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An unusual correlation function was conjectured by Campostrini et al. [Phys. Rev. E 91, 042123 (2015)] for
the ground state of a transverse Ising chain with geometrical frustration. Later, we provided a rigorous proof for it
and demonstrated its nonlocal nature based on an evaluation of a Toeplitz determinant in the thermodynamic limit
[J. Stat. Mech. (2016) 113102]. In this paper, we further prove that all the low excited energy states forming the
gapless kink phase share the same asymptotic correlation function with the ground state. As a consequence, the
thermal correlation function almost remains constant at low temperatures if one assumes a canonical ensemble.
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I. INTRODUCTION

In the study of strongly correlated quantum systems, antifer-
romagnetic spin chains play an important role in demonstrating
the strong quantum fluctuations that lead to rich and interesting
physics [1,2]. In recent years, spin chains with designed bound-
ary conditions have been attracting a lot of attention [3–6]. The
simplest model providing many essential quantum physics of
interest may be the Ising chain in a transverse field [7–11],

Hs = J

N∑
j=1

σx
j σ x

j+1 − h

N∑
j=1

σ z
j , (1)

with Pauli matrices σα
j (α = x,z), exchange coupling J and

transverse external field h. When appropriate boundary con-
ditions are imposed with respect to geometrical frustration of
spin arrangement, unusual properties may emerge [12–14]. In
treating the transverse Ising ring with one-bond defect, Cam-
postrini et al. [13] conjectured an unusual correlation function
for the ground state based on numerical calculations. Later, in
the context of the “a-cycle problem” [7], we analyzed the anti-
ferromagnetically seamed chain with ring frustration [15], i.e.,
Eq. (1) with J > 0, N ∈ Odd, and σj+N = σj , which is a trans-
lational invariant case considered in Ref. [13]. We rigorously
proved the conjectured correlation function and showed its
nonlocal nature. As disclosed by our rigorous solutions, there
are (2N − 1) low-lying excited energy states similar to the
ground state in the gapless kink phase (h < J ) in the thermo-
dynamic limit [15]. In this paper, we prove that the correlation
functions of all the (2N − 1) low-lying excited energy states
share the same asymptotic behavior with the ground state.

The organization of the paper is as follows. In Sec. II, the
2N low-lying energy states in the a-cycle problem of the Ising
chain in a transverse field with ring frustration are reviewed.
In Sec. III, we show how the correlation functions of the low

*lipeng@scu.edu.cn

excited states are represented by a set of Toeplitz determinants
after tedious Wick contractions. In Sec. IV, we present a rigor-
ous proof of a generalized theorem concerning the evaluation
of the Toeplitz determinants in the thermodynamic limit. At
last, the generalized theorem is used to work out the correlation
functions in Sec. V.

II. THE 2N LOW-LYING ENERGY STATES

In this section, we briefly review the 2N low-lying energy
states in the gapless kink phase that we obtained in our previous
work [15].

First, by Jordan-Wigner transformation [16],

σ+
j = (

σx
j + iσ

y

j

)/
2 = c

†
j exp

⎛
⎝iπ

∑
l<j

c
†
l cl

⎞
⎠, (2)

the system with ring geometry, Eq. (1), is mapped to a model
of spinless fermions

Hf = Nh − 2h

N∑
j=1

c
†
j cj + J

N−1∑
j=1

(c†j − cj )(c†j+1 − cj+1)

− J exp(iπM)(c†N − cN )(c†1 + c1), (3)

where M = ∑N
l=1 c

†
l cl controls the parity of the fermion

system. The last term in Eq. (3) can be regarded as a boundary
constraint, which renders the fermions nonfree. Lieb et al.
composed a free fermion model by loosing the boundary
constraint and called it a c-cyclic problem, where c represents
the free fermion operator. It is in contrast to the original
spin Hamiltonian that is called the a-cyclic problem, where
a represents the spin operator [7]. Now that we are exploring
the effect of the ring frustration that is guaranteed by the
boundary constraint, the fermion system Eq. (3) needs to
be solved faithfully by full recovery of the exact degrees of
freedom (DOF) of the spin system Eq. (1). The details were
elaborated in our previous works [15,17]. In a nutshell, the
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fermion Hamiltonian Eq. (3) is solved in odd and even channels
labeled by M ∈ odd and M ∈ even, respectively. But the total
DOF of the two channels is twice as that of the original spin
Hamiltonian Eq. (1). To restore the exact DOF of the original
spin Hamiltonian, we have to remove the redundant DOF in
each channel later [18].

Second, the Hamiltonian Eq. (3) is solved with the
help of parity constraint, Fourier transformation cq =

1√
N

∑N
j=1 cj exp (iq j ), and Bogoliubov transformation (q �=

0 and π ),

ηq = uqcq − ivqc
†
−q, (4)

with

u2
q = 1

2

[
1 + ε(q)

ω(q)

]
, v2

q = 1

2

[
1 − ε(q)

ω(q)

]
,

2uqvq = �(q)

ω(q)
,ε(q) = J cos q − h,�(q) = J sin q, (5)

ω(q) =
√

h2 + J 2 − 2hJ cos q.

In momentum space, the equivalence of the spin Hamiltonian
and fermion Hamiltonian can be expressed as [19,20]

Hs = P +H
(e)
f P + ⊕ P −H

(o)
f P −, (6)

where P ± = 1
2 [1 ± ∏N

n=1 (1 − 2c
†
ncn)] are projectors on the

subspaces with even or odd number of quasiparticles. BothH
(e)
f

and H
(o)
f are fermion Hamiltonians. They are diagonalized in

the even and odd channels respectively, which read

H
(e)
f = ε(π )(2c†πcπ − 1) +

∑
q∈q(e),q �=π

ω(q)(2η†
qηq − 1), (7)

H
(o)
f = ε(0)(2c

†
0c0 − 1) +

∑
q∈q(o),q �=0

ω(q)(2η†
qηq − 1), (8)

with

q(e) =
{
−N − 2

N
π, . . . , − 1

N
π,

1

N
π, . . . ,

N − 2

N
π,π

}
,

(9)

q(o) =
{
−N − 1

N
π, . . . , − 2

N
π,0,

2

N
π, . . . ,

N − 1

N
π

}
.

(10)

The momentum values q = 0 and π play an important role
in controlling the parity of valid states. In Eq. (6), P +H

(e)
f P +

means the states with even number of fermions are valid, while
P −H

(o)
f P − means the ones with odd number of fermions are

valid [18].
Then, in the kink phase (h < J ), we write down the

2N low-lying energy states forming a gapless spectrum of
band width 4h. We group these states into four categories:
(A) the nondegenerate upper-most state with even parity,∣∣E(e)

π

〉 = |φ(e)〉, (11)

(B) the nondegenerate ground state with odd parity,∣∣E(o)
0

〉 = c
†
0|φ(o)〉, (12)

(C) the doubly degenerate energy states with odd parity [totally
(N − 1) states],∣∣E(o)

k

〉 = η
†
k|φ(o)〉,{k ∈ q(o)|k �= 0}, (13)

(D) the doubly degenerate energy states with even parity
[totally (N − 1) states],∣∣E(e)

k

〉 = η
†
kc

†
π |φ(e)〉,{k ∈ q(e)|k �= π}. (14)

In the above states, the Bardeen-Cooper-Schrieffer-type wave
functions

|φ(o)〉 =
∏

q ∈ q(o),0 < q < π

(uq + ivqc
†
qc

†
−q)|0〉, (15)

|φ(e)〉 =
∏

q ∈ q(e),0 < q < π

(uq + ivqc
†
qc

†
−q)|0〉, (16)

are vacuums corresponding to H
(e)
f and H

(o)
f respectively.

There is a rough but nice picture for these 2N low-lying
energy states in a perturbative treatment (h � J ), which gives
the following translationally invariant energy states [15]:

|Ap〉 = 1√
2N

N∑
j=1

e−ip j (|K(j ), ←〉 + |K(j ), →〉), (17)

|Bp〉 = 1√
2N

N∑
j=1

e−ip j (|K(j ), ←〉 − |K(j ), →〉), (18)

where the classical one-kink states are

|K(j ),→〉 = | . . . ,←j−1, →j ,→j+1 ,←j+2, . . .〉, (19)

|K(j ),←〉 = | . . . ,→j−1, ←j ,←j+1 ,→j+2, . . .〉, (20)

and the “quantum number” p reads

p =
{

− N − 1

N
π, . . . , − 2

N
π,0,

2

N
π, . . . ,

N − 1

N
π

}
. (21)

The correspondences between the exact states and the
approximate ones are ∣∣E(e)

π

〉 ≈ |B0〉, (22)∣∣E(o)
k

〉 ≈ |Ak〉, (23)∣∣E(e)
k

〉 ≈ |Bπ−k〉, (24)∣∣E(o)
0

〉 ≈ |A0〉. (25)

III. TOEPLITZ DETERMINANT REPRESENTATION
OF THE LONGITUDINAL CORRELATION FUNCTIONS

The two point longitudinal spin-spin correlation function
for any arbitrary state |ψ〉 is defined as

Cxx
r,N (|ψ〉) = 〈ψ |σx

j σ x
j+r |ψ〉

= 〈ψ |BjAj+1 . . . Bj+r−1Aj+r |ψ〉, (26)

where Jordan-Wigner transformation has been applied and
notations Aj = c

†
j + cj and Bj = c

†
j − cj are introduced. Due

to translational invariance, the correlation function depends
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on the distance r of two spins rather than the lattice position
j . And because of the periodicity, we have a cyclic relation,
Cxx

r,N (|ψ〉) = Cxx
N−r,N (|ψ〉), for a translationally invariant state

|ψ〉.
In treating the transverse Ising ring with one-bond defect,

Campostrini et al. conjectured an unusual correlation function
for the ground state [13]. It is exactly coincident with the one
that we proved later for a transverse Ising chain with ring
frustration [15], which reads

Cxx
r,N

(∣∣E(o)
0

〉) = (−1)r
(

1 − h2

J 2

)1/4

(1 − 2α), (27)

where α = r/N . Since we have Cxx
r,N = Cxx

N−r,N due to the ring
geometry, the values of α can be restricted in the interval 0 <

α < 1/2.
Meanwhile, one can easily find that the approximate states

produced by the perturbative theory give a simpler correlation
function,

Cxx
r,N (|Ap〉) = Cxx

r,N (|Bp〉) = (−1)r (1 − 2α). (28)

For the ground state |E(o)
0 〉 ≈ |A0〉, Eq. (28) is a good ap-

proximation of Eq. (27) in the limit h/J → 0. So one can
tell the meaning of the two factors in Eq. (27): The factor
(1 − 2α) captured by the perturbative theory comes from the
superposition of 2N one-kink states, while the factor (1 − h2

J 2 )
reflects an attenuation due to the increasing of number of
kinks in the exact states with the transverse field h increasing.
And both factors are consequences of quantum fluctuations
introduced by the transverse field term in the Hamiltonian.

However, can we safely say that the 2N exact states,
Eq. (11)–(14), exhibit the same correlation function as depicted
in Eq. (27)? To answer this question, two necessary steps need
to be accomplished: (i) to deduce the Toeplitz determinant
representation for all the correlation functions of the exact
low-lying energy states and (ii) to prove a generalized theorem
concerning the evaluation of the obtained Toeplitz determinant.
The step (ii) will be carried out in the next section. We now
accomplish the step (i) by demonstrating that the correlation
functions of all the low-lying states can be cast into a uniform
expression,

Cxx
r,N

(∣∣E(o/e)
k

〉) = �(r,N,βk,e
ik) =

∣∣∣∣∣∣∣∣∣∣

D0 + 2
N

βk D−1 + 2
N

βke
−ik · · · D1−r + 2

N
βke

i(1−r)k

D1 + 2
N

βke
ik D0 + 2

N
βk · · · D2−r + 2

N
βke

i(2−r)k

· · · · · · · · · · · ·
Dr−1 + 2

N
βke

i(r−1)k Dr−2 + 2
N

βke
i(r−2)k · · · D0 + 2

N
βk

∣∣∣∣∣∣∣∣∣∣
, (29)

where βk will be specified later [see Eq. (39)]. The demonstration is presented in turn according to the categories of states (A)–(D)
denoted by Eq. (11)–(14), respectively. Please note that the derivations are only valid for h < J .

A. The uppermost state, |E(e)
π 〉

This case turns out to be the simplest one. We can apply the Wick’s theorem in respect to |φ(e)〉 in the usual way [7,10], which
directly leads to a Toeplitz determinant,

Cxx
r,N

(|E(e)
π 〉) = 〈φ(e)|BjAj+1 . . . Bj+r−1Aj+r |φ(e)〉

=

∣∣∣∣∣∣∣∣∣∣∣

D
(e)
0 + 2

N
D

(e)
−1 + 2

N
e−iπ · · · D

(e)
1−r + 2

N
ei(1−r)π

D
(e)
1 + 2

N
eiπ D

(e)
0 + 2

N
· · · D

(e)
2−r + 2

N
ei(2−r)π

...
...

...
...

D
(e)
r−1 + 2

N
ei(r−1)π D

(e)
r−2 + 2

N
ei(r−2)π · · · D

(e)
0 + 2

N

∣∣∣∣∣∣∣∣∣∣∣
, (30)

where the elements come from nonzero contractions, 〈φ(e)|BlAm|φ(e)〉 = D
(e)
l−m+1 + 2

N
ei(l−m+1)π , and

D(e)
n = 1

N

∑
q ∈ q(e)

D(eiq)e−iqn, (31)

D(eiq) = −(J − he−iq)√
(J − he−iq)(J − heiq)

. (32)

B. The ground state, |E(o)
0 〉 = c†0|φ(o)〉

For the ground state, we need to apply the Wick’s theorem in respect to |φ(o)〉, but now there are extra operators, c0 and c
†
0, in

the expression

Cxx
r,N

(∣∣E(o)
0

〉) = 〈φ(o)|c0BjAj+1 . . . Bj+r−1Aj+rc
†
0|φ(o)〉. (33)
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We can choose to eliminate the operators c0 and c
†
0 first by using contractions, 〈φ(o)|c0c

†
0|φ(o)〉 = 1 and 〈φ(o)|Amc

†
0|φ(o)〉 =

−〈φ(o)|Bmc
†
0|φ(o)〉 = 1√

N
, to get an expression like

Cxx
r,N

(∣∣E(o)
0

〉) = 〈φ(o)|BjAj+1 . . . Bj+r−1Aj+r |φ(o)〉 + 2

N
〈φ(o)|Bj+1Aj+2 . . . Bj+r−1Aj+r |φ(o)〉

+ 2

N
〈φ(o)|Aj+1Bj+1Bj+2Aj+3 . . . Bj+r−1Aj+r |φ(o)〉 + · · · . (34)

Then by contractions 〈φ(o)|BlAm|φ(o)〉 = D
(o)
l−m+1 with

D(o)
n = 1

N

∑
q ∈ q(o)

D(eiq)e−iqn, (35)

we can get

Cxx
r,N

(∣∣E(o)
0

〉) =

∣∣∣∣∣∣∣∣∣∣

D
(o)
0 D

(o)
−1 · · · D

(o)
1−r

D
(o)
1 D

(o)
0 · · · D

(o)
2−r

· · · · · · · · · · · ·
D

(o)
r−1 D

(o)
r−2 · · · D

(o)
0

∣∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣∣

2
N

2
N

· · · 2
N

D
(o)
1 D

(o)
0 · · · D

(o)
2−r

· · · · · · · · · · · ·
D

(o)
r−1 D

(o)
r−2 · · · D

(o)
0

∣∣∣∣∣∣∣∣∣∣
+ · · · +

∣∣∣∣∣∣∣∣∣∣

D
(o)
0 D

(o)
−1 · · · D

(o)
1−r

D
(o)
1 D

(o)
0 · · · D

(o)
2−r

· · · · · · · · · · · ·
2
N

2
N

· · · 2
N

∣∣∣∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣

D
(o)
0 + 2

N
D

(o)
−1 + 2

N
· · · D

(o)
1−r + 2

N

D
(o)
1 + 2

N
D

(o)
0 + 2

N
· · · D

(o)
2−r + 2

N

...
...

...
...

D
(o)
r−1 + 2

N
D

(o)
r−2 + 2

N
· · · D

(o)
0 + 2

N

∣∣∣∣∣∣∣∣∣∣∣
. (36)

C. The (N − 1) odd parity states, |E(o)
k 〉 = η

†
k|φ(o)〉

The starting point is

Cxx
r,N

(∣∣E(o)
k

〉) = 〈φ(o)|ηkBjAj+1 . . . Bj+r−1Aj+rη
†
k|φ(o)〉. (37)

Likewise, the strategy is to eliminate the operators ηk and η
†
k first. Besides 〈φ(o)|ηkη

†
k|φ(o)〉 = 1, one can find the useful combined

contractions,

〈φ(o)|ηkBl|φ(o)〉〈φ(o)|Amη
†
k|φ(o)〉 = βk

N
eik (l−m+1), (38)

βk = −D(e−ik). (39)

So we can write down

2Cxx
r,N

(∣∣E(o)
k

〉) = [〈φ(o)|BjAj+1 . . . Bj+r−1Aj+r |φ(o)〉 + 2βk

N
〈φ(o)|Bj+1Aj+2 . . . Bj+r−1Aj+r |φ(o)〉

+ 2βke
−ik

N
〈φ(o)|Aj+1Bj+1Bj+2Aj+3 . . . Bj+r−1Aj+r |φ(o)〉 + · · · ]

+ [〈φ(o)|BjAj+1 . . . Bj+r−1Aj+r |φ(o)〉 + 2β−k

N
〈φ(o)|Bj+1Aj+2 . . . Bj+r−1Aj+r |φ(o)〉

+ 2β−ke
ik

N
〈φ(o)|Aj+1Bj+1Bj+2Aj+3 . . . Bj+r−1Aj+r |φ(o)〉 + · · · ]. (40)

The terms in Eq. (40) are grouped into two square brackets. Each group is of similar form of Eq. (34) and leads to a determinant
like Eq. (36). Thus the correlation function can be represented by the sum of two Toeplitz determinants,

Cxx
r,N

(∣∣E(o)
k

〉) = 1
2 [
(o)(r,N,βk,e

ik) + 
(o)(r,N,β−k,e
−ik)], (41)
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where


(o)(r,N,βk,e
ik) =

∣∣∣∣∣∣∣∣∣∣

D
(o)
0 + 2

N
βk D

(o)
−1 + 2

N
βke

−ik · · · D
(o)
1−r + 2

N
βke

i(1−r)k

D
(o)
1 + 2

N
βke

ik D
(o)
0 + 2

N
βk · · · D

(o)
2−r + 2

N
βke

i(2−r)k

· · · · · · · · · · · ·
D

(o)
r−1 + 2

N
βke

i(r−1)k D
(o)
r−2 + 2

N
βke

i(r−2)k · · · D
(o)
0 + 2

N
βk

∣∣∣∣∣∣∣∣∣∣
. (42)

D. The (N − 1) even parity states, |E(e)
k 〉 = η

†
k c†π |φ(e)〉

This is the most tedious case. Now the correlation function is given by

Cxx
r,N

(∣∣E(e)
k

〉) = 〈φ(e)|cπηkBjAj+1 . . . Bj+r−1Aj+rη
†
kc

†
π |φ(e)〉. (43)

First, to eliminate the operators cπ and c†π , we apply the following relation in the contractions:

〈φ(e)|cπBl|φ(e)〉〈φ(e)|Amc†π |φ(e)〉 − 〈φ(e)|cπAm|φ(e)〉〈φ(e)|Blc
†
π |φ(e)〉 = − 2

N
eiπ (l−m+1), (44)

to get an expression like

Cxx
r,N

(∣∣E(e)
k

〉) = 〈φ(e)|ηkBjAj+1 . . . Bj+r−1Aj+rη
†
k|φ(e)〉 +

(
− 2

N

)
〈φ(e)|ηkBj+1Aj+2 . . . Bj+r−1Aj+rη

†
k|φ(e)〉

+
(

−2e−iπ

N

)
〈φ(e)|ηkAj+1Bj+1Bj+2Aj+3 . . . Bj+r−1Aj+rη

†
k|φ(e)〉 + · · · . (45)

Second, in each term of Eq. (45), the elimination of operators ηk and η
†
k can be done just like that has been done in Eq. (37).

Eventually, we can arrive at

Cxx
r,N

(∣∣E(e)
k

〉) = 1
2 [
(e)(r,N,βk,e

ik) + 
(e)(r,N,β−k,e
−ik)], (46)

where


(e)(r,N,βk,e
ik) =

∣∣∣∣∣∣∣∣∣∣∣

D
(e)
0 + 2

N
βk D

(e)
−1 + 2

N
βke

−ik · · · D
(e)
1−r + 2

N
βke

i(1−r)k

D
(e)
1 + 2

N
βke

ik D
(e)
0 + 2

N
βk · · · D

(e)
2−r + 2

N
βke

i(2−r)k

· · · · · · · · · · · ·
D

(e)
r−1 + 2

N
βke

i(r−1)k D
(e)
r−2 + 2

N
βke

i(r−2)k · · · D
(e)
0 + 2

N
βk

∣∣∣∣∣∣∣∣∣∣∣
. (47)

We shall concern the correlation functions in the thermody-
namic limit N → ∞. In this limit, we have

D(e)
n = D(o)

n = Dn ≡
∫ π

−π

dq

2π
D(eiq) e−iqn, (48)

so that the Toeplitz determinants, Eqs. (30), (36), (42), and
(47), can be cast into the uniform expression Eq. (29).

IV. A GENERALIZED THEOREM

In our previous work [15], we proved a theorem for
working out the correlation function Eq. (27) of the ground
state, in which we see the term 2

N
plays a crucial role

even in the thermodynamic limit N → ∞. Now that the
term is generalized to 2βk

N
eikn as shown in Eq. (29), we

need a general theorem for all the 2N low-lying energy
states.

Theorem. Consider a general Toeplitz determinant coming
from Eq. (29),

�(r,N,x,eik) =

∣∣∣∣∣∣∣∣∣∣∣∣

∼
D0

∼
D−1 · · ·

∼
D1−r

∼
D1

∼
D0 · · ·

∼
D2−r

· · · · · · · · · · · ·
∼
Dr−1

∼
Dr−2 · · ·

∼
D0

∣∣∣∣∣∣∣∣∣∣∣∣
, (49)

with

∼
Dn = Dn + x

N
eikn, (50)

where Dn is defined in Eq. (48). If the generating func-
tion D(eiq) and ln D(eiq) are continuous on the unit circle
|eiq | = 1, then the behavior for large N of �(r,N,x,eik) is
given by (1 � r < N)

�(r,N,x,eik) = �r

(
1 + xr

ND
(
e−ik

)
)

, (51)
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where

�r = μr exp

( ∞∑
n=1

nd−ndn

)
, (52)

μ = exp

[∫ π

−π

dq

2π
ln D(eiq)

]
, (53)

dn =
∫ π

−π

dq

2π
e−iqn ln D(eiq), (54)

if the sum in �r converges.
Proof. Let eiq = ξ , and then we have Dn = ∫ π

−π

dq

2π
D(ξ )ξ−n according to Eq. (48). Let us rewrite Eq. (49) as

�(r,N,x,eik) =

∣∣∣∣∣∣∣∣∣

D0 D−1 · · · D−r+1

D1 D0 · · · D−r+2

· · · · · · · · · · · ·
Dr−1 Dr−2 · · · D0

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

x
N

D−1 · · · D1−r

x
N

eik D0 · · · D2−r

· · · · · · · · · · · ·
x
N

ei(r−1)k Dr−2 · · · D0

∣∣∣∣∣∣∣∣∣

+ · · · +

∣∣∣∣∣∣∣∣∣

D0
x
N

e−ik · · · D2−r

D1
x
N

· · · D2−r

· · · · · · · · · · · ·
Dr−1

x
N

ei(r−2)k · · · D0

∣∣∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣∣∣

D0 D−1 · · · x
N

ei(1−r)k

D1 D0 · · · x
N

ei(2−r)k

· · · · · · · · · · · ·
Dr−1 Dr−2 · · · x

N

∣∣∣∣∣∣∣∣∣

and compose a set of linear equations

r−1∑
m=0

Dn−mx(r−1)
m = x

N
eikn , 0 � n � r − 1. (55)

These equations have an unique solution for x(r−1)
n if there

exists a nonzero determinant:

�r ≡

∣∣∣∣∣∣∣
D0 D−1 · · · D1−r

D1 D0 · · · D2−r

· · · · · · · · · · · ·
Dr−1 Dr−2 · · · D0

∣∣∣∣∣∣∣ �= 0. (56)

By Cramer’s rule, we have the solution:

x
(r−1)
0 =

∣∣∣∣∣∣∣∣

x
N

D−1 · · · D1−r
x
N

eik D0 · · · D2−r

· · · · · · · · · · · ·
x
N

ei(r−1)k Dr−2 · · · D0

∣∣∣∣∣∣∣∣
�r

, (57)

x
(r−1)
1 =

∣∣∣∣∣∣∣∣
D0

x
N

· · · D2−r

D1
x
N

eik · · · D2−r

· · · · · · · · · · · ·
Dr−1

x
N

ei(r−1)k · · · D0

∣∣∣∣∣∣∣∣
�r

, (58)

...

x
(r−1)
r−1 =

∣∣∣∣∣∣∣∣
D0 D−1 · · · x

N

D1 D0 · · · x
N

eik

· · · · · · · · · · · ·
Dr−1 Dr−2 · · · x

N
ei(r−1)k

∣∣∣∣∣∣∣∣
�r

. (59)

So we arrive at

�(r,N,x,eik) = �r + �r

r−1∑
n=0

e−iknx(r−1)
n . (60)

In our problem, �r can be directly evaluated through the
Szegö’s theorem in the usual way,

�r = μr exp

( ∞∑
n=1

nd−ndn

)
, (61)

where

μ = exp

[∫ π

−π

dq

2π
ln D(eiq)

]
, (62)

dn =
∫ π

−π

dq

2π
e−iqn ln D(eiq). (63)

The nonlocal information is contained in the second term of
Eq. (60), which leads to the main innovative part of this proof.
Following the standard Wiener-Hopf procedure [21–23], we
consider a generalization of Eq. (55),

r−1∑
m=0

Dn−mxm = yn, 0 � n � r − 1, (64)

and define

xn = yn = 0 for n � −1 and n � r, (65)

vn =
r−1∑
m=0

D−n−mxm for n � 1

= 0 for n � 0, (66)
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un =
r−1∑
m=0

Dr−1+n−mxm for n � 1

= 0 for n � 0. (67)

We further introduce

D(ξ ) =
∞∑

n=−∞
Dnξ

n, Y (ξ ) =
r−1∑
n=0

ynξ
n,

V (ξ ) =
∞∑

n=1

vnξ
n, U (ξ ) =

∞∑
n=1

unξ
n,

X(ξ ) =
r−1∑
n=0

xnξ
n. (68)

Then from Eq. (64), we can get

D(ξ )X(ξ ) = Y (ξ ) + V (ξ−1) + U (ξ )ξ r−1 (69)

for |ξ | = 1.
Becuase both D(ξ ) and ln D(ξ ) are continuous and periodic

on the unit circle, D(ξ ) has a unique factorization, up to a
multiplicative constant, in the form

D(ξ ) = P −1(ξ )Q−1(ξ−1), (70)

for |ξ | = 1, such that P (ξ ) and Q(ξ ) are both analytic for |ξ | <

1 and continuous and nonzero for |ξ | � 1. We now substitute
Eq. (70) into Eq. (69) and multiply with Q(ξ−1) at both sides
to get

P −1(ξ )X(ξ ) − [Q(ξ−1)Y (ξ )]+ − [Q(ξ−1)U (ξ )ξ r−1]+

= [Q(ξ−1)Y (ξ )]− + Q(ξ−1)V (ξ−1)

+ [Q(ξ−1)U (ξ )ξ r−1]−, (71)

where the subscript +(−) means that we should expand the
quantity in the brackets into a Laurent series and keep only
those terms where ξ is raised to a non-negative (negative)
power. As a matter of fact, from the unique factorization
Eq. (70), one can find that both P (ξ ) and Q(ξ ) are + functions
[21].

The left-hand side of Eq. (71) defines a function analytic
for |ξ | < 1 and continuous on |ξ | = 1 and the right-hand side
defines a function which is analytic for |ξ | > 1 and is contin-
uous for |ξ | = 1. Taken together they define a function E(ξ )
analytic for all ξ except possibly for |ξ | = 1 and continuous
everywhere. But these properties are sufficient to prove that
E(ξ ) is an entire function which vanished at |ξ | = ∞ and
thus, by Liouville’s theorem, must be zero everywhere [21,22].
Therefore both the right-hand side and the left-hand side of
Eq. (71) vanish separately and thus we have

X(ξ ) = P (ξ )[Q(ξ−1)Y (ξ )]+ + P (ξ )[Q(ξ−1)U (ξ )ξ r−1]+.

(72)

Furthermore, U (ξ ) can be neglected for large r [21–23]

X(ξ ) ≈ P (ξ )[Q(ξ−1)Y (ξ )]+. (73)

From Eqs. (60), (68) and (73), we have

r−1∑
n=0

e−iknx(r−1)
n = X(e−ik)

= P (e−ik)[Q(eik)Y (e−ik)]+, (74)

Moreover, a comparison of Eq. (55) with Eq. (64) shows that

Y (e−ik) = rx

N
. (75)

Together with Eq. (70), we get

X(e−ik) = xr

N
P (e−ik)[Q(eik)]+

= xr

N
P (e−ik)Q(eik) = xr

ND(e−ik)
. (76)

From Eqs. (60), (74), and (76), we finally arrive at

�(r,N,x,eik) = �r

(
1 + xr

ND(e−ik)

)
. (77)

�

V. EVALUATION OF THE CORRELATION FUNCTIONS
AND CONCLUSION

Now we need to work out �r in Eq. (77) that is defined in
Eq. (61). For the gapless kink phase h < J , we have

D(eiq) = −
√

1 − λe−iq

1 − λeiq
, (78)

where we have defined λ = h
J

. Furthermore, because 0 < λ <

1, we use the formula

ln(1 − λeiq) = −
∞∑

m=1

1

m
(λeiq)m (79)

to get

ln D(eiq) = iπ − 1

2
ln(1 − λeiq) + 1

2
ln(1 − λe−iq)

= iπ + 1

2

∞∑
m=1

λm

m
eiqm − 1

2

∞∑
m=1

λm

m
e−iqm.

Thus we have

μ = exp

[∫ π

−π

dq

2π
ln D(eiq)

]
= −1,

and for n > 0

dn = −λn

2n
, d−n = λn

2n
.

Then we found
∞∑

n=1

ndnd−n = −1

4

∞∑
n=1

1

n
λ2n = 1

4
ln(1 − λ2). (80)

By Szegö’s theorem Eq. (61) we can get

�r = (−1)r
(

1 − h2

J 2

)1/4

. (81)
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FIG. 1. The correlation functions for the ground state |E(o)
0 〉 =

c
†
0|φ(o)〉, the first excited state |E(e)

π
N

〉 = η
†
π
N
c†π |φ(e)〉, the second excited

state |E(o)
2π
N

〉 = η
†
2π
N

|φ(o)〉, and the upper-most state |E(e)
π 〉 = |φ(e)〉. The

black straight line in each figure is the analytic result from Eq. (83)
at J/h = 1.5. The colored dingbat data are exact diagonalization
solutions of the original spin Hamiltonian Eq. (1) for N = 9,11,13.

Finally, we can evaluate the general Toeplitz determinant
�(r,N,βk,e

ik) in Eq. (29) and get

�(r,N,βk,e
ik) = (−1)r

(
1 − h2

J 2

)1/4(
1 − 2r

N

)
(82)

for large-enough r and N . And by substituting Eq. (82) into
Eqs. (30), (36), (41), and (46), we find that all the correlation
functions of the 2N low-lying energy states exhibit the same
asymptotic behavior,

Cxx
r,N

(∣∣E(o/e)
k

〉) = (−1)r
(

1 − h2

J 2

)1/4

(1 − 2α),

(k ∈ q(o) ∪ q(e)). (83)

It is worthwhile to note that the result is independent of wave
number k.

FIG. 2. The correlation functions for a system of N = 257 at
J/h = 1.05 and 1.5 for several selected low-lying energy states,
c
†
0|φ(o)〉, η†

50π
257

c†π |φ(o)〉, η†
101π
257

|φ(e)〉, and |φ(e)〉. The black straight line in

each figure is the analytic result from Eq. (83). The colored dingbat
data are direct evaluations of the Toeplitz determinants in Eq. (30),
(36), (41), and (46). One can see that the data accurately agree with
the analytic formula.

To confirm that the analytic result is correct, we compare
it with the exact diagonalization solutions of the original spin
Hamiltonian Eq. (1) for N = 9,11,13 and several low-lying
energy states in Fig. 1. In Fig. 2, we compare it with the
numerical data that are obtained by direct evaluation through
the Toeplitz determinants. We see that the numerical data obey
the asymptotic behavior accurately.

If assuming a canonical ensemble, then one would agree
that the 2N low-lying energy states dominate the system’s
properties at low temperatures (T � 4h/kB , where kB is the
Boltzmann constant) and then arrive at a conclusion that the
thermal correlation function is inert to temperature.

ACKNOWLEDGMENTS

This work is supported by the NSFC under Grant No.
11074177 and SRF for ROCS SEM (Grant No. 20111139-
10-2).

[1] N. Nagaosa, Quantum Field Theory in Strongly Correlated
Electronic System (Springer, Berlin, 1999).

[2] S. Sachdev, Quantum Phase Transitions (Cambridge University
Press, Cambridge, 2001).

[3] S. A. Owerre and J. Nsofini, Europhys. Lett. 110, 47002 (2015).
[4] S. A. Owerre and M. B. Paranjape, Phys. Lett. A 378, 3066

(2014).
[5] M. Okuyama, Y. Yamanaka, H. Nishimori, and M. M. Rams,

Phys. Rev. E 92, 052116 (2015).

[6] U. Marzolino, S. M. Giampaolo, and F. Illuminati, Phys. Rev. A
88, 020301(R) (2013).

[7] E. H. Lieb, T. D. Schultz, and D. C. Mattis, Ann. Phys. 16, 407
(1961).

[8] P. Pfeuty, Ann. Phys. 57, 79 (1970).
[9] E. Barouch and B. McCoy, Phys. Rev. A 3, 786 (1971).

[10] S. Suzuki, J. I. Bikas, and K. Chakrabarti, Quantum Phase and
Transitions in Transverse Ising Models, Lecture Notes in Physics
Vol. 862 (Springer, Berlin, 2013).

012133-8

https://doi.org/10.1209/0295-5075/110/47002
https://doi.org/10.1209/0295-5075/110/47002
https://doi.org/10.1209/0295-5075/110/47002
https://doi.org/10.1209/0295-5075/110/47002
https://doi.org/10.1016/j.physleta.2014.08.029
https://doi.org/10.1016/j.physleta.2014.08.029
https://doi.org/10.1016/j.physleta.2014.08.029
https://doi.org/10.1016/j.physleta.2014.08.029
https://doi.org/10.1103/PhysRevE.92.052116
https://doi.org/10.1103/PhysRevE.92.052116
https://doi.org/10.1103/PhysRevE.92.052116
https://doi.org/10.1103/PhysRevE.92.052116
https://doi.org/10.1103/PhysRevA.88.020301
https://doi.org/10.1103/PhysRevA.88.020301
https://doi.org/10.1103/PhysRevA.88.020301
https://doi.org/10.1103/PhysRevA.88.020301
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1016/0003-4916(61)90115-4
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1016/0003-4916(70)90270-8
https://doi.org/10.1103/PhysRevA.3.786
https://doi.org/10.1103/PhysRevA.3.786
https://doi.org/10.1103/PhysRevA.3.786
https://doi.org/10.1103/PhysRevA.3.786


RIGOROUS PROOF FOR THE NONLOCAL CORRELATION … PHYSICAL REVIEW E 97, 012133 (2018)

[11] A. Dutta, G. Aeppli, B. K. Chakrabarti, U. Divakaran,
T. F. Rosenbaum, and D. Sen, Quantum Phase Transitions
in Transverse Field Spin Models: From Statistical Physics to
Quantum Information (Cambridge University Press, Cambridge,
2015).

[12] G. G. Cabrera and R. Jullien, Phys. Rev. B 35, 7062 (1987).
[13] M. Campostrini, A. Pelissetto, and E. Vicari, Phys. Rev. E 91,

042123 (2015).
[14] M. Campostrini, A. Pelissetto, and E. Vicari, J. Stat. Mech.

(2015) P11015.
[15] J.-J. Dong, P. Li, and Q.-H. Chen, J. Stat. Mech. (2016) 113102.
[16] P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928).

[17] J.-J. Dong and P. Li, Mod. Phys. Lett. B 31, 1750061 (2017).
[18] T. D. Schultz, D. C. Mattis, and E. H. Lieb, Rev. Mod. Phys. 36,

856 (1964).
[19] J. Dziarmaga, Phys. Rev. Lett. 95, 245701 (2005).
[20] F. Franchini, An Introduction to Integrable Techniques for One-

Dimensional Quantum Systems, Springer Briefs in Mathematical
Physics Vol. 16 (Springer, Berlin, 2017).

[21] B. M. McCoy, Advanded Statistical Mechanics (Oxford Univer-
sity Press, Oxford, 2010).

[22] B. M. McCoy and T. T. Wu, The Two-Dimensional Ising Model
(Havard University Press, Cambridge, MA, 1973).

[23] T. T. Wu, Phys. Rev. 149, 380 (1966).

012133-9

https://doi.org/10.1103/PhysRevB.35.7062
https://doi.org/10.1103/PhysRevB.35.7062
https://doi.org/10.1103/PhysRevB.35.7062
https://doi.org/10.1103/PhysRevB.35.7062
https://doi.org/10.1103/PhysRevE.91.042123
https://doi.org/10.1103/PhysRevE.91.042123
https://doi.org/10.1103/PhysRevE.91.042123
https://doi.org/10.1103/PhysRevE.91.042123
https://doi.org/10.1088/1742-5468/2015/11/P11015
https://doi.org/10.1088/1742-5468/2015/11/P11015
https://doi.org/10.1088/1742-5468/2015/11/P11015
https://doi.org/10.1088/1742-5468/2016/11/113102
https://doi.org/10.1088/1742-5468/2016/11/113102
https://doi.org/10.1088/1742-5468/2016/11/113102
https://doi.org/10.1007/BF01331938
https://doi.org/10.1007/BF01331938
https://doi.org/10.1007/BF01331938
https://doi.org/10.1007/BF01331938
https://doi.org/10.1142/S0217984917500610
https://doi.org/10.1142/S0217984917500610
https://doi.org/10.1142/S0217984917500610
https://doi.org/10.1142/S0217984917500610
https://doi.org/10.1103/RevModPhys.36.856
https://doi.org/10.1103/RevModPhys.36.856
https://doi.org/10.1103/RevModPhys.36.856
https://doi.org/10.1103/RevModPhys.36.856
https://doi.org/10.1103/PhysRevLett.95.245701
https://doi.org/10.1103/PhysRevLett.95.245701
https://doi.org/10.1103/PhysRevLett.95.245701
https://doi.org/10.1103/PhysRevLett.95.245701
https://doi.org/10.1103/PhysRev.149.380
https://doi.org/10.1103/PhysRev.149.380
https://doi.org/10.1103/PhysRev.149.380
https://doi.org/10.1103/PhysRev.149.380



