shorten the separation. It is related to the large bath fluctuations at short distance.

An interesting feature appears when the interaction strength
between the oscillators and the bath is sufficiently strong.
The heat capacity in the two-oscillator system does not in-
crease monotonically as a function of γ as is the case in
the one-oscillator system. In fact, as shown in Fig. 4, when
the damping constant is greater than a critical value γc, the
heat capacity will increase monotonically afterwards with
increasing γ . This nonmonotonic behavior is most easily seen
at high temperatures. In this limit, the critical value of γc is
approximately given by σ�/4 but slightly falls off with lower
temperature. This explains why the nonmonotonic behavior of
the heat capacity is not seen at low temperatures.

The nonmonotonicity in the heat capacity results from
the presence of the term 2γ

�
ei κ� in (B29), which in turn

corresponds to the retarded terms in the equations of motion
(B17) and (B18). That is, the nonmonotonicity in the heat
capacity is due to the strong nonlocal effects mediated by the
bath. The critical value γc = σ�/4 = γ ς/2 has a special phys-
ical significance, namely, it indicates the relative significance
between the direct coupling and the indirect bath-induced
causal influence among the oscillators.

When γ > γc, i.e., ς < O(1), the bath-induced effect
dominates, whereas when γ < γc, i.e., ς > O(1), the direct
interoscillator coupling wins over. This can be further seen
from Fig. 5. In Fig. 5(a), the curves of heat capacity at
high temperature β → 0 are plotted for different choices of
damping constants γ with respect to the oscillator separation �,
while in Fig. 5(b) they are drawn for various selections of direct
coupling strengths σ . They all show a monotonic behavior once
� is smaller than the critical separation �c = 4γ /σ . Similar
behaviors also appear in thermal entanglement [79].

Mathematically, it is not difficult to understand why this
nonmonotonicity in heat capacity is readily seen at high
temperatures. From (B29), we immediately see that

lim
β→0

(
βκ

2

sinh βκ

2

)2

= 1, (B34)

and since the remaining terms in the integrand do not depend
on temperature β−1, it implies that the temperature will not
have any effect on the contributions from the causal influence
2γ

�
ei κ�. Physically, the rise of heat capacity with increas-

ing γ at short interoscillator separation can be understood
as a consequence of increasing thermal fluctuations of the
scalar-field bath since heat capacity is a measure of the
variance of internal energy, at least in conventional equilibrium
thermodynamics.17

After the system equilibrates, its dynamics is governed by
the noise force, thus large quantum or thermal fluctuations
from the bath can in principle induce large fluctuations in the
energy of the system, which shows up as large heat capacity.
To be specific, the Hadamard function of the scalar field (2.11)
depicts the correlation of the noise forces in (B17) and (B18),
and Fig. 6 shows the corresponding power spectrum, which
is the temporal Fourier transform of the Hadamard function.
In general, the spectrum of the scalar-field bath shows larger
values for shorter interoscillator separation � and higher bath
temperature β−1. They reflect the mere facts that when we
probe into a smaller spatial region, we see larger quantum
field fluctuations (simply seen on account of the uncertainty
principle), and at higher temperatures thermal fluctuations
become more pronounced. These large fluctuations will then
produce large variances in the variables of the system via, for
example, (2.20).

This nonmonotonic behavior of heat capacity at short
distance may not be easy to observe because the transition
occurs on a scale smaller than�c at moderate temperatures. This
scale may be shorter than the minimal separation at which the
motion of the system remains stable or falls below the physical
size of realistic systems modeled by oscillators.

17In fact, it is used as a criterion for the validity of canonical
ensemble and the thermodynamic stability of the system.
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FIG. 6. To illustrate the effects of the large bath fluctuations, we draw the power spectrum of the scalar-field bath with respect to oscillator
separation � in (a) and temperature T in (b). Following the gridlines, we observe the intensity of the power spectrum is greater for shorter
separation and hotter temperature.

APPENDIX C: DIFFERENCE BETWEEN ONEq
AND THE CGTs SETUPS

Here, we use a simple calculation based on the ubiquitous
quantum Brownian motion to illustrate the difference between
ONEq and the CGTs setups. Consider a system of a harmonic
oscillator bilinearly coupled to an environment consisting of
harmonic oscillators, also referred to as the quantum Brownian
motion (QBM) model. The Hamiltonian of the combined
system is

HC = HS + HE + HI

=
(

P 2

2M0
+ 1

2
M0�

2Q2

)
+

(∑
n

p2
n

2mn

+ 1

2
mnω

2
nq

2
n

)

+
∑

n

gnqnQ, (C1)

where the variables in capital are associated with the system,
and M0,� are the mass and the oscillating frequency of the
system oscillator. The parameter gn is the coupling strength
between each bath mode qn and the system oscillator Q, while
pn and P are their respective conjugate momenta. Such a
combined system is sufficiently simple to serve our current
purpose. At some initial time ti , the system and environment
are assumed to be uncorrelated. Moreover, the environment is
in the thermal state with respect to its isolated Hamiltonian HE :

ρ(ti) = ρS(ti) ⊗ e−βHE

ZE

. (C2)

In the above equation, ZE = TrE{e−βHE }. If the environment
is very large and the system-environment coupling is such
that the system relaxes to a unique steady (or equilibrium)
state irrespective of the initial state, we call the environment a
thermal reservoir or a heat bath. Under these assumptions of
equilibration, it has been shown that [53] the unique steady (or

equilibrium) state ρ
eq

S has the form

ρ
eq

S ≡ lim
t→∞ ρS(t) = TrE

[
e−β(HS+HE+HI )

ZC

]
, (C3)

where ZC is defined analogous to ZE above, and ρS(t) is
the reduced state of the system, evolved out of the initially
uncorrelated global state (C2). This state is referred to as the
equilibrium state to distinguish it from the thermal state given
by the Boltzmann-Gibbs distribution with respect to the system
Hamiltonian alone.

It is important to note that although the system relaxes to the
equilibrium state, the global state of the system+environment
is not in equilibrium. In particular,

lim
t→∞ ρC(t) �= e−β(HS+HE+HI )

ZC

. (C4)

The density matrix ρC here is the state of the combined system
and environment, evolved from the initial state (C2); thus,
ρS(t) = TrE ρC(t). Equation (C4) is true because the thermal
state of the combined system+environment is a stationary state
of the full Hamiltonian and thus cannot be reached from a
nonstationary state under Hamiltonian dynamics. What (C3)
says is that the reduced system state is consistent with a
global thermal state and that no further information about the
nonequilibrium state of the combined system+bath can be
obtained if one has access to the system only. In other words,
the information on the nonequilibrium state of the combined
system+environment is not stored in the system but rather in
the environment and in the correlations between the system
and the environment.

To demonstrate this point, we focus our attention to a single
bath mode. The solutions to the equation of motion are

qk(t) = qk(ti) cos[ωk(t − ti)] + pk(ti)

mkωk

sin[ωk(t − ti)]

+
∫ t

ti

ds
sin[ωk(t − s)]

mkωk

gk Q(s), (C5)
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Q(t) = Q(ti) M0Ġ(t − ti) + P (ti) G(t − ti)

+
∫ t

ti

ds G(t − s) ξ (s), (C6)

ξ (s) =
∑

n

gn

{
qn(ti) cos[ωn(t−ti)] + pn(ti)

sin[ωn(t−ti)]

mnωn

}
.

(C7)

Here, G(t) is the Green’s function of the system oscillator, the
exact form of which is not important for this discussion (see
Ref. [53] for details). Under the assumptions of equilibration,
G(t) → 0 as t → ∞. This is the reason why the system cannot
keep any of the memory of its initial state. However, since the
closed-system dynamics is unitary, that information is not lost.
Rather, it is distributed over the bath modes. The first two terms
in the expression for qk(t) do keep the memory of the initial
thermal state of the bath. The last term is the only place where
the memory of the initial state of the system survives in the
bath:∫ t

ti

ds
sin[ωk(t − s)]

mkωk

gk[Q(ti)M0Ġ(s−ti) + P (ti)G(s−ti)]

∝ M0Q(ti)
∫ t

ti

ds sin[ωk(t − s)]Ġ(s − ti)

+ P (ti)
∫ t

ti

ds sin[ωk(t − s)]G(s − ti). (C8)

The important observation is that although G(t) and Ġ(t) are
decaying functions, the above integrals are oscillatory. [This
can be seen explicitly by choosing G(t) ∝ e−γ t (Ohmic case)
and doing the integrals explicitly.] As a result, the information
on the initial state of the system survives forever in the bath
degrees of freedom. Similarly, information on initial state also
survives in the correlations between the system and bath modes
as can be seen by studying the late-time limit of 〈Q(t)qk(t)〉.
However, the coupling to each mode is extremely small under
the assumption of equilibration, and this makes it practically
impossible to extract this information in reality.

Under the assumption of equilibration, the reduced system
relaxes to the equilibrium state at late times, irrespective of
the initial state of the system. As a result, any thermodynamic
formulation that only relies on the reduced state of the system
for its definitions will be independent of the initial state of the
system. Moreover, all the information about the reduced state
of the system can be obtained by assuming a global thermal
state without introducing any errors.

In the weak coupling limit |HI | → 0, the equilibrium state
approaches the thermal state. But, in general, the equilibrium
state differs from the thermal state. It is common to define
the so-called “Hamiltonian of mean force” to quantify this
difference. In essence, Hamiltonian of mean force is the
operator with respect to which the equilibrium state has the
Boltzmann-Gibbs form, where the temperature is that of the
bath.

In conclusion, (a) for strong coupling between the system
and bath, if the system can approach the equilibrium state,
then the reduced density matrix of the open system is the same
as the reduced density matrix in the CGTs framework upon
integrating out the bath. (b) However, the final global states

are different, despite the fact in both cases the dynamics is
generated by the same Hamiltonian (HC = HS + HI + HB).
This is because two global systems start out with different
initial states, and the unitary evolution does not change the
distinguishability between the states. (c) Note that in the CGTs
setup, even though the closed system is assumed to be in a
global thermal state, the system is not necessarily in a thermal
state. One needs extra assumptions, such as the system is very
weakly coupled to the bath. It is under the same condition
that the open system can reach thermalization. One should be
mindful of these presumptions when comparing the thermal
states in both setups. We mention these facts as a cautionary
note to remind ourselves and for those who want to compare
quantities calculated in these three different setups.

APPENDIX D: DIFFERENCE BETWEEN EQUILIBRIUM
STATES AND THERMAL STATES IN CLASSICAL

THERMODYNAMICS

To help understand the important differences between equi-
librium states and thermal states, we give a short yet general
derivation below where one can see how their differences can
be quantified.

Consider a classical system (S) described with position and
momentum variables x = (r,p) in the phase space. The system
might consist of many particles in arbitrarily many dimensions.
In that case, x, r, p are vectors. The thermal state of this system
is described by the following probability distribution on the
phase space:

pth
S (x) = e−βHS (x)

ZS

, (D1)

where HS(x) is the system Hamiltonian. Now, assume the sys-
tem is coupled to an environment whose position and momenta
we denote by y = (r ′,p′). The Hamiltonian of the environment
is HE(y) and the interaction Hamiltonian is HI (x,y). Consider
the thermal state of the combined system plus environment.
The probability distribution on the combined phase space is
given by

pth
S+E(x,y) = e−β[HS (x)+HI (x,y)+HE (y)]

ZS+E

. (D2)

If we are only interested in the state of the system (S), we
integrate this distribution over the environment variables y.
The result is the equilibrium distribution for the system alone:

p
eq

S (x) = e−βHS (x)

∫
dy e−β[HI (x,y)+HE (y)]

ZS+E

. (D3)

It is conventional to lump the second term on the right-hand
side into the exponent by defining the potential of mean force as

H ∗(x) = HS(x)−β−1 ln

∫
dy exp{−β[HI (x,y)+HE(y)]}∫

dy exp{−βHE(y)} ,

(D4)

whereupon the probability density of the system becomes

p
eq

S (x) = e−βH ∗(x)

Z∗ , Z∗ =
∫

dx e−βH ∗(x).
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It is clear thatH (x) �= H ∗(x) in general. As a result, the thermal
state differs from the equilibrium state classically as well as
quantum mechanically.

A more rigorous way to quantify the difference between
equilibrium and thermal distributions for classical systems is
to use the Kullback-Leibler divergence which is a measure
of distinguishability for probability distributions. Its quantum
analog is the quantum relative entropy.

APPENDIX E: CAUSALITY ISSUES
WITH THE M-OSCILLATOR BATH

Here, we add some cautionary comments on the differences
between an oscillator bath which has been used extensively
in Brownian motion studies, e.g., [7–9,11] and the scalar-field
bath, which also has been used by many, e.g, [41,50,80,81]. We
show, with the assumption of two or more system oscillators
placed in the same spatial location, e.g., in [51,52] which is
often assumed in the M-oscillator bath situation, there is a
causality issue. No such issues exist with system oscillators in
spatially separate locations in a scalar-field bath.

Recall how one proceeds from a harmonic oscillator rep-
resentation to field theory [82]. Consider the plane-wave
expansion of a massless scalar quantum field

φ(x) = 1√
V

∑
k

1√
2ω

[ak(t) ei k·x + H.c.]. (E1)

The creation and annihilation operators a
†
k(t), ak(t) satisfy an

equation of motion similar to that of the ladder operators for
the quantum harmonic oscillators

äk(t) + ω2ak(t) = 0, (E2)

with ω = |k|. In particular, when x = 0, Eqs. (E1) and (E2) to-
gether represent a collection of quantum harmonic oscillators.
The Hamiltonian of the massless scalar field in the plane-wave
expansion (E1),

H =
∫

d3x
{

1

2
(∂tφ)2 + 1

2
(∇∇∇φ)2

}
=

∑
k

[
a
†
kak + 1

2

]
ω ,

(E3)

is to be compared to the Hamiltonian of a collection of quantum
harmonic oscillators

HHO =
M∑
i=1

m

2
χ̇2

i + mωi

2
χ2

i =
∑

i

[
a
†
i ai + 1

2

]
ωi, (E4)

where m is the mass and χi is the displacement of ith oscillator,
whose natural frequency is given by ωi = i �. The parameter
� is some fundamental mode frequency. The ladder operators
ai, a

†
i in the latter case are defined by

ai =
√

mωi

2

(
χi + 1

mωi

pi

)
, (E5)

where pi is the canonical momentum conjugate to χi . For this
and other reasons, most people would not make a distinction
between two bath models. For example, this is so if one does
not ask where each of the system oscillators is located. If
they are stacked up at one particular spatial location or when
the dipole approximation ei k·x � 1 is applicable, then there

is no difference whether the bath is described by a bunch of
oscillators or a massless quantum scalar field since one can
arbitrarily shift the location of the system such that x = zi = 0.
However, there are still fundamental differences between these
two models.

In quantum field theory, the creation and annihilation
operators ak, a

†
k depend on the mode functions we use to

expand the quantum field. In the plane-wave expansion case,
the mode function takes a simple form ei k·x so the vacuum
annihilated by the corresponding ak and the associated number
states have a definite three-momentum k. Thus, even merely
using the uncertainty principle argument, one can see that these
quanta are highly nonlocalized, distributed over the whole
configuration space. By contrast for harmonic oscillators, the
ground state and the excited states of each bath oscillator are
essentially confined by the corresponding harmonic potential
mωiχ2

i /2. Thus, the higher the value of the natural frequency
ωi is, the more localized the corresponding mode.

The difference between a field and a collection of harmonic
oscillators shows up, for example, when there is a spatial
boundary present. The boundary will modify the mode func-
tions of the field and alter the two-point functions of the bath
to recognize the effects of the boundary. It is not obvious how
this boundary-induced spatial dependence can be naturally
implemented in the bath-oscillator model.

Additional complexity emerges when the system contains
more than one oscillator which is spatially separated from
one another since the M-oscillator bath model does not have
the dynamical degrees of freedom to register the locations of
the spatially separated constituent oscillators in the system
unless extra input of the spatial information of the system
constituents and how it enters in their interaction with the
bath is provided. More often than not, one simply ignores the
spatial distances between the system constituents by assuming
that this separation is so small that we can essentially view
them as being situated at the same spatial location or by taking
the dipole approximation. This creates a causality problem.
For relativistic quantum fields, the influence of an object at
one space-time point on another object at another space-time
point is affected by the former’s imprint on the field, which
propagates causally to the latter when it begins to exert its
influence. The dynamics of the latter will in turn trigger a
new disturbance, on top of the previous one it received, in the
field, which propagates at finite time and exerts its influence
on the motion of all the other components. This field-induced
interaction among the spatially separated components of the
system depends on the history of its constituents and is thus
fundamentally non-Markovian in nature (see the plots in,
e.g., [50]). Notably, this causal propagation feature is mostly
lacking in the oscillator-bath mode if the spatial information
of the system constituents is not properly accounted for.18 The
field-bath model being relativistic naturally incorporates the
spatial correlation and respects the causality.

18There may exist a nonlocal dynamics due to the appropriate
choices of the system-bath coupling constants, but the motion is at
best temporally nonlocal, unlike the field bath where the dynamics is
in general spatiotemporally nonlocal.
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indicator of entanglement, Phys. Rev. B 78, 064108 (2008).

[40] E. Rieper, J. Anders, and V. Vedral, Entanglement at the quantum
phase transition in a harmonic lattice, New J. Phys. 12, 025017
(2010).

[41] J.-T. Hsiang and B. L. Hu, Distance and coupling dependence
of entanglement in the presence of a quantum field, Phys. Rev.
D 92, 125026 (2015).

[42] J.-T. Hsiang, C. H. Chou, Y. Subasi, and B. L. Hu, Quan-
tum thermodynamics from the nonequilibrium dynamics of

012135-29

http://seneca.fis.ucm.es/parr/ktlog2_12/Home.html
https://doi.org/10.1063/1.1749657
https://doi.org/10.1063/1.1749657
https://doi.org/10.1063/1.1749657
https://doi.org/10.1063/1.1749657
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1088/0034-4885/79/5/056001
https://doi.org/10.1143/PTPS.130.17
https://doi.org/10.1143/PTPS.130.17
https://doi.org/10.1143/PTPS.130.17
https://doi.org/10.1143/PTPS.130.17
https://doi.org/10.1140/epjb/e2008-00001-9
https://doi.org/10.1140/epjb/e2008-00001-9
https://doi.org/10.1140/epjb/e2008-00001-9
https://doi.org/10.1140/epjb/e2008-00001-9
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/0034-4885/75/12/126001
https://doi.org/10.1088/1367-2630/17/5/055002
https://doi.org/10.1088/1367-2630/17/5/055002
https://doi.org/10.1088/1367-2630/17/5/055002
https://doi.org/10.1088/1367-2630/17/5/055002
https://doi.org/10.1088/1367-2630/18/2/020401
https://doi.org/10.1088/1367-2630/18/2/020401
https://doi.org/10.1088/1367-2630/18/2/020401
https://doi.org/10.1088/1367-2630/18/2/020401
https://doi.org/10.1016/0003-4916(63)90068-X
https://doi.org/10.1016/0003-4916(63)90068-X
https://doi.org/10.1016/0003-4916(63)90068-X
https://doi.org/10.1016/0003-4916(63)90068-X
https://doi.org/10.1016/0378-4371(83)90013-4
https://doi.org/10.1016/0378-4371(83)90013-4
https://doi.org/10.1016/0378-4371(83)90013-4
https://doi.org/10.1016/0378-4371(83)90013-4
https://doi.org/10.1103/PhysRevD.45.2843
https://doi.org/10.1103/PhysRevD.45.2843
https://doi.org/10.1103/PhysRevD.45.2843
https://doi.org/10.1103/PhysRevD.45.2843
https://doi.org/10.1103/PhysRevD.47.1576
https://doi.org/10.1103/PhysRevD.47.1576
https://doi.org/10.1103/PhysRevD.47.1576
https://doi.org/10.3390/e15062100
https://doi.org/10.3390/e15062100
https://doi.org/10.3390/e15062100
https://doi.org/10.3390/e15062100
https://doi.org/10.1016/0370-1573(88)90023-3
https://doi.org/10.1016/0370-1573(88)90023-3
https://doi.org/10.1016/0370-1573(88)90023-3
https://doi.org/10.1016/0370-1573(88)90023-3
https://doi.org/10.1103/PhysRevE.79.051121
https://doi.org/10.1103/PhysRevE.79.051121
https://doi.org/10.1103/PhysRevE.79.051121
https://doi.org/10.1103/PhysRevE.79.051121
https://doi.org/10.1103/PhysRevE.81.011101
https://doi.org/10.1103/PhysRevE.81.011101
https://doi.org/10.1103/PhysRevE.81.011101
https://doi.org/10.1103/PhysRevE.81.011101
https://doi.org/10.1103/PhysRevE.84.031110
https://doi.org/10.1103/PhysRevE.84.031110
https://doi.org/10.1103/PhysRevE.84.031110
https://doi.org/10.1103/PhysRevE.84.031110
https://doi.org/10.1103/PhysRevLett.116.020601
https://doi.org/10.1103/PhysRevLett.116.020601
https://doi.org/10.1103/PhysRevLett.116.020601
https://doi.org/10.1103/PhysRevLett.116.020601
https://doi.org/10.1088/1751-8113/49/21/215303
https://doi.org/10.1088/1751-8113/49/21/215303
https://doi.org/10.1088/1751-8113/49/21/215303
https://doi.org/10.1088/1751-8113/49/21/215303
https://doi.org/10.1088/1367-2630/10/11/115008
https://doi.org/10.1088/1367-2630/10/11/115008
https://doi.org/10.1088/1367-2630/10/11/115008
https://doi.org/10.1088/1367-2630/10/11/115008
https://doi.org/10.1088/0031-8949/2015/T165/014028
https://doi.org/10.1088/0031-8949/2015/T165/014028
https://doi.org/10.1088/0031-8949/2015/T165/014028
https://doi.org/10.1088/0031-8949/2015/T165/014028
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevA.43.2046
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevE.50.888
https://doi.org/10.1103/PhysRevLett.96.050403
https://doi.org/10.1103/PhysRevLett.96.050403
https://doi.org/10.1103/PhysRevLett.96.050403
https://doi.org/10.1103/PhysRevLett.96.050403
https://doi.org/10.1038/nphys444
https://doi.org/10.1038/nphys444
https://doi.org/10.1038/nphys444
https://doi.org/10.1038/nphys444
https://doi.org/10.1103/PhysRevE.79.061103
https://doi.org/10.1103/PhysRevE.79.061103
https://doi.org/10.1103/PhysRevE.79.061103
https://doi.org/10.1103/PhysRevE.79.061103
https://doi.org/10.1088/1367-2630/14/1/013063
https://doi.org/10.1088/1367-2630/14/1/013063
https://doi.org/10.1088/1367-2630/14/1/013063
https://doi.org/10.1088/1367-2630/14/1/013063
https://doi.org/10.1103/PhysRevLett.101.190403
https://doi.org/10.1103/PhysRevLett.101.190403
https://doi.org/10.1103/PhysRevLett.101.190403
https://doi.org/10.1103/PhysRevLett.101.190403
https://doi.org/10.1103/PhysRevLett.103.100403
https://doi.org/10.1103/PhysRevLett.103.100403
https://doi.org/10.1103/PhysRevLett.103.100403
https://doi.org/10.1103/PhysRevLett.103.100403
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1103/RevModPhys.83.863
https://doi.org/10.1088/1367-2630/12/5/055006
https://doi.org/10.1088/1367-2630/12/5/055006
https://doi.org/10.1088/1367-2630/12/5/055006
https://doi.org/10.1088/1367-2630/12/5/055006
https://doi.org/10.1103/PhysRevLett.85.1799
https://doi.org/10.1103/PhysRevLett.85.1799
https://doi.org/10.1103/PhysRevLett.85.1799
https://doi.org/10.1103/PhysRevLett.85.1799
https://doi.org/10.1103/PhysRevLett.96.020402
https://doi.org/10.1103/PhysRevLett.96.020402
https://doi.org/10.1103/PhysRevLett.96.020402
https://doi.org/10.1103/PhysRevLett.96.020402
https://doi.org/10.1103/PhysRevLett.105.170402
https://doi.org/10.1103/PhysRevLett.105.170402
https://doi.org/10.1103/PhysRevLett.105.170402
https://doi.org/10.1103/PhysRevLett.105.170402
http://arxiv.org/abs/arXiv:1710.03882
https://doi.org/10.1103/PhysRevA.80.032110
https://doi.org/10.1103/PhysRevA.80.032110
https://doi.org/10.1103/PhysRevA.80.032110
https://doi.org/10.1103/PhysRevA.80.032110
https://doi.org/10.1088/1367-2630/17/4/045030
https://doi.org/10.1088/1367-2630/17/4/045030
https://doi.org/10.1088/1367-2630/17/4/045030
https://doi.org/10.1088/1367-2630/17/4/045030
https://doi.org/10.1103/PhysRevLett.114.080602
https://doi.org/10.1103/PhysRevLett.114.080602
https://doi.org/10.1103/PhysRevLett.114.080602
https://doi.org/10.1103/PhysRevLett.114.080602
https://doi.org/10.1063/1.3669485
https://doi.org/10.1063/1.3669485
https://doi.org/10.1063/1.3669485
https://doi.org/10.1063/1.3669485
https://doi.org/10.1103/PhysRevE.79.061105
https://doi.org/10.1103/PhysRevE.79.061105
https://doi.org/10.1103/PhysRevE.79.061105
https://doi.org/10.1103/PhysRevE.79.061105
https://doi.org/10.1140/epjb/e2014-50125-2
https://doi.org/10.1140/epjb/e2014-50125-2
https://doi.org/10.1140/epjb/e2014-50125-2
https://doi.org/10.1140/epjb/e2014-50125-2
https://doi.org/10.1007/s10955-006-9151-6
https://doi.org/10.1007/s10955-006-9151-6
https://doi.org/10.1007/s10955-006-9151-6
https://doi.org/10.1007/s10955-006-9151-6
https://doi.org/10.1103/PhysRevB.78.064108
https://doi.org/10.1103/PhysRevB.78.064108
https://doi.org/10.1103/PhysRevB.78.064108
https://doi.org/10.1103/PhysRevB.78.064108
https://doi.org/10.1088/1367-2630/12/2/025017
https://doi.org/10.1088/1367-2630/12/2/025017
https://doi.org/10.1088/1367-2630/12/2/025017
https://doi.org/10.1088/1367-2630/12/2/025017
https://doi.org/10.1103/PhysRevD.92.125026
https://doi.org/10.1103/PhysRevD.92.125026
https://doi.org/10.1103/PhysRevD.92.125026
https://doi.org/10.1103/PhysRevD.92.125026
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