
PHYSICAL REVIEW E 97, 012134 (2018)

Triviality of the ground-state metastate in long-range Ising spin glasses in one dimension
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We consider the one-dimensional model of a spin glass with independent Gaussian-distributed random
interactions, which have mean zero and variance 1/|i − j |2σ , between the spins at sites i and j for all i �= j . It is
known that, for σ > 1, there is no phase transition at any nonzero temperature in this model. We prove rigorously
that, for σ > 3/2, any translation-covariant Newman-Stein metastate for the ground states (i.e., the frequencies
with which distinct ground states are observed in finite-size samples in the limit of infinite size, for given disorder)
is trivial and unique. In other words, for given disorder and asymptotically at large sizes, the same ground state,
or its global spin flip, is obtained (almost) always. The proof consists of two parts: One is a theorem (based on
one by Newman and Stein for short-range two-dimensional models), valid for all σ > 1, that establishes triviality
under a convergence hypothesis on something similar to the energies of domain walls and the other (based on
older results for the one-dimensional model) establishes that the hypothesis is true for σ > 3/2. In addition, we
derive heuristic scaling arguments and rigorous exponent inequalities which tend to support the validity of the
hypothesis under broader conditions. The constructions of various metastates are extended to all values σ > 1/2.
Triviality of the metastate in bond-diluted power-law models for σ > 1 is proved directly.
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I. INTRODUCTION

The problem of the equilibrium properties of spin glasses
has persisted for more than 40 years. While the basic stan-
dard model of a realistic short-range spin glass remains the
Edwards-Anderson (EA) model [1], other models have also
been considered, with the hope that they turn out to be
more tractable. Among these is a version of the EA model
with power-law long-range interactions. In one dimension, the
Hamiltonian of this model has the form

H = −
∑

i,j∈Z:i<j

Jij sisj , (1)

where si are Ising spins, si = ±1, indexed by the set of integers
i ∈ Z, and as in the EA model the bonds Jij = Jji for pairs (or
in a graph-theoretic language, edges) i and j are independent
Gaussian random variables with mean zero while, unlike in the
EA model, the variances are

Var Jij =
{|i − j |−2σ if i �= j

0 otherwise.
(2)

Here we allowed the summations to be carried out over an
infinite system, though of course some boundary conditions
must be used to handle the infinite sum in practice. A
periodic version of H on a system of length L (L > 0 an
odd integer) can be constructed as follows. Let i and j be
members of {−(L − 1)/2,−(L − 1)/2 + 1, . . . ,(L − 1)/2},
let rij = min(|i − j |,L − |i − j |), and let Jij = Jij have vari-
ance 1/r2σ

ij for |i − j | �= 0, so for fixed i and j , Var Jij is L

independent when L is sufficiently large. In this paper, the
infinite-size Hamiltonian (1) is meant unless otherwise stated.
We emphasize the spin-flip symmetry of these Hamiltonians,
that is, each Hamiltonian is unchanged if si is replaced by
−si for all i (i.e., flipping all the spins). One-dimensional

models have the advantage that the geometry, especially of
domains, is much simpler than in higher dimensions, while the
power-law form of the variance of the interactions allows phase
transitions to occur for sufficiently long-range interactions.
The power-law form, at least in higher dimensions, is also
of interest because it can arise in realistic metallic spin
glasses.

In the one-dimensional power-law model, it is known
rigorously [2,3] that, in the parameter region σ > 1/2, the
thermodynamic limit exists for thermodynamic properties
when the temperature T is positive. For σ � 1/2, a nontrivial
thermodynamic limit can be obtained (for temperature T held
fixed in the limit) only if the Hamiltonian is first rescaled by
an L-dependent factor; we do not consider those cases in this
paper. The absence of a transition at nonzero temperature (i.e.,
uniqueness of the Gibbs state) was proved by Khanin [4] for
σ > 3/2. The classic theoretical study of the one-dimensional
model is by Kotliar et al. [5], who in particular suggested that a
transition at positive temperature would occur for 1/2 < σ < 1
and not for σ > 1. This was followed by a proof of the absence
of a transition at T > 0 for σ > 1 by van Enter and van
Hemmen [6]. The last reference was criticized somewhat in
Ref. [7], in which the statement proved is the same but for
fixed-spin boundary conditions only; see also Ref. [8]. Some
further rigorous results were obtained in Refs. [9,10]. For
further theoretical arguments from a physical perspective, see
Refs. [11,12], and for a selection of more recent results on
relevant issues, see Refs. [13–16].

In the 1990s the theory of short-range spin glasses (es-
pecially the EA model) was revolutionized by the work of
Newman and Stein (NS) [17], who introduced the concept of a
metastate to handle the possibility of chaotic size dependence
[18]. A metastate is a probability distribution on Gibbs states
of an infinite-size system, derived from a limit of finite-size
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systems. At zero temperature, a ground-state metastate (a
probability distribution on ground states, of which there can
be many when the system is strictly infinite) might be trivial
(all the weight on a single ground state, or a single pair if there
is spin-flip symmetry) or nontrivial (the weight is dispersed
over many ground states not related by symmetry). If replica
symmetry breaking [19,20] occurs at nonzero temperature, the
metastate will be nontrivial [17,21], even at zero temperature.
In the scaling-droplet theory [11,22,23] (the main alternative
scenario to replica symmetry breaking as a description of a low-
temperature spin-glass phase), the underlying assumptions
imply that the metastate is trivial in the low-temperature phase
[17]. The nature of the metastate is thus a basic issue for
the understanding of spin glasses. Some recent works have
addressed metastates numerically [24,25].

There is an (in general, unproved) expectation that any
metastate, including a ground-state metastate, will be trivial
if there is no transition at T > 0. For the two-dimensional EA
model (with only nearest-neighbor bonds on the square lattice),
for which it is widely believed that no transition occurs at
nonzero temperature, Newman and Stein [26] proved results
that go part of the way towards showing that a translation-
covariant zero-temperature or ground-state metastate is trivial.
The results were extended [27] to show that such a metastate
is indeed trivial in the case of a half plane, rather than the full
two-dimensional plane.

In the present paper, we take up this topic in the case of
the one-dimensional power-law model. The original goal of
this work, which will not be fully realized, was to prove that
the ground-state metastate is trivial for the model when σ > 1.
(This involves first constructing metastates for the long-range
model.) This does not seem to follow directly from the unique-
ness of the Gibbs state at T > 0 for σ > 1 mentioned above.
References [4,6–8] are more concerned with an infinite-size
limit at fixed T > 0, and it does not seem possible to draw
a conclusion about a subsequent T → 0 limit. Finding the
ground-state metastate itself seems to require the opposite
order of limits, namely, T → 0 in finite size.

In order to prove a rigorous result, we follow the NS
argument [26] rather closely and we carry it through to prove
triviality of any translation-covariant ground-state metastate
(and uniqueness as well) for σ > 1, but only under a hypothesis
that certain energies (which are something like the energy of a
domain wall) converge to finite values. The hypothesis can
be proved when σ > 3/2 using results of Khanin [4], and
combining these results proves that a ground-state metastate is
trivial and unique for σ > 3/2. This is probably not optimal,
and we also discuss scaling arguments intended to support the
hypothesis heuristically for all σ > 1. The approach definitely
will not work when there is a transition at T > 0 (in which case
domain wall energies diverge), as is expected when σ < 1, and
the results shed no light on whether replica symmetry breaking
or a nontrivial metastate occurs in the low-temperature phases
in that case.

Some additional side results obtained along the way are
worth highlighting here, as they may be of independent interest.
One of these is a bound on the exponent, now usually called
θ , of the scaling-droplet theory for the model [11,12,22,23],
which describes the scaling of the minimum domain wall
energy (we define it more precisely below). We prove that it

obeys the inequality

θ � max(1 − σ,0) (3)

in the one-dimensional power-law model. Within the scaling-
droplet theory, this gives a simple argument that there can be
no transition at T > 0 for σ > 1 (the known result discussed
above).

Another side result is that we ultimately extend the NS
construction of a ground-state metastate for the model to all
values σ > 1/2, rather than σ > 1 with which we begin, to
obtain what we call the “natural” ground-state metastate, and
then extend the construction of an excitation metastate (used in
the proofs), and the proof of the main theorem, likewise. These
metastates will be useful when considering other problems for
the model within the metastate framework in the future.

In addition to these results, we also analyze variant models
with diluted bonds, in which the probability that a bond Jij is
nonzero is a power of |i − j |. In these models, the triviality and
uniqueness of the ground-state metastate can be proved directly
for all σ > 1, similarly to the short-range one-dimensional
models.

The plan of the remainder of the paper is as follows.
Section II discusses various preliminary matters: the almost-
sure convergence of a certain sum of random variables, which
physically is the energy change when a finite set of spins
is reversed; the rigorous definitions of Gibbs states, ground
states, and ground-state metastates; the notions of domains,
superdomains, and rung energies and the issue of convergence
of the latter; and the definitions of an excitation metastate,
which extends the ground-state metastate to include excita-
tions, and of transition values and flexibilities. Section III states
and proves the main theorem of this work, the triviality of the
ground-state metastate under the hypothesis of convergence of
the rung energies. Section IV first proves that the hypothesis
holds for σ > 3/2 and then turns to heuristic scaling arguments
which have some bearing on the convergence question and then
back to rigorous arguments which allow the extension of the
definition of the metastates and of the theorem to σ > 1/2.
Finally, the bond-diluted models are introduced and analyzed.
The Appendix contains rigorous proofs of bounds on two
scaling exponents that were discussed in Sec. IV.

II. PRELIMINARIES

In this section, various preliminaries to the main theorem
are discussed: In Sec. II A, we prove a useful basic lemma;
in Sec. II B, we explain Gibbs states, ground states, and
ground state metastates; in Sec. II C, we define domain walls,
microdomains, superdomains, and rungs; and in Sec. II D
we introduce two technical tools, excitation metastates and
transition values.

A. Basic observations

We let S = (si) stand for the indexed collection (vector)
of the values of all the si and J = (Jij ) for the indexed
collection (matrix) of all Jij . We also write S(A) = (si : i ∈
A) for a subset A ⊆ Z; Ac = Z\A is the complement of
A in Z. Following tradition, subsets of the one-dimensional
lattice Z will also be denoted by � and �L = {−(L − 1)/2,
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−(L − 1)/2 + 1, . . . ,(L − 1)/2} for odd L > 0 is an interval
centered at the origin. We sometimes view the Hamiltonian as
a function H = H (S) of S = (si) for given J . The probability
distribution (measure) on J will be denoted by ν(J ) and is
the infinite product measure of the Gaussians for each Jij .
Note that we sometimes use the physicists’ term “distribution”
for the measure (or law) [28,29] on some space (not always
a space of real variables); often distribution will mean the
probability density (not the cumulative probability on a single
real variable), but this should be clear from the context. For
now, we assume a joint distribution νρJ on the bonds J and
spins S, which has marginal distribution ν on bonds J (i.e.,
when we sum νρJ over all S) and conditional distribution ρJ
on S given J , which of course can depend on J (later, a
metastate will be used in place of ρJ ). Measure-theoretic terms
[28,29] such as “with probability one,” or equivalently “for
almost all” or “almost surely,” refer here to the joint measure
νρJ unless otherwise stated. We write P for the probability of
an event and E for expectation (mean) and Var for variance of
a random variable.

We will make frequent use of Kolmogorov’s three series
theorem (Ref. [28], p. 125), which states that if Xn is a
sequence of independent random variables and we define
Yn = Xn�(A − |Xn|) [where � is the step function with
�(0) = 1 and A > 0 is a constant], then

∑∞
n=1 Xn converges

almost surely if and only if all of the following three numer-
ical series converge: (i)

∑
n P[|Xn| > A], (ii)

∑
n EYn, and

(iii)
∑

n Var Yn. Then we can obtain the following result.
Consider the sum ∑

j

Jij sisj (4)

for i fixed, withJ and S drawn from the joint distribution νρJ .
The sum is bounded by∣∣∣∣∣∣

∑
j

Jij sisj

∣∣∣∣∣∣ �
∑

j

|Jij |, (5)

which is independent of the spins, and likewise the differences
of partial sums obey∣∣∣∣∣∣

N∑
j=M+1

Jij sisj

∣∣∣∣∣∣ �
N∑

j=M+1

|Jij |. (6)

Lemma 1. For σ > 1 and with probability one, the right-hand
side of (5) converges and the sum (4) converges absolutely, as
does the sum

∑
i∈A,j∈B Jij sisj , where A and B are subsets of

Z, A ∩ B = ∅, and at most one of A and B is infinite.
Proof. This follows from the three series theorem. The right-

hand side of (5) is independent of the spins, so the problem
reduces to one involving only the distribution ν, to which the
three series theorem can be applied with A → ∞. We note that
the series of expectation values behaves as

N∑
j=1

1

jσ
∼ N [1−σ ]+ , (7)

up to a constant factor, where in writing such series we show
the rate of divergence at the upper limit, using the notation

[x]+ =
{
x if x � 0
0 otherwise,

or [x]+ = max(0,x), and omit the constant factor. Likewise,
the series of variances behaves as

N∑
j=1

1

j 2σ
∼ N [1−2σ ]+ . (8)

(The convergence of the latter series is also the condition
for the existence of the thermodynamic limit [2,3,30], which
thus exists when σ > 1/2.) Hence the right-hand side of
the inequality (5) converges almost surely, which gives the
almost-sure absolute convergence of the sum (4), and its
almost-sure convergence follows from the Cauchy criterion
and the inequality (6) in the usual way. The final statement
follows immediately. Q.E.D.

B. Gibbs states, ground states, and metastates

The results of this paper concern ground states of an
infinite system and probability distributions on such ground
states, called metastates. Here we collect the basic statements
about ground states and metastates. We begin, in a little more
generality than we need, with Gibbs (or Dobrushin-Lanford-
Ruelle) states at arbitrary temperature, in a system that could be
infinite (see, e.g., Ref. [31]). A state is a probability distribution
�(S) on spin configurations S. A Gibbs state is defined via its
conditional distributions when conditioned on S outside a finite
region �: Namely, if the conditional probabilities on the set of
S(�), given S(�c), are �(S(�)|S(�c)), then their ratios obey

�(S(�)|S(�c))/�(S ′(�)|S(�c)) = exp −β(H (S) − H (S ′)),

(9)

where S ′ is another configuration and S ′(�c) = S(�c), that is,
they are the same outside � (β = 1/T is inverse temperature).
From this rule the full distribution �(S) is determined by using
an increasing sequence of �, but not uniquely; this allows the
possibility of many distinct Gibbs states, which can be thought
of as arising from different choices of a boundary condition
(in a very general sense) at infinity. In short-range models,
the difference H (S) − H (S ′) under this condition reduces to a
finite sum, but in a long-range model it does not. In the one-
dimensional model (1), by Lemma 1 the infinite sum converges
absolutely almost surely for σ > 1, so in this case there is no
issue with the definition of a Gibbs state. For σ � 1, a method
of regularizing the sum would have to be specified and it seems
that the existence of Gibbs states must be considered further
in this case. Fortunately, we do not need to deal with this case
in this paper.

The definition of a Gibbs state continues to apply when
T = 0, with (for S �= S ′) the ratio of conditional probabilities
being zero or infinity, unless the Hamiltonian difference is
exactly zero, which cannot occur when the distribution ν is
continuous. In particular, for continuous ν the definition is
satisfied in the case of a ground state, defined as follows: A
configuration S is a ground state if changing S on any finite
subset � of the spins causes a non-negative change in energy.
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Again, with probability one there is no difficulty with this
criterion in the one-dimensional model when σ > 1, and we
note that in infinite size there can be many ground states, not all
related to one another by flipping all the spins. We mention that
ground states are “pure” Gibbs states, but the definition of this
notion in the general case T � 0 will not be needed here. Even
at T = 0, not all Gibbs states are pure; a combination of ground
states is also a Gibbs state. We let α,β, . . . label ground-state
configurations, namely, S(α),S(β), . . . of the infinite system, and
write α = β if S(α) = S(β).

To deal with the possible multiplicity of infinite-size Gibbs
states and to make contact with finite systems, we would like
to use an infinite-size or thermodynamic limit of a sequence
of finite systems, all constructed from the same sample J .
Because of the possible occurrence of chaotic size depen-
dence [18], this may not be straightforward. Newman and
Stein proposed the use of a construct they called a metastate
[32,33]. A ground-state metastate is a probability distribution
on infinite-size ground states for the given J . The existence
of a metastate can be shown using empirical averages of
finite-size systems: There exists a sequence of sizes Lk , say,
that is not dependent on J , such that the frequency of the
number of times each spin configuration S(�W ) (observed in
a fixed-size window �W ) occurs as part of the ground state
in the sizes L < Lk , with W < L, tends to a limit κJ [S(�W )]
[the probability of S(�W ) under κJ ] as k → ∞, for arbitrarily
large W . Any S that is drawn (sampled) from the metastate
κJ is a ground state: S = S(α) for some α. [More precisely,
in each size L, our Hamiltonian has a pair of ground states.
We write α for the ground state with all spins reversed,
namely, S(α) = (−s

(α)
i ) = S(α), say. When we construct the

metastate, there are two ground states in each size L, and we
actually use frequencies for the occurrence of these pairs, but
finally give each of S(α)(�W ) and S(α)(�W ) equal probability
in the metastate κJ .] Such a metastate is not known to be
unique; it might depend on the sequence Lk . In addition to
this NS construction of a metastate, there is also the earlier
Aizenman-Wehr (AW) construction [34]. Both have similar
properties and can be shown to be equal under some conditions
[32,33]. The metastates we use below could be of either
type.

We should mention technically that a nontrivial ground-
state metastate might be spread over an uncountable number
of ground states, all but at most countably many of which
have zero probability individually; in general it will be sets
of ground states that have nonzero probability. In particular,
for any window of finite size W , only a finite number less
than or equal to 2Wd

(in space of dimension d) of ground
states can be distinguished in the window. A ground-state
metastate assigns some nonzero probability to each of these
configurations in �W . For a larger window, each of these
ground states may resolve into distinct ones and share its
probability between them. If we neglect the possible count-
able set of ground states that can have nonzero probability
individually, the situation in the uncountable case is similar
to that of a continuous distribution on the real numbers x in,
say, 0 � x � 1, with the probabilities for the restriction to a
window corresponding to the probabilities for the restriction
of the decimal expansion of x to a finite number of places after
the decimal point. The probability of drawing a given ground

state (or number x) exactly will be zero, but it is still possible
to speak of the probability that a ground state (or number)
drawn has some particular property, as long as the latter is
measurable. We will not discuss measurability questions; see
Ref. [26].

In this paper, not many properties of a ground-state metas-
tate will be required and the only property used frequently
is translation covariance. We can assume that the periodic
model is used for the finite-size systems and then there is
translation invariance of the joint distribution of bonds and
ground states in a given finite size, under translation of both
the bonds and the spins. In the limit defining a metastate, this
translation invariance is inherited by the joint distribution νκJ .
The ground-state metastate κJ is then translation covariant,
that is, it is a distribution on S that depends on the parameters
J , and is invariant under a translation of both the spins si and
the bonds Jij . If we take two metastates κJ and κ ′

J for the
given J , we can draw two ground states independently (one
from each), using the product distribution κJ κ ′

J . The joint
distribution νκJ κ ′

J on bonds and pairs of ground states is also
translation invariant if the two metastates κJ and κ ′

J are both
translation covariant. Though translation covariance need not
hold in metastates in general, it is used in the proofs of the
main results in this paper.

The construction of a ground-state metastate from finite-
size samples still works for all σ > 1/2, in the sense that one
obtains a distribution on spin configurations S. As the meaning
of ground states in infinite size is less clear for 1/2 < σ < 1, we
cannot say at the moment that these configurations are infinite-
size ground states. What we do know from the NS construction
of a metastate is that their restriction to any finite window
occurs with nonzero frequency among finite-size ground states.
When the latter is all that is in use, a ground-state metastate in
the present sense should be acceptable. Many arguments still
go through under these conditions. In most of this paper, we
will not use this approach and will use the above definition
where σ > 1; we return to the more general approach again in
Sec. IV C.

C. Domains and superdomains

From now on, we frequently consider a pair of ground states,
and whenever a probabilistic argument is used, we suppose that
we have two ground-state metastates for the same disorder
J , say, κJ and κ ′

J (we could take κ ′
J = κJ ), and we draw

the two ground states from these, say, α from κJ and β from
κ ′
J (independently). Measure-theoretic terms like almost all,

almost surely, or with probability one now refer to the product
of the measures ν, κJ , and κ ′

J with which bonds J and ground
states α and β are drawn, respectively.

By definition, if S is a ground state and any finite number
(say, those in a finite set �) of the spins are reversed, the energy
change

�E = 2
∑

i∈�,j∈�c

Jij sisj (10)

should be non-negative. By Lemma 1, this sum converges
absolutely (with probability one) if σ > 1. We may sometimes
describe this operation as the creation of the domain �, which
in this case is finite.
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For two ground states α and β, the spins si agree for some i

and not for others. This defines two domains, which we denote
by A (the set of sites where the spins are the same) and B (the
set of sites where the spins are reversed):

A = {
i : s

(α)
i s

(β)
i = +1

}
, (11)

B = {
i : s

(α)
i s

(β)
i = −1

} = Ac. (12)

(Here and in some following notation we suppress mention
of the evident dependence on the two ground states α and β,
which are typically fixed during the discussion.) The domains
A and B will necessarily both be infinite unless β = α or α

(otherwise there is a contradiction with the fact that α and β

are both ground states), and the energy difference between α

and β will then be a doubly infinite sum. If σ < 2, such a sum
will usually not be convergent. In general, set A is not (path)
connected, or contiguous: Its sites cannot all be reached from
one another by a sequence of steps, each of length one, between
members of A. We call a domain consisting of an interval
of sites on which the spins are reversed compared with some
reference state a microdomain. HenceA (and likewiseB = Ac)
can be decomposed into a disjoint union of microdomains; the
intervals making up A and those of B of course alternate. The
domain wall W between sets A and B is the collection of
nearest-neighbor edges with one end in A and one end in B,

W = {
(i,i + 1) : s

(α)
i s

(β)
i s

(α)
i+1s

(β)
i+1 = −1

}
, (13)

which in general will contain many edges. In the case when
a domain is a microdomain, we call the two edges that bound
it microwalls; thus each edge (i,i + 1) ∈ W is a microwall.
Precisely stated,W consists of (i) zero (when β = α or α), (ii) a
finite odd number (when s

(α)
i = s

(β)
i for all sufficiently large

negative i, but s
(α)
i = −s

(β)
i for all sufficiently large positive i,

or vice versa), or (iii) an infinite number of microwalls. Case (ii)
and some instances of case (iii) will be eliminated under some
conditions as we go on. Clearly, each microwall (i,i + 1) ∈ W
is of one of two types: We say (i,i + 1) is of type I if i ∈ A

and i + 1 ∈ B and of type II if i ∈ B and i + 1 ∈ A.
The strategy of the following proof (similar to Ref. [26])

will be to draw two ground states, say, (α,β), from a product
κJ κ ′

J of translation-covariant ground-state metastates. We
argue that if σ > 1 and one condition is satisfied, then this
leads to a contradiction unless β = α or α. The conclusion
will then be that the metastates κJ = κ ′

J are each supported
on a unique ground-state pair (α,α), or else (α,β) does not
satisfy the condition. The argument involves a superdomain
of β in α, which we now define: A superdomain of β in α

is a configuration S that is identical to S(α) for i outside a
finite interval such as [i0,i1] = {i0,i0 + 1, . . . ,i1} for i0 < i1,
but identical to S(β) for i in [i0,i1].

We now begin to formulate the definitions that appear in
the main arguments and state the condition used; they involve
the change in energy when a superdomain from β is inserted
in α. If we write A(i0,i1) = A ∩ [i0,i1] and similarly B(i0,i1),
then this change in energy is (recall that for σ > 1, all these
sums are finite with probability one, as a consequence of

Lemma 1)

�Eβ(i0,i1),α = 2
∑

i∈B(i0 ,i1),
j∈B(i0,i1)c

Jij s
(α)
i s

(α)
j (14)

= 2
∑

i∈B(i0 ,i1),

j∈A

Jij s
(α)
i s

(α)
j + 2

∑
i∈B(i0 ,i1),

j∈B\B(i0,i1)

Jij s
(α)
i s

(α)
j .

(15)

The corresponding change in energy for the superdomain of α

inserted into β in the same interval is obtained by interchanging
α and β everywhere and so is

�Eα(i0,i1),β = 2
∑

i∈B(i0 ,i1),

j∈A

Jij s
(β)
i s

(β)
j + 2

∑
i∈B(i0 ,i1),

j∈B\B(i0,i1)

Jij s
(β)
i s

(β)
j

(16)

= −2
∑

i∈B(i0 ,i1),

j∈A

Jij s
(α)
i s

(α)
j + 2

∑
i∈B(i0 ,i1),

j∈B\B(i0,i1)

Jij s
(α)
i s

(α)
j .

(17)

Comparing these two energy changes, we see that the second
sum on the right-hand side, the BB terms, is the same, but
the first sum (the AB terms) has reversed sign. Because
only a finite set of spins changed in both cases, both energy
changes �Eβ(i0,i1),α and �Eα(i0,i1),β must be non-negative.
Consequently, the BB sum on the right-hand side of each
expression must be non-negative and the other sum, which
has opposite sign in the two cases, must in magnitude be less
than or equal to the BB sum.

We can also construct superdomains by using α or β in
place of either α or β. A superdomain of α in α is a single
microdomain, with energy �Eα(i0,i1),α as above (in this case,
A is empty and B = Z). Using the corresponding expressions,
we obtain the identity (which will not be used in the paper)

�Eβ(i0,i1),α + �Eα(i0,i1),β + �Eβ(i0,i1),α + �Eα(i0,i1),β

= �Eα(i0,i1),α + �Eβ(i0,i1),β . (18)

Some terminology for these combinations of energy differ-
ences will be useful. The BB part of the sum for �Eβ(i0,i1),α in
Eq. (15) (which is the same as in �Eα(i0,i1),β) corresponds to the
interaction across the two rungs that form part of a superdomain
wall in the two-dimensional short-range case studied by NS
[26]. We may analogously call the two edges (i0 − 1,i0) and
(i1,i1 + 1), which bound the superdomain, rungs, even though
the geometric picture that applied in the two-dimensional
short-range case does not apply here. A generic rung is denoted
by R. The BB sum itself we call the total rung energy (that
is, for both rungs together) of the superdomain. While the
total rung energy is finite (for σ > 1), nothing prevents it from
increasing as the length of the superdomain increases. It will be
crucial to assume as a hypothesis that the total rung energies
(for different superdomains constructed from the same two
ground states α and β) in some sense approach the sum of two
finite energies, one for each rung, as the separation of the rungs
goes to infinity. Because these energies are random, this must
be defined carefully.

012134-5



N. READ PHYSICAL REVIEW E 97, 012134 (2018)

For simplicity, from here until Sec. IV C we will usually
consider only rungs that are members of the domain wall W
and further, for a superdomain of β in α or vice versa, we
require i0,i1 ∈ B. Then the rungs of our superdomain are R0

of type I at the left and R1 of type II at the right.
To define the energy of a single rung R0 = (i0 − 1,i0) of

type I, an obvious approach would be to consider a semi-infinite
analog of a superdomain of β in α, with ground state α for the
spins to the left of i0 and β for i0 and spins to its right. The
rung energy for this single rung is

2
∑

i<i0 ,i∈B,

j�i0,j∈B

Jij s
(α)
i s

(α)
j . (19)

The next question is whether this sum converges to a finite
value. Using the “only if” part of the three series theorem, one
finds that the sum cannot be absolutely convergent for σ < 2
unless B is very sparse, which we will see does not occur.
Therefore, we should regularize the sum with a cutoff R and
then we ask whether these partial sums tend to a (finite) limit
as R → ∞. One symmetric way to regularize would be to
restrict i and j to �R + i0, an interval of length R centered
at i0. However, instead of this, it will be useful to consider an
asymmetric regularization, as follows. For the type I rung, we
use the limit of

ER0,R = 2
∑

i<i0 ,i∈B,

j�i0,j∈B,j�i0+R

Jij s
(α)
i s

(α)
j (20)

as the regulating parameter R → ∞, and similarly for the type
II rung at (i1,i1 + 1), we use the limit of

ER1,R = 2
∑

i�i1 ,i∈B,i�i1−R

j>i1,j∈B

Jij s
(α)
i s

(α)
j (21)

as R → ∞. For finite R and σ > 1, these expressions converge
absolutely almost surely by Lemma 1. Moreover, when R =
i1 − i0, ER0,R + ER1,R is exactly the total rung energy for the
superdomain on the interval [i0,i1].

If a rung energy ER,R (of either of the forms ER0,R and
ER1,R) converges almost surely to a limit (denoted by ER0 and
ER1 ), then we say simply that the rung energy ER converges.
We now point out that the difference of the rung energies
for any two rungs (for given J , α, and β) of the same type,
when regularized with both R’s tending to infinity together (for
example, with the R’s equal) consists of two singly infinite
sums like those discussed in Lemma 1, and for σ > 1 one of
these is absolutely convergent, while the other tends to zero as
R → ∞, both with probability one. Hence, for σ > 1 and for
each type of rung, with probability one, either all rung energies
are convergent or all are nonconvergent. (This remains true if
we consider rungs at arbitrary positions, and not only members
of W , with now two ways of regulating their energy instead
of two types of rung. This is the reason that considering only
rungs in W will be sufficient when σ > 1.) This is still for
given α and β; it is possible that for given J , rung energies
of either type converge for some pairs α and β and diverge
for others. Finally, it will be convenient to use the convention
that the case in which W is empty, so the total rung energy is
vacuous (because there are no microwalls in W to choose as
rungs), falls into the class of nonconvergence.

Similar issues arise for microwalls, which correspond to
the case B = Z: The energy change of a microdomain is finite,
but the sum defining the energy change of either of its two
microwalls may not converge. Because of the identity (18),
the scaling of the energy change of a domain of α in α with
its length will be similar to that of the total rung energy of a
superdomain of the same size. Likewise, an identity similar to
Eq. (18) can be easily obtained for semi-infinite superdomains
and gives a relation between the (formal) sums defining the
energy changes of a single rung and a single domain wall, and
so the scaling of the regulated versions will also be similar.
These relations might be useful in further study of, for example,
the expectation values of these energy changes, to which we
return in Sec. IV B.

D. Excitation metastate and transition values

The proof of the main theorem involves the use of an
excitation metastate. Analogously to a ground-state metastate,
an excitation metastate [26] is a probability measure on infinite-
size excited states and their excitation energies, where excited
states are produced by constraining the values S(�) of the
spins in finite sets �, in all possible ways and for all finite
�, and the energy of the constrained state is a minimum
(for � = ∅, the excited state becomes the ground state). It
is produced from the limit of the finite-size version, like the
ground-state metastate. In each finite size L one can obtain
such excited states by constraining the values of the spins in �

(which must fit inside the finite size), finding the lowest-energy
spin configuration subject to that constraint, and comparing
its energy with the ground-state energy to obtain the energy
change �E�,S(�),L. Note that �E�,S(�),L does not depend
on which of the two flip-related unconstrained ground states
is chosen, and if � is empty there are two (ground) states
with �E�,S(�),L = 0. The frequencies of these sets of states
and energies (α�,S(�),L

J ,�E
�,S(�),L
J ) for all choices (�,S(�))

(denoted by ) for given J have a limit along a J -independent
subsequence Lk; this limit is an excitation metastate κ



J , a
probability distribution on (α,�E) (for all  at once) for given
J . (For the excitation energies, frequencies can be obtained
by a standard procedure such as binning the energy changes
and using the frequencies for the bins and then finally refining
the size of the bins to obtain the distribution.) We also claim
that for any ground-state metastate κJ , we can extend it to an
excitation metastate κ



J , such that the marginal distribution of

κ


J on ground states is κJ . For this, we simply require that

the sequence of sizes Lk used to obtain κ


J be a subsequence
of that used to obtain κJ . In addition to this construction of a
NS excitation metastate, there is an analogous construction
for an AW excitation metastate. Translation-covariant such
metastates (obtained from the periodic model) will be used
in the proofs of the main results.

Notice that in the limit, the number of spins that flip when
going from the ground state α to an excited state α is not
necessarily finite (indeed, it cannot be finite for both ground
states α and α), but that nonetheless the excitation energy �E

will not diverge, because in any finite size it is bounded by the
sum 2

∑
i∈�,j∈�c Jij s

(α)
i s

(α)
j , which in the limit (conditioned

on α) converges absolutely with probability one for σ > 1, by
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Lemma 1. [We remark that Newman and Stein [26] mention the
technical point of establishing tightness (see Ref. [28], p. 94)
for the family of finite-size distributions of �E, which follows
from the bound on the excitation energy just mentioned. We
comment further on this and show that the restriction to σ > 1
is not needed at the end of this section and in the Appendix.]
We emphasize that there is a distinction between the excitations
(so-named following Ref. [26]) considered here, which involve
minimizing the energy change subject to a constraint on some
spins, and the energy change for reversing some spins in a
ground state, leaving all others fixed, with no minimization,
as discussed in the preceding section. To avoid confusion, we
will not refer to the latter as excitations.

From an excitation metastate, one can obtain information
about how a ground state changes as a finite number of the
bonds J are changed [26]. Suppose that D is a finite set of
edges (i,j ) = (j,i) (i �= j ) and that J D is a set of values for
bonds on D (in other words, a function D → R). Let � be the
set of sites i that are the end points of edges in D. Define

HJ D (S(�)) = −
∑

(i,j )∈D

JD
ij sisj , (22)

HJ (S(�)) = −
∑

(i,j )∈D

Jij sisj , (23)

which involve only spins at sites in �. Then in finite size we
consider the functions

h
(L)
S(�)(J D) = �E

�,S(�),L
J + HJ D (S(�)) − HJ (S(�)). (24)

Define S
∗,(L)
J ,J D (�) to be one of the two S(�) that minimizes

h
(L)
S(�)(J D). Then the ground state for bonds J [J D], that is, J

with bonds for edges in D replaced by J D , in size L is

α
(L)
J [J D ] = α

�,S
∗,(L)
J ,JD (�),L

J (25)

and its spin flip. Similarly, in the limit of infinite size, when
the bonds in a finite set D are changed, the ground state αJ
changes to αJ [J D] or its spin flip, where now

hS(�)(J D) = �E
�,S(�)
J + HJ D (S(�)) − HJ (S(�)) (26)

[HJ D (S(�)) and HJ (S(�)) are unchanged], and

αJ [J D] = α
�,S∗

J ,JD (�)

J , (27)

where S∗
J ,J D (�) is one of the two S(�) that minimizes

hS(�)(J D).
The simplest case of a change in the bonds is when D is a

single edge (i,j ), so � = {i,j} contains only two sites. In this
case we are considering the change of Jij to K ′ with all other
J fixed. As K ′ varies in R, the ground state changes just once,
from α when K ′ = Jij to a state α{i,j},S({i,j}), where S({i,j})
is one of the two spin configurations on {i,j} for which sisj

is minus its value in α. The value of K ′ at which this change
takes place is called the transition value [26], denoted by Kij .
Here Kij depends on α and on J \J D . However, Kij and the
unordered pair α and α{i,j},S({i,j}) do not depend on the value
of Jij when the other couplings are fixed. This implies that
Jij and Kij are independent with respect to the measure νκ



J .

Finally, we define the flexibility of the edge (i,j ) by [26]

Fij
def= 2|Jij − Kij | (28)

= �E
{i,j},S({i,j})
J (29)

[using the same S({i,j})], which is thus the minimum energy
needed to change sisj from its value in the ground state α

when the collection of (α,�E


J ) for all  [in particular, for
� = ∅ and (�,S(�)) = ({i,j},S({i,j}))] has been drawn from
νκ



J ; this change in state can be accomplished by changing Jij

by at least Fij /2, with the appropriate sign. We remark again
that the flexibility Fij is bounded above by the energy change
for reversing any finite domain in ground state α such that
sisj changes, and that for σ > 1 such energies converge (by
Lemma 1). Thus such upper bounds on Fij can be obtained
from α alone, which can be drawn from the ground-state
metastate κJ , the marginal of the excitation metastate κ



J . This
point will be useful in the next section.

We want to point out here that the technical restriction
to σ > 1 is not in fact necessary for the construction of an
excitation metastate in this model. In the Appendix we show
that for σ > 1/2, the finite-size excitation energies �E,L are
of order one with probability one, uniformly in L, and while not
necessarily convergent as L → ∞, the family of distributions
of these energies is tight. Then the use of subsequence limits
allows us to obtain, in the same way as before, an excitation
metastate κ



J for σ > 1/2, and this can extend the version of
the ground-state metastate for σ > 1/2 already mentioned. We
will not return to this until Sec. IV C and in the meantime
continue to use the construction above for σ > 1.

III. THEOREM

Now we can state the main theorem of the paper, the proof
of which occupies the remainder of this section. The overall
setup and the terms used were already defined in the preceding
section. Measure-theoretic statements like almost all, almost
surely, or with probability one again refer throughout to the
product of the translation-covariant measures ν, κJ , and κ ′

J
with which bonds J and ground states α and β (respectively)
are chosen, unless otherwise specified.

Theorem 1. Suppose σ > 1. Then, for ground states (α,β)
drawn from the translation-invariant product νκJ κ ′

J , conver-
gent rung energies for rungsR ∈ W of both types almost surely
do not occur; that is, either any translation-covariant ground-
state metastate κJ is supported on the same ground-state pair
α and α (that is, the metastate is trivial and unique, κJ = κ ′

J )
or if ground states (α,β) (with β �= α or α) occur, then the rung
energies of at least one type are nonconvergent.

The proof parallels that of the result in Ref. [26] and will
follow from Propositions 2 and 3 below. To aid the reader,
the propositions in this section are numbered so that they
correspond to the analogous propositions in Ref. [26].

We begin with basic facts, following Ref. [26].
Proposition 1. With probability one, the domain wall W

defined by the ground states α and β as in Theorem 1 has
well-defined non-negative density; if the density is zero, W is
empty.
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Proof. By construction, the measure νκJ κ ′
J is translation

invariant and so is the resulting measure on bonds J and
sets W . The bonds J can be integrated over, producing the
marginal distribution for the wallW , which is again translation
invariant. The empirical density of the wall in an interval of
length L can be defined as the fraction of nearest-neighbor
edges in the interval that are in W (or as a sum of indicator
functions for such edges, normalized by the length L). By
the ergodic theorem for the translation group Z [29], the
empirical density has a well-defined translation-invariant limit
as L → ∞, which we may call the density (it can depend onJ ,
α, and β). If the density is zero, with probability one microwalls
are not seen at all in any finite subregion of the infinite system.
Q.E.D.

Proposition 1 justifies (for translation-invariant measures
νκJ κ ′

J ) two claims made earlier: that case (ii) in the description
of W does not occur and that the subset B cannot be sparse,
unless it is empty. Indeed, the argument in the proof of
Proposition 1 can also be applied to the subset B, showing
that it has nonzero density if it is nonempty.

Now we turn to rungs and their energies, as defined in Sec. II.
We make the standing assumption that σ > 1 for the remainder
of this section. We already saw that the total rung energy of a
superdomain must be non-negative. We now suppose that, for
each type, (all) the rung energies ER converge and consider
the infimum of the rung energies of type I,

infI ER
def= inf

R∈W,

R∈I

ER (30)

(where I stands for the edges in W of type I) and similarly
infII ER for type II. Then, by a similar argument involving the
ergodic theorem as in the proof of Proposition 1, for any ε > 0
and for each type of rung there must be a nonzero density of
them with rung energy within ε of the infimum for that type. For
well-separated rungs (one of each type, with type I at the left),
by convergence the sum of rung energies approximates the total
rung energy (see Sec. II) (and see the proof of Proposition 2
below for a similar argument in greater detail). As the latter is
non-negative and ε > 0 was arbitrary, it follows that

infI ER + infII ER � 0. (31)

Then there are only two possibilities for the rung energies when
both types converge: Either the infimum for either type is zero
or the infimum for at least one type is positive. Propositions 2
and 3 deal with each possibility.

Proposition 2. For ground states α and β as in Theorem 1,
there is zero probability that the rung energies converge and
infI ER = infII ER = 0.

Proposition 3. For ground states α and β as in Theorem 1,
for each type of rung, there is zero probability that the rung
energies converge and the infimum of rung energies of that
type is positive.

Theorem 1 follows immediately from these two proposi-
tions.

Proof of Proposition 2. Suppose that there is nonzero
probability that the rung energies of α and β converge and that
infI ER and infII ER are zero. Then for any ε > 0 and for each
type of rung there exist rungs with rung energy less than ε and
these have a nonzero density by the ergodic theorem (see the

proof of Proposition 1). Hence, for a microwall (i,i + 1) ∈ W ,
we can find such a rung of type I, closest and to the left of
(i,i + 1), and another of type II, closest and to the right of
it; at most one of these can be (i,i + 1) itself. The sum of
the rung energies of these is at most 2ε, but the total rung
energy of the corresponding superdomain with these rungs
may be larger than that. However, the hypothesis that all rung
energies converge (for this α and β) implies that for any
rung R (of either type) and ε > 0, there is an R0(ε,R) such
that |ER,R − ER| < ε for all R > R0(ε,R). If for given ε we
choose R0(ε) such that there are rungs R of both types with
ER < ε and R0(ε,R) < R0(ε), then another application of the
ergodic theorem implies that there is a nonzero density of such
rungs (of each type). Then we can replace each of the two rungs
chosen before with one of the latter rungs of the same type,
distant by more than R0(ε) from (i,i + 1) [they still enclose
(i,i + 1)], and then the total rung energy is less than 4ε. (More
generally, rungs can be found so that the total rung energy is
less than infI ER + infII ER + 4ε.) Then the energy change for
the superdomain in either α or β is less than 8ε. Hence, as ε

was arbitrary, the energy change required to reverse the sign of
sisi+1 is arbitrarily small (and this is true for any microwall in
W). By the remark after Eq. (29) in Sec. II D, this contradicts
Proposition 4 below, proving Proposition 2.

Proposition 4 states the intuitively obvious fact that, when
the distribution of bonds is continuous as it is here, there is
zero probability that the minimum energy required to reverse
sisj is exactly zero. The formal statement involves the notion
of transition value that was introduced in the context of the
excitation metastate in Sec. II D; the remaining statements and
proofs in this section use the extension of the two ground-state
metastates κJ and κ ′

J to excitation metastates κ


J and κ
′ 
J and

measure-theoretic statements are now usually with respect to
the measure νκ



J κ
′ 
J . This makes no difference to the statements

of the results in Propositions 2 and 3.
Proposition 4. There is zero probability that, for J and a

collection of (α,�E


J ) for all  sampled from νκ


J , any given
coupling Jij is exactly at its transition value, that is, that the
flexibility Fij of (i,j ) is zero.

Proof. The proof follows exactly as in Ref. [26] from the
independence of Jij and the transition value Kij (see Sec. II D),
together with the fact that ν(J ) is continuous. Q.E.D.

Note that the proof of Proposition 2 implies that, under the
hypotheses, the flexibility Fi,i+1 of (i,i + 1) in either α or β

is zero, even though Fij = �E
{i,j},S({i,j})
J generally has to be

sampled from κ


J , and so Fij cannot usually be obtained from
α (sampled from κJ ) alone.

Proof of Proposition 3. Again following NS, we use the
notion of a “supersatisfied” bond Jij . First, a bond Jij is called
satisfied in ground state α if Jij s

(α)
i s

(α)
j > 0 for S(α). For given

J , Jij will be satisfied in every ground state if

|Jij | > min

⎛
⎝ ∑

k:k �=i,j

|Jik|,
∑

k:k �=i,j

|Jjk|
⎞
⎠; (32)

such a bond is called supersatisfied. By Lemma 1, the sums on
the right-hand side converge for σ > 1.

Suppose that, with nonzero probability, rung energies of
type I for α and β converge and E′ = infI ER > 0. Then, by
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Proposition 4 and the ergodic theorem, we can find a rung
R = (i0 − 1,i0) in W of type I and two edges R1 = (i,i + 1)
and R2 = (j − 1,j ) in W (where the first is type II and the
second type I) where δ = ER − E′ is strictly smaller than the
flexibilities of both edges R1 and R2 in both α and β and
where R lies strictly between R1 and R2, that is, i + 1 <

i0 − 1 < j − 2. Then the interval [i + 1,j − 1] contains both
A and B sites. We now suppose that the bond Ji+1,j−1 is
supersatisfied. This means that no matter what other bonds with
end points different from both i + 1 and j − 1 are changed,
the spin product si+1sj−1 cannot change sign. If not already
true, this can be accomplished by changing Ji+1,j−1 from its
initial value, to increase Ji+1,j−1si+1sj−1 without changing S

and move away from the transition value Ki+1,j−1 (for both α

and β); this does not change the ground states α and β because
it does not change si+1sj−1. The change also does not change
the rung energy of R because i + 1 and j − 1 are both in A

and can only increase the flexibilities of R1 and R2 in either
α or β, because it only reduces the set of possible excitations.

Now we change Jij so as to reduce 2Jij sisj , that is, we
move 2Jij towards its transition value 2Kij by an amount ε

(to be specified in a moment) slightly greater than δ. Usually,
reducing 2Jij sisj might cause either of the ground states α

and β to change, due to the appearance of an odd number
of microwalls inside the interval [i,j ]. Here, however, such a
change cannot produce an odd number of microwalls inside
[i + 1,j − 1] because Ji+1,j−1 is supersatisfied. Provided we
choose ε larger than δ but smaller than the flexibilities of the
edges R1 and R2 in both α and β, it also cannot create a
microwall at R1 or R2 in either α or β. Thus reducing 2Jij sisj

by ε does not change α or β, but it does reduce the rung
energy ER to below E′, while leaving the energy of rungs R′
not contained in [i,j ] unchanged, so ER′ � E′. Because the
support of the distribution ν is unbounded as well as continuous
(it is a product of Gaussians), this gives a set of events with
nonzero total probability that violate the ergodic theorem, as
discussed before Proposition 2. Q.E.D.

IV. CONVERGENCE OF RUNG ENERGIES AND
EXTENSIONS OF RESULTS

In this section, we first present arguments for the almost-
sure convergence of the rung energies under restrictions on σ .
We begin with rigorous results and then turn to heuristic ones.
Then we describe the rigorous extension of Theorem 1 (but not
the convergence of rung energies) to all σ > 1/2 and finally
the analysis of models with diluted bonds.

A. Rigorous convergence results

The first result is simple to prove: If σ > 2, then the rung
energy (19), or the energy of a single microwall (the same
sum with B = Z), converges absolutely almost surely. This
result follows from the three series theorem, similarly to that
in Lemma 1, because the series of means and of variances of
|Jij | diverge as L[2−σ ]+ and L[2−2σ ]+ , respectively. It follows
from Theorem 1 that for σ > 2, the ground-state metastate is
trivial and unique: There are unique ground states α and α that
carry the full probability in any metastate. Theorem 1 and this
result also apply to any model that has short-range, but not

necessarily nearest-neighbor, interactions. In these cases, the
best one can do by more elementary arguments is show that the
number of ground states is bounded by a (calculable) constant
of order one, because for any finite region the spins outside
impose at most a finite number of distinct boundary conditions
on it.

A stronger result can be obtained from work by Khanin [4].
Probabilities are now evaluated using ν on the space of J . The
statement is as follows.

Proposition 5. For σ > 3/2, the rung energies of either type
for any two ground states α and β converge (in the manner
defined in Sec. II) almost surely.

Proof. We do not give all details, because almost all the
work was done by Khanin for the same model [4]. The
difficulty of evaluating the rung energy (19) (say, for type
I) for ground-state spin configurations is avoided by proving
statements about all configurations, at the cost of the restriction
σ > 3/2. His Lemma 3 states, for the case B = Z (i.e., for
a single microwall; we return to the general case afterward)
and with R fixed, that for sufficiently large R the probability
that, for some R′ > R and some spin configuration S, the
difference |ER,R − ER,R′ | is larger than a constant times R−t/2

is less than exp[−R(1+δ/2)/2], where t = σ − 3/2 − δ > 0 and
δ > 0. Then the probability that supS |ER,R − ER,R′ | > ε > 0
for some R and R′, where R′ > R > k for any given k > 0 (the
supremum is over all S), is bounded by the sum over R > k

of the preceding probabilities. The sum converges [because
the integral

∫ ∞
0 e−xp

dx = p−1�(1/p) for p > 0 does] and so
goes to zero as k → ∞. That is, for any ε > 0,

lim
k→∞

P[for some R′ > R > k, sup
S

|ER,R − ER,R′ | > ε] = 0.

(33)

It follows (as in Ref. [28], p. 70) that the microwall energy
almost surely converges in the supremum norm supS | · · · |, or
in other words for any S.

This leaves only a couple of points to settle in order to
complete the proof. First, in the text Khanin proves his result
for bounded random variables Jij , but at the end of his paper
indicates that it also holds for Gaussian. The key lemma used is
his Lemma 2, and we state the result for Gaussian randomness
in order to show how the restriction σ > 3/2 first enters. First,
for any fixed configurationS, the probability that the magnitude
of a sum ∑

i∈F,j∈G

Jij sisj , (34)

where F and G are intervals of length a, and separated by a, is
larger than a constant � > 0 is less than e−�2a2σ−2/2. (This holds
because the sum is a Gaussian random variable with variance
smaller than a2−2σ , using the Chernoff bound; see Ref. [35], p.
22.) Then the probability that it exceeds � for someS is bounded
by 22ae−�2a2σ−2/2, which goes to zero as a → ∞ if � > 2a3/2−σ ,
and this is essentially Khanin’s Lemma 2. Khanin’s Lemma 3
is proved using multiple applications of his Lemma 2, and
σ > 3/2 is needed so that the bounds � being used can be
small. It also uses a bound on an infinite sum (similar to that in
Lemma 1 above), which for Gaussian disorder can be replaced
by another similar bound on the probability of exceeding the
former bound.
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Finally, our rung energy is a similar sum but only spins in
the subset B ⊂ Z enter the sums. This can be incorporated
by summing as before but viewing si as taking the value 0 if
i �∈ B. Then we have a model similar to the Ising case, but
involving spins that take three values, si = ±1 or 0. One can
check that this makes no difference to Khanin’s estimates (the
22a in the preceding paragraph must be replaced by 32a). Then
the result is that convergence holds in the supremum norm over
all configurations of Ising spins S and choices of subsets B,
which proves our Proposition 5. Q.E.D.

Together, Proposition 5 and Theorem 1 imply that a
translation-covariant ground-state metastate of the power-law
one-dimensional model is trivial and unique for σ > 3/2.

B. Scaling arguments

We expect that the restriction to σ > 3/2 in the statement
of Proposition 5 is not optimal and that the almost-sure
convergence of the rung energies of either type, and hence the
triviality and uniqueness of the ground-state metastate, holds
for all σ > 1, provided that one considers only ground states α

and β rather than all spin configurations as in Khanin’s results
(his results are not expected to hold for σ < 3/2). We do not
have a rigorous argument for this, but we will discuss here
some heuristic scaling considerations, which include a small
digression into more general questions, before addressing
again the convergence of the rung energies.

First we address a question that has probably occurred
to readers: It is known that there is no transition at nonzero
temperature for σ > 1; why does that not imply at least that
domain wall energies are finite? The intuition behind the
question is that in one dimension, when reversing a domain
of spins of arbitrarily large length costs only a uniformly
bounded (and finite) energy, then at any positive temperature
domain walls will proliferate and destroy the order that was
present in the ground state (the rigorous proof for the case of
a ferromagnet without disorder is in Ref. [36]). The question
is whether the converse to this statement holds.

There are two points to make in answering this. First,
in the spin-glass case, order would be destroyed at positive
temperature if there is a finite density of domain walls that
are available for excitation and have finite energy cost; it does
not have to be the case that all domain wall (or microwall or
rung) energies must be finite; the energy of a microwall or rung
energy at a given position could grow more rapidly than that of
the minimum energy ones. However, in fact, we saw in Sec. II
that, if σ > 1, the energies of microwalls, like the energies of
rungs, of either type either all converge or all fail to converge,
so then this question becomes moot.

Second (and extending the first point), order will not be
destroyed when the temperature is sufficiently low if the
energy cost for creating a domain grows with distance, so at
sufficiently low temperature the two domain walls are bound
together. Thus positive temperature destroys the order if (at
least some of the) domain walls are unbound (or deconfined) at
arbitrarily low nonzero temperature. If the energy of a domain
scales as En for a domain of length n, then schematically the
probability for the domain to have length n at temperature T is
e−βEn/Zn, where (in this paragraph) β = 1/T and the partition

function is

Zn =
∑
n�1

e−βEn . (35)

(This is schematic because we ignore other walls and assume
we can treat the domain with one end fixed, as if there were
translation invariance.) Then (similarly to bound states in
quantum mechanics, for which Zn corresponds to the norm
square of the wave function), if Zn is finite the walls are bound
and if it is infinite then they are unbound. This partition function
(like all partition functions) is a generalized Dirichlet series, of
the general form

∑∞
n=1 ane

−sλn , where s is a parameter (s = β

here) and λn are strictly increasing real numbers that tend to
infinity. In our case an = 1, so the series diverges when β = 0,
and in this case with λn = En the series converges for Re β

larger than

lim sup
n→∞

ln n

En

(36)

(Ref. [37], p. 8); note that this allows for the En to be
random variables that do not tend to any limit. Hence if
lim inf En/ ln n = 0, domain walls are unbound at any T > 0.
Note that this statement includes the preceding point that only
the lowest-energy domains are important asymptotically, as
well as well-known behavior of nonrandom models. Thus
the absence of a transition at positive temperature does not
rigorously imply even that the smallest of the domain energies
is always finite, but only that they diverge at most subloga-
rithmically, if they diverge at all. Nonetheless, it does provide
heuristic motivation for our conjecture.

For the energy change of a single microwall at a fixed
position, for example, ∑

i<0,j�0

Jij sisj , (37)

where S is a ground state α, and a fortiori for the rung energy
(19), the difficulty in estimating it is that the spins si depend on
the bonds Jij . However, while the spins certainly depend on the
full set of Jij , they may not depend strongly on all the bonds
in the smaller subset that occur in these sums. In particular,
convergence of the sums is determined by the tail at large
|i − j |, and the corresponding bonds are weak, so the spins
may not depend on them strongly. If the spins are independent
of the Jij , at least in the tail, then applying the three series
theorem, the series of variances again diverges as L[2−2σ ]+ ,
while the expectation values are zero, and so the energy of a
single microwall would converge almost surely if and only if
σ > 1. We expect that it may well be the case that the spins
are approximately independent of the bonds in the sum with
|i − j | large, even for σ < 1.

We now employ some scaling arguments (mostly obtained
in finite size) to support this conjecture, but focus only on the
expected value of the microwall energy. This involves the sum
of terms E[Jij sisj ] in a ground state, that is (because E[Jij ] =
E[sisj ] = 0), the correlation or covariance Cij of the bond Jij

with the corresponding spin product sisj . The obvious bound,
from either the Cauchy-Schwarz or the Jensen inequality, is

Cij = E[Jij sisj ] �
(
E

[
J 2

ij

])1/2 = 1

|i − j |σ . (38)

012134-10



TRIVIALITY OF THE GROUND-STATE METASTATE IN … PHYSICAL REVIEW E 97, 012134 (2018)

If sisj were independent of Jij , the correlation would of course
be zero, and if they were approximately independent we would
expect a small value for large |i − j |, probably smaller than
the preceding bound (i.e., a more negative power of |i − j |).

As discussed in Sec. II, if Jij is changed, there will be
a change to another ground state when Jij passes Kij , the
transition value for the ground state α (this is also the transition
value as Jij approaches it from the other side, in the other
ground state). For use in the following, we will make the scaling
assumption that the transition values Kij (which are random
variables that depend on the two ground states involved, and
hence on the other bonds) have a distribution of width |i − j |θ ′

,
for a transition value exponent θ ′ that presumably will not
depend on α. The use of the symbol θ ′ is intended to suggest an
analogy with the stiffness exponent θ which has been defined
for spin glasses, as we discuss in a moment. We can rigorously
bound θ ′ using a finite-size system; see the Appendix. The
result is

θ ′ � 0 (39)

for all σ > 1/2.
There is a simple argument that shows that E[Jij sisj ] � 0

in a (finite-size) ground state [30] (introduce a parameter λ by
Jij → λJij with remaining J unchanged, use the positivity
of the second derivative of the expected value of minus the
free energy at nonzero temperature with respect to λ, integrate
with respect to λ from 0 to 1 to obtain the desired result, and
finally take T → 0). Clearly, when |Jij | is large, Jij sisj will
be positive and the sign of sisj changes at Jij = Kij ; thus sisj

equals the sign of Jij − Kij :

sisj = sgn(Jij − Kij ). (40)

This shows that while (as we argued in Sec. II D) Kij and the
unordered pair of two ground states involved are independent
of Jij when the other bonds are fixed, at the same time the value
of Jij selects one of the two ground states and so is correlated
with sisj such that E[Jij sisj ] � 0. If the transition value were
zero almost surely or had a very narrow distribution (θ ′ < −σ ),
then Cij would be of order |i − j |−σ . In the converse case θ ′ >

−σ (which is the one we expect to occur) in which the transition
value is typically relatively large, most of the weight in the
Gaussian distribution of Jij falls on one side of the transition
value, giving only a small correlation. If the distribution of Kij

has nonzero density near Kij = 0, then the probability that Kij

falls in an interval of order |i − j |−σ centered at 0 will be of
order |i − j |−σ−θ ′

. In this case the correlation will be of order

Cij ∼ |i − j |−2σ−θ ′
. (41)

We can write both cases using the notation introduced in Sec. II,
as

Cij ∼ |i − j |−σ−[σ+θ ′]+ . (42)

This can also be obtained from an easy calculation using
Eq. (40) (as a check on the result, the bound above from the
Cauchy-Schwarz inequality is obeyed).

Next we would like to estimate or further bound the
exponent θ ′. In fact, it is easier to consider the scaling of
the flexibility Fij defined in Eq. (28), which was identified in
Eq. (29) as the minimum energy that must be added to change
the spin product sisj from its value in the ground state α, for the

original value of Jij . From Eq. (28) we see that the flexibility
exponent θ ′′ for the scaling of the width of the distribution of
Fij with |i − j | is equal to the larger of −σ and θ ′, that is,

θ ′′ = max(θ ′,−σ ), (43)

and so θ ′′ � 0. Hence it is equal to θ ′′ = [σ + θ ′]+ − σ , and
so for the correlation

Cij ∼ |i − j |−2σ−θ ′′
. (44)

The appearance of θ ′′ in both places reflects the fact that both
involve the scaling of Jij − Kij , given by θ ′′ as above.

The scaling of the minimum energy change for an excitation
that reverses the sign of sisj compared with a ground state α

(thus introducing an odd number of microwalls between i and
j ) is a question very similar to ones raised in the scaling-droplet
theory of spin glasses. There the lowest energy of a single
domain wall (but not necessarily a single microwall, in our
language) that can be made in a region of size L is supposed to
scale as Lθ [11,22,23]. In the scaling-droplet theory, the sign of
θ governs whether there is a transition at T > 0, by arguments
similar to the domain-wall binding discussed just above, but
neglecting the borderline cases we discussed there; thus θ > 0
means a transition at some T > 0, while θ < 0 means there is
none. The definition of θ can be made precise by defining
θ as the scaling of the standard deviation for the change
(which could be of either sign) in the ground-state energy when
the periodic boundary condition is changed to antiperiodic
in a system of size L; such a change necessarily produces a
single domain wall. In the power-law one-dimensional model
discussed here, this exponent obeys the bound

θ � max(0,1 − σ ) = [1 − σ ]+, (45)

as we prove in the Appendix. If one ignores the possibility of
logarithmic dependence for θ = 0, this implies that there can
be no transition at T > 0 for σ > 1.

We believe it is highly plausible that, when θ � 0, our
exponent θ ′′ = θ . The reason behind the fact θ ′′ � 0 is that
we require an excitation with an odd number of microwalls
between i and j , which could be a single domain wall between
them, but we do not specify whether there is one outside this
interval. We also recall that θ is defined as the scaling of the
cheapest energy for a single domain wall. If θ is negative, a
second wall outside the interval could move off to infinity and
disappear, as this would lower the energy. However, if θ is
positive, a flexibility of order one could be obtained by placing
domain walls just on either side of, say, i (or j ); the energy
would be of order one because the domain size is order one (for
σ > 1 this is Lemma 1, but for σ < 1 it requires an argument
given in Sec. IV C below, or we can appeal to the bound θ ′ � 0
mentioned above). Hence we expect that, in fact,

θ ′′ = min(0,θ ) = −[−θ ]+. (46)

(This itself implies θ ′ � 0, because σ > 0.) It will be simplest
to express scaling relations in terms of θ ′′.

If we now use the correlation Cij to calculate the expectation
of the energy of a single microwall at a given position, we
find that it diverges as L[2−2σ−θ ′′]+ . Because the width of the
distribution of the minimum of a set of random variables must
grow more slowly than the expectation of each (even when they
are not independent) and θ was defined as the scaling exponent
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for the energy of the cheapest single domain wall in a region
of length L, it must satisfy

θ � [2 − 2σ − θ ′′]+. (47)

We can now consider cases. In general, θ ′′ � 0. If θ ′′ < 0, then
θ = θ ′′ < 0. If instead θ ′′ = 0, then from the last displayed
inequality θ � 0 if σ > 1, which is a contradiction unless θ =
θ ′′ = 0. Hence, in either case,

θ = θ ′′ � 0 for σ > 1, (48)

which also follows from earlier inequalities.
The expected ground-state energy per site is minus the sum

of correlations
∑

j :j �=i E[Jij sisj ] and should converge for σ >

1/2. (For σ < 1 this statement requires the further justification
that we give in Sec. IV C below.) By scaling, we find that the
sum diverges as L[1−2σ−θ ′′]+ . Then the exponent must be zero,
giving

θ ′′ � 1 − 2σ. (49)

Altogether we then have

0 � θ ′′ � max(−σ,1 − 2σ ). (50)

For σ < 1, θ ′′ � 1 − 2σ is the stronger lower bound and in
particular

θ ′′ = θ ′ for σ < 1. (51)

The bounds pinch together as σ → 1/2, which is the boundary
of the region in which the thermodynamic limit exists for
thermodynamic properties.

It is known that θ = −1 in the short-range model [22] and
the same is believed for the present model when σ > 2 [11,12].
In these cases the energy of a single microwall converges
almost surely, as we saw in Sec. IV A. In the nearest-neighbor
short-range case, the energies for a microwall on different
edges are independent and the cheapest one will scale as L−1.
This is expected to hold in the other models mentioned also.
As σ decreases below 2, we expect that θ increases from −1,
subject to the bound (45). For 1 < σ < 2, where we expect
that the energy for a single microwall at a given fixed position
converges (for example, for 3/2 < σ < 2, see Proposition 5
above), it is again important that θ is defined as the lowest
energy for a domain wall, which involves minimizing over
positions in an interval of length L (it may also consist of more
than one microwall). A value θ > −1 can occur presumably
because of correlations among the energies of microwalls at
different positions, due to the long-range interactions. When
the expectation of the single microwall energy diverges as a
positive power, it does so with an exponent 2 − 2σ − θ ′′ which
is at least 2 − 2σ and greater than 0 if σ < 1. This shows that
in this regime the cheapest domain wall energy, for which the
exponent is θ � 1 − σ for σ < 1, is definitely less than than
the expectation of the energy for a single microwall at a given
position; minimizing the energy makes a difference. In fact,
we expect that θ ′′ = θ ′ = 0 in the region σ < 1.

It has been argued that for σ < 2, θ = 1 − σ is an exact
result [11,12,14], rather than only a bound as we find for σ < 1.
The arguments known to us for this conjecture do not seem
entirely convincing. For σ < 1, the conjecture agrees with the
scaling of the standard deviation for the microwall energy [or

with the bound (45)], as if the spin products sisj in the sum
were independent of the bonds. However, recent work [16]
has argued that θ = 1 − σ does not hold for 1/2 < σ < 2/3
and that θ = 1/6 (the value obtained from replica symmetry
breaking) may hold there instead (correspondingly, θ = d/6
is suggested for d > 6 in a short-range model in dimension
d). Obviously, if correct, this undercuts the conjecture, and
if θ = 1 − σ holds for σ > 2/3 it would mean that θ is
a discontinuous nonmonotonic function of σ in the region
1/2 < σ < 1, which we believe is unlikely. Numerical work
in Refs. [13,15,16] is compatible with θ < 1 − σ for 2/3 <

σ < 1 as well as for σ < 2/3.
In the region of interest to us here, 1 < σ < 2, it is credible

that θ = 1 − σ could be exact, because all indications (includ-
ing the results of the present paper) are that this region has
rather simple behavior. Again, numerical results are consistent
with this for σ not much larger than 1 [13]. This would
then imply that θ ′′ = 1 − σ > −σ , so θ ′′ = θ ′ = 1 − σ , and
then the expectation of the energy of a single microwall, or
of a rung energy, at a fixed position would converge. More
generally, while a negative θ ′′ could spoil the convergence
of the expectation of the single microwall energy, a value
0 � θ ′′ � 2 − 2σ would allow it to converge.

We may finally return to the original issue, the almost-
sure convergence of the rung (or of microwall) energies. The
preceding arguments have suggested the scaling behavior of
various properties, though unfortunately without providing
sufficiently strong bounds to settle the question (even granting
the scaling assumptions). They suggest that the expected value
of the single microwall energy converges for σ not too small,
while if θ ′′ is not too negative, the correlation of Jij with sisj

is weak. If the correlation of other long bonds Jkl with sisj is
also weak for |i − j | and |k − l| large (an issue we have not
addressed), then the conditions for the three series theorem
could be almost met, leading to almost-sure convergence for
σ > 1. Heuristically, the absence of a transition at T > 0
strongly suggests this, and the later arguments in this section
are not much better than that.

C. Extension to σ > 1/2

Now we must argue, as promised, that the energy for
creating any given finite domain (of fixed size) in a ground
state is almost surely finite, not infinite (spins are never locked
by the bonds), and that the ground-state energy per spin is
likewise finite, for allσ > 1/2, if the ground state used is drawn
from a ground-state metastate. (In other situations, for σ < 1
spins may be locked; see Ref. [10].) We do not show that these
domain energies converge in the infinite-size limit in general,
only that their distribution has no weight at infinite energy. We
then build on these results to show how the constructions of
the various metastates used in this paper can be extended to all
σ > 1/2 and extend Theorem 1 likewise.

We recall that Lemma 1 proved the absolute almost-sure
convergence of the energy change when any finite set of spins
is flipped, provided σ > 1. The probability measure used here
is νκJ and α is a ground state drawn from this measure; here κJ
is used in the more general conditions σ > 1/2 discussed at the
end of Sec. II B. For statements in finite size, we use simply ν.
We should define tightness of a family of probability measures
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μq (q ∈ Q indexes the family) of a real random variable X

(Ref. [28], p. 94): The family is tight if for any ε > 0 there
exists an interval I ⊂ R such that

inf
q∈Q

μq(I ) > 1 − ε. (52)

More generally, for a family of measures on a general space,
the interval I is replaced by a compact set. (Some authors use
the term uniformly tight for what we call tight.)

Proposition 6. For σ > 1/2, with probability one, (i) the
ground-state energy density is a finite constant, independent
of α; (ii) there exists an excitation metastate κ



J that extends
κJ , and for any such extension the excitation energies �E

[including the flexibility Fij of any edge (i,j )] are almost-
surely finite; and (iii) the family of finite-size joint distributions
of the energy changes of any finite collection of fixed finite
domains is tight.

Proof. We first consider the ground-state energy in fi-
nite size L, E0(L) = −∑

i<j Jij sisj , where we leave the
finite-size cutoff on the summations implicit. Note that
E0(L) = − 1

2

∑
i

∑
j :j �=i Jij sisj , and the local terms ei(L) =∑

j :j �=i Jij sisj � 0 (in fact, greater than 0 with probability one)
because 2ei(L) is the energy to flip the single spin i. Note that
for σ < 1 it is not clear that ei(L) has a limit as L → ∞, even
for a fixed ground-state configuration. Then the ground-state
energy per spin in finite size, E0(L) = E0(L)/L, is also a sum
of negative terms. The ground-state energy per site in the limit
of an infinite-size system is limL→∞ E0(L) = E0 (if the limit
exists). We are not aware of direct bounds on this quantity,
but there are lower bounds on the expected free energy per
site f = limL→∞ F (T )/L at T > 0, where an overbar denotes
disorder average E and, for finite L, F = −T ln Z, where Z

is the partition function; these bounds are used in the proof
[3,30] that F (T )/L has a limit. Moreover, F (T )/L tends to a
limit almost surely (by a variance bound ∼ L[1−2σ ]+−1 similar
to those in the Appendix, in which the T → 0 limit can be
taken). Unfortunately, the bound on F (T )/L is not uniform in
T as T → 0, so it cannot be used to obtain a bound on E0.
However, we can appeal to thermodynamics, which implies
that df/dT = −s(T ), where s is the entropy per site (and we
leave the L → ∞ limit implicit). Both −f and −f (T ) are
convex functions of T , which implies that s and s are defined
as functions of T for almost all T (in Lebesgue measure on T )
and that s(T ) is an increasing function of T [if there are values
of T at which s(T ) jumps we can define the value of s(T ) there
so that it is increasing at all T ]. Moreover, E(T ) = f + T s is
the internal energy per site and dE(T )/dT = T ds/dT � 0 is
the specific heat (the heat capacity per site). (Here we define
the derivative for all T by allowing it to include δ functions at
jumps of s; this is legitimate as it will be integrated, not used as
a function.) The entropy per site obeys 0 � s � ln 2 and E(T )
is finite at T > 0. Integrating∫ T

0

ds(T ′)
dT ′ dT ′ =

∫ T

0

1

T ′
dE(T ′)
dT ′ dT ′ (53)

gives a finite number s(T ), so dE(T )/dT can also be inte-
grated over the same range, showing that E0 = limT →0 E(T ) =
limT →0 f (T ) > −∞. The existence of the various limits and
the finiteness of the expectation shows that E0 is integrable

(with respect to νκJ ) and hence that the limit E0 exists and is
finite almost surely, which is statement (i).

For the second part of the proof, we return to the ex-
pectation of the ground-state energy in finite size, E0(L) =
− 1

2

∑
i ei(L), so E0(L)/L = − 1

2ei(L) for any fixed i (by
translation invariance), and we know that this quantity has a
finite limit. It follows from this, first, that the family (as L runs
over all positive values) of probability distributions of ei(L)
(induced from ν) for any given i is tight: No weight goes off to
infinity as L → ∞. If it were not tight, by the definition above
that would mean that for some ε > 0 and for any finite interval
I = [0,�], there would be some L for which P[ei(L) > �] >

ε, and so E[ei(L)�(ei(L) − �)] > ε�, which goes to infinity
as � (and hence also L) tends to ∞, contradicting finiteness
of the limit. Similarly, the family of joint distributions of ei(L)
for i in a fixed finite set � containing n = |�| sites (with L

sufficiently large, so that � is contained in the system) is tight
also. For this, it is sufficient to show that for any ε > 0 there is
some cube C� = [0,�]n in the space of n-component vectors
e(L) with components ei(L) for i ∈ � such that, for all L,
P[e(L) �∈ C�] � ε. As

P[e(L) �∈ C�] = P

[⋃
i∈�

{ei(L) > �}
]

(54)

�
∑
i∈�

P[ei(L) > �], (55)

we can use the tightness of the families of distributions for
each ei(L) (these distributions are the marginals of the present
joint distribution), putting ε/n in place of ε in the definition of
tightness and using the corresponding value � (independent of
i by translation invariance), to show that P[e(L) �∈ C�] � ε.
The energy change for reversing the spins in a fixed finite set
�, starting from the ground state α, differs from

∑
i∈� ei(L)

only by a fixed finite set of terms Jij sisj and so we obtain
tightness of the family of joint distributions of these energy
changes, which is statement (iii). As similar energies upper
bound the minimum excitation energies �E,L for an excitation
 = (�,S(�)), we then find that the distributions of the latter
are tight as well. This allows the construction of an excitation
metastate κ



J extending κJ as in Sec. II, which is statement (ii).
(The last result is also obtained in the Appendix by a different
method.) Q.E.D.

The usual NS ground-state metastate does not include
information on the energy change for reversing the spins in
a given finite domain in a ground state α drawn from the
metastate. In the cases of the EA model or the long-range
one-dimensional model with σ > 1, these energies can simply
be calculated from a ground state (because in the latter models
the energy for reversing a finite set of spins is almost surely
finite and convergent, respectively). For 1/2 < σ < 1, there
is a convergence issue if we take the infinite-size ground
state α and attempt to take the limit as the regularization
(truncation) of the sum for the domain energy is removed.
However, now, because the distributions of these energies are
known to be tight, we can obtain (similarly to the construction
of the excitation metastate [26]) a natural extended metastate
κ

�

J which gives the joint distribution of all such energy changes
as well as ground-state configurations. (As usual, there is
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also an AW version of this construction.) We will write α�

for a ground-state spin configuration α augmented by the
collection of energy changes for reversing each fixed finite
set of spins. It is now legitimate to call the configuration α a
ground state in infinite size, as all its possible energy changes
(needed when verifying that it is truly a ground state) have
definite (non-negative) values in an α� drawn from the natural
metastate κ

�

J . It is natural that such a construction is required in
the power-law model for σ < 1, because the convergence of the
energy changes depends on the configuration (and the bonds)
far away from the origin, and this information is obtained by
sampling from a (NS or AW) metastate. This construction can
also be combined with the construction of a metastate that gives
minimum excitation energies for constrained configurations
κ



J to obtain another metastate κ
�

J , which has both κ
�

J and κ


J
as marginal distributions.

All constructions of superdomains in Sec. II can now be
carried through, simply by using κ

�

J in place of κJ , because
these constructions simply involve reversing finite sets of
spins in either α� or β�. This makes most uses of Lemma
1 unnecessary, and we can formulate the main theorem with
σ > 1/2 in place of σ > 1. One use of Lemma 1 that cannot
be replaced in this way was its use to show that, for each
type, either all rung energies (for given α� and β�) converge
or none do. This involves differences of rung energies; these
differences are not energy changes for reversing a finite number
of spins in a ground state, so the sums are not finite sums of
ei , and hence the approaches here and in the Appendix do
not apply. Thus, when stating and proving Theorem 1, we
cannot use that result. Accordingly, we here consider rungs
at arbitrary positions, not only in W . While an edge in W
can still be classified as type I or type II, a rung may be used
as the left or right end of a superdomain and the asymmetric
regularization of its energy is defined accordingly, in one of
two ways, giving type I and type II rung energies for each
rung (so one may converge and the other not, for example).
We now have the following extension of Theorem 1, where
the probability measure is νκ

�

J κ
′ �
J (κ�

J and κ
′ �
J are natural

metastates, extending κJ and κ ′
J , all for the same disorder J ).

Theorem 1′. Suppose σ > 1/2. For any pair of translation-
covariant metastates κ

�

J and κ
′ �
J , there is zero probability that

augmented ground states α� and β� drawn from them have
any convergent rung energies of both types, unless β = α or
α; that is, either any such metastate κ

�

J is supported on the
same ground-state pair α and α, where the energy changes
do not have to be the same (that is, the underlying ground-
state metastate is trivial and unique, so κJ = κ ′

J ), or if there
are augmented ground states α� and β� with β �= α or α

in the metastate pair then all the rung energies of at least one
type are nonconvergent, and further if some of those of the
other type are convergent then their infimum must be zero.

Proof. Theorem 1′ follows as before from versions of
Propositions 1–4, which however must also be extended.
Proposition 1 is unchanged, but also there is the parallel result
that, for each type of rung energy, the set of rungs whose
energies of that type converge has nonzero density, or else
is empty. Propositions 2 and 3 must be extended, as follows
(σ > 1/2 and the augmented ground states α� and β� are
obtained as in the statement of Theorem 1′).

Proposition 2′. There is zero probability that some
rung energies of both types I and II converge and that
the infima of both sets of convergent rung energies are
zero.

Proposition 3′. For each type of rung energy, there is zero
probability that some converge and that the infimum of those
that converge is positive.

The proof of Proposition 2′, using the sets of rungs with
converging energies of either type, then involves only minor
changes of wording from that given before. It involves two
rungs, one with energy of each type, and an edge (i,i + 1) ∈ W
between them, and also uses Proposition 4′. The remaining
statements and proofs involve the use of the extensions to
metastates κ

�

J and κ
′ �
J . The statement and proof of Proposition

4 are unchanged. The proof of Proposition 3′ involves a rung
R = (i0 − 1,i0) with convergent rung energy of one type, and
the infimum of the set of rung energies of this type is assumed
to be nonzero. In addition, there are edges R1 = (i,i + 1) and
R2 = (j − 1,j ), both in W , of types II and I as before and
arranged as before. Supersatisfied edges do not exist for σ � 1,
because the sums in the inequality (32) diverge by the three
series theorem, with probability one [28]. Instead, for each of
α� and β�, we consider the four sites i, i + 1, j − 1, and j as
a set � and the six edges between these sites as the set D (see
Sec. II D). Then we examine excitations to various S(�) using
the excitation metastates and consider transitions among these
configurations as the bonds J D between these sites are varied,
similarly to the discussion of transition value and flexibility
for a pair of sites. For each of α� and β�, these are determined
by an effective Hamiltonian hS(�)(J D) [see Eq. (26)] for the
four spins which, apart from an unimportant S(�)-independent
function of the original bonds J (determined by the ground
state α or β), contains the generalized transition values that
can be viewed as six two-spin, and a single four-spin, inter-
action terms (with finite coefficients), in addition to the terms
containing J D . The generalized transition values, or values
of the effective couplings, are independent of the six bonds
J D among the four spins, like the transition values earlier.
Then Ji+1,j−1si+1sj−1 can be increased sufficiently so that
reducing Ji,j sisj by the requisite ε (with the other four bonds
held fixed) does not change si+1sj−1 from its value in α and β,
as in the earlier proof of Proposition 3. The remainder of the
proof is unchanged: Because of the unbounded support of the
probability distribution of the bonds, this leads to a nonzero
probability for an event that violates the ergodic theorem. This
completes the proof of Theorem 1′.

Theorem 1′ leaves open the possibility that, for augmented
ground states α� and β�, rung energies of one type never
converge, while some of those of the other type converge and
have zero infimum. Symmetry between the two types (i.e.,
reflection symmetry of the model) suggests that this should
not occur.

Theorem 1′ removes the restriction to σ > 1, but it does
not remove the issue of the convergence of the rung energies
(of each type). It is highly unlikely that the rung energies
ever converge when σ < 1. Hence Theorem 1′ is probably
not a great advance over the original one. As Theorem 1 is
much simpler to state and to prove, that is the one we have
emphasized.
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D. Bond-diluted power-law models

In this section, we briefly consider a family of variants on
the power-law model in one dimension that have also been
studied in the literature [38]. In these models, we can establish
both the absence of a transition at positive temperature and the
triviality of the metastate for σ > 1 with some ease.

In these models, not all bonds are nonzero; instead the bonds
are diluted. For σ > 1/2, the probability that Jij is nonzero is
taken to be

p(i,j ) = p1/|i − j |2σ (56)

(0 � p1 � 1), independently for all pairs i �= j (|i − j | can be
replaced by rij in the finite-size variants); the nonzero bonds are
assigned values for Jij drawn independently from a distribution
(say, Gaussian) with variance one (when conditioned on being
nonzero), independent of their length |i − j |. Thus the variance
of the bonds is Var Jij = p1/|i − j |2σ as before. Let us refer
to nonzero bonds simply as bonds (i.e., bonds that are present).
The advantage of such a model for numerical purposes [38] is
that the expected number of bonds ending at i is convergent,
and so finite as L → ∞, for all σ > 1/2, unlike the original
model. The phase diagram, and the exponents at the transition
with Tc > 0 to the spin-glass state for σ < 1 are expected to
be essentially the same as in the original power-law model.

In this model in infinite size, the probability that site 0 has
no bonds connecting it to other sites is∏

j :j �=0,j∈Z

(
1 − p1

|j |2σ

)
, (57)

which if p1 < 1 converges to a nonzero value (rather than
diverging to zero) if and only if the sum

∞∑
j=1

1

|j |2σ
(58)

converges. Hence, for σ > 1/2 and p1 < 1 there is nonzero
probability for a given site to be disconnected, and there will be
a nonzero density of such sites. Similarly, when p1 < 1, there
will be finite sets of sites with no connection to the remainder
of the system. Consequently, for σ > 1/2 and p1 < 1, these
models have degenerate ground states with extensive entropy,
and it will be more appropriate to think of using a Gibbs state
at zero temperature, rather than individual ground states.

Similarly, the probability that there are no bonds between
two halves of the system, say, i � 0 and j > 0, is nonzero for
p1 < 1 if and only if the sum

p1

∑
i�0,j>0

1

|i − j |2σ
(59)

converges. As before, this diverges as L[2−2σ ]+ and so con-
verges if and only if σ > 1. [The sum also gives the expected
number of bonds crossing (0,1).] Then, for p1 < 1 and σ > 1,
by the ergodic theorem there is a nonzero density of cutting
edges, that is, pairs (i,i + 1) that are not crossed by any bonds;
the system breaks into infinitely many disjoint intervals, each
of finite length, that are not coupled to one another. This implies
immediately that in these cases there is no transition at T � 0;
the Gibbs state is unique at all temperatures, including T = 0,
so the zero-temperature metastate is trivial and unique.

For p1 = 1 and σ > 1/2, for a continuous (e.g., Gaussian)
distribution of bonds there will be unique ground states, up to
overall spin flip, in finite size with probability one, as in the
earlier models. For p1 = 1 and σ > 1, the probability that no
bonds of length at least 2 cross a given edge (i,i + 1) is still
nonzero and there is a nonzero density of such edges; we call
the corresponding bonds of length one links. We call the finite
intervals between adjacent links blobs. A blob is an interval
that cannot be further decomposed into intervals coupled only
by length-one bonds; it either is a single site or has length
greater than or equal to 2, and each blob is coupled to its two
neighbors by links. The system then behaves somewhat like
the one-dimensional short-range model, with blobs in place
of single sites. At zero temperature, the links are all satisfied,
like all the bonds in the short-range model. The ground state
(up to spin flip) can be found by first finding that of each blob,
ignoring the links, and then stringing together the ground states
of the blobs, satisfying the links, to obtain the ground state.
Consequently, in infinite size the ground state is unique up to
a global spin flip and the ground-state metastate is unique and
trivial. We also observe that the blobs-and-links picture for
σ > 1 implies that a microwall or rung energy is almost surely
a finite sum and hence convergent. This implies that there is
no transition at T > 0 in these models for any σ > 1 when
p1 = 1 (as well as when p1 < 1). For σ � 1, the question of
the metastate remains open, as for the other models (however,
see also Ref. [24]).

Further, the blobs-and-links picture implies (heuristically)
that the domain wall exponent θ takes the value θ = −1 for
all σ > 1 when p1 = 1. Comparing two finite-size ground
states that differ by reversal of the boundary condition (see
the Appendix), a domain wall can be made at little energy
cost by finding the link that is weakest (in magnitude), and the
links are independent. This gives the result of the short-range
one-dimensional model as an upper bound θ � −1. A domain
wall could instead be created within a single blob, but the
energy of a single microwall is almost surely finite, regardless
of location, and the blobs are independent. Some blobs may be
large, so the minimum microwall energy within a single blob
might scale as a negative power of its length, but it does not
seem possible to arrive at θ < −1, and we expect that θ = −1.
As a transition at T > 0 seems to occur when σ < 1 [39],
implying θ � 0 there, this also implies discontinuous behavior
of θ at σ = 1.

While it is satisfying that in these models the ground-
state metastate is trivial for σ > 1, the very simplicity of the
analysis, as well as the close relation with the short-range
model, suggests that in this regime these models may be a
bit too simple to replace the original power-law model, which
required a deeper analysis. However, these results might also
suggest alternative approaches to the original model.

V. CONCLUSION

To conclude, we have proved that a translation-covariant
ground-state metastate of the power-law one-dimensional spin-
glass model with exponent σ (and zero magnetic field) is
trivial and unique for all σ > 3/2. That is, only the same
single pair of ground states will be seen (in any finite window)
in asymptotically large systems, with probability one. The
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main part of the proof is Theorem 1, which when extended
as Theorem 1′ holds for all σ > 1/2 and was proved following
an argument of Newman and Stein [26], but involves the
hypothesis that the rung energies converge, which has been
proved only for σ > 3/2. However, we suspect that the latter
can be proved for all σ > 1, the region in which it is known
that there is no transition at T > 0. We also obtained scaling
arguments for related quantities, including rigorous bounds on
scaling exponents such as θ in the scaling-droplet theory, and
provided constructions of metastates for the model of wider
interest.

The approach used to prove triviality of the metastate cannot
work when there is a transition to a spin-glass phase at some
T > 0, because then domain wall (and presumably rung)
energies will diverge. At the moment, a nontrivial metastate
certainly cannot be ruled out in the low-temperature region in
those cases.

Note added in proof. Lemma 1 can easily be proved without
invoking the Three Series Theorem, as follows. If the sum
of positive terms

∑
j |Jij | in Eq. (5) diverged with nonzero

probability, then its expectation value would diverge, but for
σ > 1 the latter is finite, and so the sum converges almost
surely. The rest of the proof proceeds as before. The author
thanks M. Aizenman for pointing this out. There is a similar
argument for the first result in Sec. IV A.
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APPENDIX: BOUNDS ON EXPONENTS θ AND θ ′

Here we prove the upper bounds on the exponents θ and θ ′
defined in Sec. IV B and some related results. This is included
for completeness; the basic results are due to Aizenman and
Fisher [40] and Newman and Stein [18], who considered θ

in the EA model, and the method is presumably similar to
theirs. Here we work in finite-size systems, with probability
distribution ν. In a fairly general form, the basic result is the
following.

Lemma 2. If F+ is the free energy of an Ising spin glass
Hamiltonian and F− is the free energy for a Hamiltonian that
is the same except that Jij has been replaced with −Jij for the
edges (i,j ) in a set that we call the cut, and if the bonds Jij for
edges in (or crossing) the cut are independent Gaussians with
zero mean, then the variance of F+ − F− obeys

Var (F+ − F−) � 4
∑

(i,j )∈cut

Var Jij . (A1)

The statement holds more generally, provided that the bonds
are independent, with the distribution of each one invariant
under reversing the sign of the bond. It also holds similarly for
other types of disorder in an Ising Hamiltonian, such as random
fields (single-site terms), or interactions involving p > 2 spins,
provided similar conditions hold.

To obtain the θ exponent bound from Lemma 2, we use the
periodic boundary condition model. Let the cut be the set of

pairs i < j with i � 0, j > 0, and j − i < L/2. Then F+ −
F− as defined here is the change in free energy due to reversing
the boundary condition and the bound is

Var(F+ − F−) � 4
∑

−L/2<i�0,0<j<L/2
j−i<L/2

1

(j − i)2σ
(A2)

∼ L[2−2σ ]+ (A3)

for large L. If the left-hand side scales as L2θ , then we obtain

θ � max(1 − σ,0) = [1 − σ ]+. (A4)

In a similar setup in d dimensions, in which Var Jij ∼ 1/r2dσ
ij

(σ > 1/2) and the boundary condition is reversed in one of
the d directions on the hypercube, we obtain θ � max[d(1 −
σ ),(d − 1)/2] similarly. [This reduces to the bound θ � (d −
1)/2, obtained by the authors cited, in the EA model with d � 1
or at σ > 1, and is stronger than the bound θ � d/2 suggested
for the power-law model in Ref. [11].] Note that when σ > 1,
the variance bound is stronger than that on the exponent, θ � 0,
as it rules out any diverging behavior for the domain wall free
energy including behavior slower than any power law, such as
logarithmic or sublogarithmic growth with L.

Proof of Lemma 2. We will provide a longer sketch of
the proof than did Ref. [18], which indicated the idea. First,
if f (τ1, . . . ,τM ) is a function of random variables τI , I =
1, . . . ,M , then its variance is

Var f = Ef 2 − (Ef )2. (A5)

If ET , where T is a subset of {1, . . . ,M}, is expectation over
the variables τI for I ∈ T with the remaining variables fixed
(i.e., conditional expectation), so E = E{1,...,M}, then by adding
and subtracting terms we have

Var f = E(f − E{1}f )2 + E(E{1}f − E{1,2}f )2 + · · ·
+ E(E{1,...,M−1}f − E{1,...,M}f )2 (A6)

(a martingale decomposition). Each term can be viewed as
a variance with respect to one variable τI of fI , where fI is
already averaged over the τJ for J < I , and with τK for K > I

held fixed and a final average over τK for K > I .
The key observation in the case that f = F+ − F− (in

which the τI are the Jij ) is that E{(ij )∈cut}f = 0, provided only
that the joint distribution of these bonds is invariant under
inversion (in particular, for independent bonds, if the marginal
distribution of each one is symmetric). By enumerating the
bonds beginning with those in the cut, this observation reduces
the expression to a sum over terms that correspond to the bonds
in the cut only.

The I th term (I = 1, . . . ,M) in the sum is the variance over
τI with the later τK held fixed. For each term we use a standard
bound for the variance of a Lipschitz function f of a single
random variable τ : If f has Lipschitz constant L, that is,

|f (τ ) − f (τ ′)| � L|τ − τ ′| (A7)

for all τ and τ ′ (L < ∞), then by averaging the square of
Eq. (A7) over τ and τ ′ (independently), we obtain

Var f � L2Var τ. (A8)

For the free energy of an Ising spin glass, the Lipschitz
constant is L = 1 for each random bond, independent of the
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values of the other bonds. This follows by integrating the bound∣∣∣∣∂ ln Z

∂Jij

∣∣∣∣ = β|〈sisj 〉| � β (A9)

(where again β = 1/T ) and if Jij is unbounded this is the
best possible value. For the difference of free energies, the
Lipschitz constant is doubled. The same bounds hold for the
expectation of the free energy, or differences thereof, over
some other random variables. Assembling these facts proves
Lemma 2.

We can also apply the method of proof of Lemma 2 to
obtain a bound on the width of the distribution of transition
values (defined in Sec. II D). We single out one bond Jij

and omit it from the Hamiltonian. We fix the spins si and sj

and let F+ be the free energy for sisj = +1 and F− the free
energy for sisj = −1 (obviously the spins si and sj should not
summed over in calculating these free energies in finite size).
At T = 0, the difference of the corresponding ground-state
energies is 2Kij , that is, twice the transition value for Jij . The
expectation of F+ − F− over only the bonds ending at i or j

(these in effect constitute the cut) is zero, and then we find
that the bound on Var (F+ − F−) is ∼ L[1−2σ ]+ (the distance
|i − j | does not enter the bound) and so is bounded when
σ > 1/2. This implies immediately that θ ′ � 0. In addition,

by applying any one of the standard Gaussian bounds for the
tail of the probability distribution of a Lipschitz function of
Gaussian variables [35], we find that the distribution of Kij

(and hence also of Fij ) is tight; no weight goes off to infinity
as L → ∞.

More generally, we can constrain the values of the spins
on a finite set �, as used in the excitation metastate. We can
apply the same argument to the difference of free energies
for two fixed distinct configurations S(�) on � and find a
similar bound by a constant that depends on |�|. Thus (using a
method similar to that in the proof of Proposition 6) the family
(indexed by L) of joint distributions of the differences of all
such free energies as S(�) runs through the 2|�| configurations
is tight. Passing to zero temperature and the thermodynamic
limit, we can draw a ground state α from κJ and one of the
S(�) coincides with S(α)(�). Then, by carrying this out for all
finite � and using subsequence limits, we obtain an excitation
metastate for any σ > 1/2.

Finally, we should mention that while the upper bounds on
the variance, and on the tail of the distribution, of a Lipschitz
function go back further in the probability literature (see
Ref. [35] for references), a classic reference in the case of
statistical mechanics of disordered systems is Ref. [41], which
also gives lower bounds on the variance.
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