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Fractional dynamics using an ensemble of classical trajectories
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A trajectory-based formulation for fractional dynamics is presented and the trajectories are generated
deterministically. In this theoretical framework, we derive a new class of estimators in terms of confluent
hypergeometric function (1F1) to represent the Riesz fractional derivative. Using this method, the simulation
of free and confined Lévy flight are in excellent agreement with the exact numerical and analytical results. In
addition, the barrier crossing in a bistable potential driven by Lévy noise of index α is investigated. In phase
space, the behavior of trajectories reveal the feature of Lévy flight in a better perspective.
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I. INTRODUCTION

Anomalous diffusion has been attracting growing attention
in some fields of modern science. The identification of anoma-
lous diffusion is usually determined by mean square displace-
ment of the form 〈x2〉 ∼ tμ, where 0 < μ < 1 is subdiffusion
and 1 < μ � 2 is superdiffusion. Several frameworks, such
as the continuous time random walk scheme [1–3], Brownian
motion in a logarithmic potential [4,5], fractional Brownian
motion [6], fractional Fokker-Planck equation (FFPE), and
so on [7–10] have been established to describe anomalous
diffusion. Anomalous diffusions tend to violate the central limit
theorem of probability theory and can be achieved either by
correlations or by long-tailed statistics. A case in point is the
so-called Lévy flight which has been introduced in connection
with superdiffusion.

The Lévy flight, as one of the important fractional process,
has been used to model a variety of process, such as the
diffusion of micelles in salted water [11], single-ion motion
in a one-dimensional optical lattice [12], special problems
in reaction dynamics [13], and even in animal movement
[14,15]. It is a Markov process that can be characterized by
the occurrence of a long jump. In particular, the corresponding
probability density function (PDF) could have a heavier tail
than the Gaussian density and its correlation function decays
to zero much slower than the usual exponential rate. These
features are responsible for the anomalous characteristics in
the diffusion processes. A class of FFPE has been successfully
employed to describe particles undergoing Lévy flight, and
explain the development of anomalous dispersion. When the
one-dimensional diffusion dynamics is under the influence of
an external potential U (x) with a white Lévy noise, the FFPE
can be written as [16–18]

∂W (x,t)

∂t
= ∂

∂x
[U ′(x)W (x,t)] + DDα

x W (x,t), (1)

where D denotes the generalized diffusion coefficient and
relates to the intensity of Lévy noise, U ′(x) = ∂U (x)

∂x
.
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Dα
q ≡ ∂α

∂|q|α is the Riesz fractional derivative. For 1 < α � 2,
the Riesz fractional derivative Dα

q is defined as [19]

Dα
q f (q,t) = − 1

2cos(απ/2)�(2 − α)

× ∂2

∂q2

∫ ∞

−∞
|q − q ′|1−αf (q ′,t)dq ′, (2)

however, for α = 1 it is related to the Hilbert transform,
namely,

D1
qf (q,t) = − 1

π

∂

∂q

∫ ∞

−∞

f (q ′,t)dq ′

q − q ′ . (3)

Such forms can ensure that jump lengths have a symmet-
ric probability distribution. In addition, the Riesz fractional
derivative can be understood through its Fourier transform [20]

Dα
q f (q,t) = − 1

2π

∫ ∞

−∞
f (k,t)exp(−ikq)|k|αdk. (4)

It is found that the Lévy flight plays important roles in phys-
ical, chemical, and biological fields. To explore the dynamic
and stationary behaviors of the Lévy process, many methods
for solving FFPE of Eq. (1) and its derivatives, such as the frac-
tional Klein-Kramers equation [21], have been developed. For
example, the finite difference method [22,23], finite volume
method [24,25], and fast fourier transform (FFT) method [26],
and so on have been developed to discretize the Riesz fractional
derivatives to solve the FFPE numerically. The realization of
these methods need complicated numerical algorithms, which
are usually abstract in describing the physical picture of the
Lévy flight process.

In recent years many methods for propagating the (quan-
tum) system by employing the evolution of trajectory en-
sembles are developed, and these methods have potential
computational advantages for the numerical simulation of large
quantum systems [27–38]. These approaches are employed to
investigate different physical phenomena, such as the quantum
tunneling process [27–29,39–41], the photodissociation cross
section of the H2O molecule [42], the autocorrelation function
[30,43,44], and entanglement dynamics [45].
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In this paper, we present an alternative trajectory-based
formulation to understand the Lévy stable process and Lévy
flight dynamics based on the trajectory ensemble propagation
of the PDF in phase space. Also, the framework of the trajectory
in phase space could be of potential advantage numerically for
a multidimensional system. For the Lévy flight, its PDF is
described via the fractional FFPE. This leads to the fractional
equation of trajectory (FET), namely, we extend the concept
of trajectory to the fractional order in phase space. Also, the
ensemble of the fractional trajectories has the “interaction”
between the fractional trajectories since the distribution of the
Lévy flight is of the heavy tail. In a different view, in phase
space, we show the flight behaviours of the Lévy flight by
employing our fractional trajectories. In addition, we give their
vivid physical pictures.

In the following, we describe the theoretical framework
of the fractional equations of trajectory in Sec. II. Then, we
show the applications of the fractional equations of trajectory
for four cases of Lévy processes: the free flight, confined in
a quartic potential, escape from a metastable potential and
viscous barrier crossing of Lévy types. The discussions and
conclusion are given in Sec. IV.

II. THEORETICAL FRAMEWORK

In the probability theory, if a quantity that moves continu-
ously according to a stochastic process, its PDF W (�,t) could,
in the continuity equation, be written as [46]

∂W (�,t)

∂t
+ ∇j(�,t) = 0, (5)

where j(�,t) is the flux vector, the del operator is the gradient
operator, and � = (x,p) is the coordinates in phase space. The
flux vector and the del operator in phase space are defined as
follows:

j(�,t) = �̇W (�,t) ≡ (ẋ,ṗ)W (�,t), (6)

∇ =
(

∂

∂x
∂

∂p

)
. (7)

For the one-dimensional (1D) case of Eq. (1), the flux j(x) =
ẋW (x,t) and ∇ = ∂

∂x
. By comparing the continuity equation

of Eqs. (5) and (1), we obtain

∇j(x) = ∂

∂x
[ẋW (x,t)]

= − ∂

∂x
[U ′(x)W (x,t)] − DDα

x W (x,t). (8)

The above equation can also be written as

ẋ = −U ′(x) − D

W (x,t)
Dα−1

x W (x,t). (9)

Namely, we obtain the equation of trajectory. Since the equa-
tion of trajectory of Eq. (9) is related to the fractional derivative
of its PDF, we note the equation of trajectory of Eq. (9) as the
fractional equation of trajectory (FET).

We can see that Eq. (9) has a similar form with Langevin
equation. The difference is the second term depends on PDF
and its fractional derivative instead of the noise from the
anomalous behavior. This fundamentally different kind of term

leads to an interdependence between the evolving trajectories,
that is, there are “interactions” between the trajectories via
the term of Dα−1

x W (x,t) in Eq. (9) since the PDF W (x,t)
is determined by the ensemble of trajectories [see the fol-
lowing descriptions of Eq. (16)]. This makes the statistical
independence of an ensemble representation of the density
being broken and the PDF must be propagated as an ensemble.

For the Lévy flight with viscous [9], the FFPE is an
extension of the Klein-Kramers equation containing fractional
derivatives with respect to momentum. When the diffusion
dynamics under the influence of an external potential U (x)
and a white Lévy noise, the fractional Klein-Kramers equation
of the probability function W (x,p,t) can be written as [21]

∂W (x,p,t)

∂t
= − p

m

∂W (x,p,t)

∂x
+ U ′(x)

∂W (x,p,t)

∂p

+ γ
∂[pW (x,p,t)]

∂p
+ DDα

pW (x,p,t), (10)

where γ is the friction constant.
According to the definitions of the flux vector of Eq. (6) and

the del operator of Eq. (7) in phase space, we have

∇j(�,t) = ∂

∂x
[ẋW (x,p; t)] + ∂

∂p
[ṗW (x,p; t)]

= p

m

∂W (x,p,t)

∂x
− U ′(x)

∂W (x,p,t)

∂p

− γ
∂[pW (x,p,t)]

∂p
− DDα

pW (x,p,t). (11)

Equation (11) immediately leads to the following equations:

ẋ = p

m
,

ṗ = −U ′(x) − γp − D

W (x,p,t)
Dα−1

p W (x,p,t). (12)

This is the two-dimensional form of the fractional equation of
trajectory (FET) for Lévy flight in phase space.

By employing FET [Eq. (9) for the one-dimensional case
and Eq. (20) for the two-dimensional case], we can investigate
the Lévy flight dynamics if its PDF W (x,p; t) is known.

We could represent the PDF by employing the ensemble of
trajectories based on the theory of Kernel density estimation
(KDE) [47]. With the KDE, the PDF can be obtained from a
combination of localized functions centered on members of
the data set. Namely, the PDF can be written as

W (�,t) = 1

N

N∑
i=1

ρ[� − �i(t)], (13)

where N is the numbers of sampling data or the number
of trajectory in our case, ρ[� − �i(t)] is the kernel function
in KDE, and �i(t) is the position in phase space of the ith
trajectory at time t .

In our theoretical framework, the Gaussian kernels are
employed in Eq. (13). For the one-dimensional case, it can
be written as

ρ(x) = 1√
2πhxδx

exp

(
− x2

2h2
xδ

2
x

)
, (14)
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where hx > 0 is the bandwidth which depends on the di-
mensionality of the data set and the functional form of the
kernel. For 	-dimensional data sets and Gaussian kernels,
hx = {4/[N (	 + 2)]}[1/(	+4)] [47]. δx is a characteristic length
scale of the density function. For Eq. (1), the time-dependent
PDF in terms of the trajectory ensemble is then given by

W (x,t) = 1

N

N∑
j=1

ρ[x − xj (t)]. (15)

The initial distributions can be generated by selecting the
random variables sampled using the given initial probability
distribution or a grid of initial conditions with a local density
proportional to the initial probability. Then, with the help
of KDE, a smooth function can be constructed. Finally, the
ensemble FET of Eq. (9) can be expressed as

ẋi = −U ′(xi) − D

W (xi)
Dα−1

x W (xi), (16)

where the fractional term can be given explicitly by

Dα−1
x W (xi) =

N∑
j=1

∂α−1ρ[x − xj (t)]

∂|x|α−1

∣∣∣∣
xi

. (17)

The interaction between the members of the ensemble is
reflected in the last term of Eq. (16).

The calculation of the fractional derivative of the kernel
function of Eq. (14) can be obtained analytically by employing
Eq. (4) and the Fourier transform. After some algebra, we have

Fα(x) ≡ Dα
x ρ(x)

= −Cα1F1

(
α + 1

2
,
3

2
; − x2

2σ 2
x

)
�

(
α − 1

2

)
x, (18)

where Cα = 2
α−3

2

π
(α − 1)σ−α−1

x with σx = hxδx , �(·) is the �

function and 1F1(a,b; z) is the Kummer confluent hypergeo-
metric function. Fα(x) in Eq. (18) can be considered as the
kernel of the Riesz fractional derivative and provides a more
convenient tool for representing the derivative term in Eq. (17).

Similarly, for the two-dimensional case, the time-dependent
PDF in terms of the trajectory ensemble can be written as

W (x,p,t) = 1

N

N∑
j=1

ρ[� − �j (t)]

= 1

N

N∑
j=1

ρ[x − xj (t),p − pj (t)]. (19)

Thus, the ensemble of FET for the two-dimensional case can
be written in the following form:

ẋi = pi

m
,

ṗi = −U ′(xi) − γpi − D

W (xi,pi,t)
Dα−1

p W (xi,pi,t). (20)

III. NUMERICAL RESULTS AND DISCUSSIONS

In this section we numerically investigate four typical cases
for the Lévy flight dynamics. We also discuss the dynamical
behaviors of anomalous barrier crossing in phase space.

A. Free Lévy flight

As the simple case we first consider the case of free
flight where the potential U (x) = 0. The anomalous diffusion
equation, for this case, is

∂W (x,t)

∂t
= DDα

x W (x,t). (21)

The free Lévy flight equation, Eq. (21), can be solved analyt-
ically in terms of Fox’s H function [10,48] under the initial
condition of W (x,0) = δ(x). With the theoretical framework
of the trajectory-based formulation in Sec. II, the ensemble of
FET of constituent trajectories can be expressed as

ẋi = −D

∑N
j=1 Fα[xi − xj (t)]∑N
j=1 ρ[xi − xj (t)]

, (22)

where the expressions of ρ[xi − xj (t)] and Fα[xi − xj (t)] are
given by Eqs. (14) and (18), respectively.

Figure 1 displays the exact numerical results and the results
of the trajectory-based formulation of PDFs of free Lévy
flight at different times t = 1,10 for α = 1,1.5,2, respectively.
The initial distribution is set as the Gaussian form W (x,0) =
1/

√
2πexp(−x2/2) and the diffusion factor D = 1. The exact

numerical results are obtained by employing FFT. From Fig. 1,
it can be seen that the numerical results of FET are in excellent
agreement with the exact numerical results.

B. Cauchy-Lévy flight in a quartic potential

An important point in understanding a random process is its
behavior in external fields. We now consider the Cauchy-Lévy
flight in the quartic potential U (x) = 1

4x4. In this case, the
stationary spatial distribution is characterized by a bimodality
sharp [49]. This peculiarity stems from the long jump’s
property of the particle in Lévy flight. Driving by Lévy noise,
the particle reaches very quickly to the region near the potential
wall, then it spends a long time diffusing around until a new
long jump in the opposite motion moves it to reach the other
side of the potential. This leads to the existence of two wells
on both sides of the axis of symmetry. For the typical case of
α = 1 and D = 1, we can obtain the stationary PDF by inverse
Fourier transform [50]

Wst(x) = 1

π (1 − x2 + x4)
. (23)

In Fig. 2, we present the results of PDF using the FET for
the long time evolution. The initial Gaussian distribution is set
as the form W (x,0) = 2/

√
2πexp(−2x2). Also, we plot the

analytical result of Eq. (23) in the figure. As the figure shows,
the agreement between the analytical expression of Eq. (23)
and the result of the FET is excellent. This further indicates the
accuracy and reliability of the trajectory-based formulation.

C. Escape dynamics from a metastable potential

In this section we investigate the escape dynamics of a
particle of Lévy type in a metastable potential. We here
use the cubic potential: U (x) = 1

2mω2x2 − 1
3bx3. By em-

ploying atomic units, we consider a particle of the mass
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FIG. 1. The PDF with different α values and time. Panel (a) is
for α = 2, panel (b) is for α = 1.5, and panel (c) is for α = 1. The
exact numerical results are shown in solid lines and the results of
trajectory-based formulation are in dots. The solid squares are for
time t = 1, and the dots are for time t = 10. The number of ensemble
trajectories is N = 200.

m = 2000 moves in the potential with ω = 0.01 and b =
0.2981. For these parameters, the height of the barrier is Uh =
0.015 at xh = 0.6709. Under these parameters, this system can
roughly mimic a hydrogen atom bound with approximately
two metastable bound states [27]. The characteristic length of
the initial Gaussian distribution is set as δx = √

h̄/2mω, with
h̄ = 1, and the corresponding central position of x0 = −0.2. In
our simulation, the diffusion coefficient is D = mkBT = 0.1,
where kB is the Boltzmann constant and T is the temperature,
the minimum of the potential is set as Umin = −0.015 for
x > 1.12556.

FIG. 2. The stationary PDF of the Cauchy-Lévy flight in a quartic
potential. The solid line is the results of Eq. (23), and the solid squares
are the results of the trajectory-based formulation using the number
of trajectories N = 200.

In Fig. 3, we display the time dependence of escape prob-
abilities for several α values. The exact numerical results are
obtained using the FFT method. The numerical probabilities of
the FET are calculated by counting the number of trajectories
that cross the top of the barrier. As shown in the figure, in the
large time scale, the agreements between them are perfect.
However, there are few distinctions in the short time scale
especially for small α values. Since the escape probability is
determined by the number of trajectories that have crossed
the barrier, the probability can take place only with the
first escaping of the trajectories. Thus, the trajectory-based
probability may lessen the exact result in short time scales,
but they will tend to accordance after the escape of a large
numbers of trajectories.

FIG. 3. The escape probabilities of the particle from the
metastable potential for several α values. The exact numerical results
are in solid lines and the solid squares (for α = 2), dots (for α = 1.5),
and solid triangles (for α = 1) are the numerical results of trajectory-
based formulation with N = 200, respectively.
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FIG. 4. The survival probabilities of the particle in the left
potential well for several α values. The thumbnail presents the
decay part of the survival probabilities and dashed lines represent
the exp[−(t − t0)/Tw] approximation to survival probabilities. The
parameters used here are t0 = 0.45 and Tw = 6.8,4.9,3.0 for α =
2,1.5,1 (from top to bottom), respectively.

D. Fractional Klein-Kramers equation

In this section we consider the full phase-space barrier
crossing in a bistable system which is often used to model
chemical reactions, nucleation processes, or the escape of a
particle from an external potential of finite height. The potential
is defined as U (x) = 4x4 − 8x2. In the numerical calculations,
the scale parameters are preseted to m = 1 and γ = 1. The
diffusion coefficient of D = 4 is equal to the barrier height. The
Gaussian distribution of the particle is located at the center of
the left well initially. The characteristic lengths of position and
momentum are set as δx = 0.25 and δp = 0.25. In addition, we
employ the ensemble of trajectories with N = 625 trajectories
for this system. The survival probability of the particle in the
left well can be calculated via

P (t) =
∫ +∞

−∞
dp

∫ 0

−∞
dxW (x,p,t). (24)

Figure 4 shows the time dependence of survival probabili-
ties for several α values. It is seen that the smaller the value of
α, the greater the escaping rate. This stems from the long-jump
properties of a particle undergoing Lévy flight, which causes
the divergence characteristics of the mean kinetic energy. As
shown in the inset of the figure, the thumbnail part displays
the most decayed part of the survival probabilities. The dashed
lines are plotted using Pe(t) = exp[−(t − t0)/Tw], where t0
and Tw stand for the initial decay time and the mean waiting
time, respectively. As it shows, the survival probabilities decay
exponentially which are in consistent with the conclusions in
Ref. [51].

To analyze further the characteristic behaviors of the barrier
crossing problem of Lévy types, in Fig. 5 we plot the evolution
graph of four typical cases of trajectories in phase space for
several α values. As shown in Fig. 5(a), all of the trajectories
have finished the crossing processes, but their speeds increase
with the decrease of α when they reach the top of the barrier.

−2 −1 0 1 2
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4
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2

4

p

−2 −1 0 1 2
x
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α=1.5
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(a) (b)

(d)(c)

FIG. 5. Four typical phase-space behaviors of several trajectories.
The dashed line and the black solid circle stand for the position of
the barrier of the double well potential and the initial position of the
trajectory, respectively.

That is, if the trajectory in normal diffusion goes over the
barrier by walk then the one in Lévy flight overpasses by
flight. In addition, in the same evolution time, the trajectory
with smaller α value will move further. This is due to the long
tail characteristics of the PDF of Lévy flight. In Fig. 5(b),
we show a different case: all the trajectories rotate spirally
with the exception of α = 1, which spreads more broadly.
Figure 5(c) displays another important property of the Lévy
flight trajectory. For the case of α = 1, the trajectory crosses
the barrier directly but it rapidly gets trapped in the bottom of
the left potential well. This can be attributed to the sharp peak
property of the PDF of Lévy flight, and with more trajectories
getting trapped in the bottom it can prevent the peak from being
sharp enough. In Fig. 5(d) we present the case that, although the
trajectory in normal diffusion crosses the barrier with highest
speed, the route of the normal trajectory is still the shortest one
compared to the Lévy flight cases.

IV. CONCLUSION

In this paper, we present a new trajectory-based formulation
for Lévy flight dynamics. By employing the theory of Kernel
density estimation (KDE) with the Gaussian kernel of PDF we
derive the fractional equation of trajectory (FET), and a new
kernel in terms of the confluent hypergeometric function is
derived to represent the fractional Riesz fractional derivative.
Numerical simulations are carried out for free Lévy flight,
Lévy flight in a quartic potential, and the escape problem
of Lévy types employing FET; all of the results of FET are
in excellent agreement with the exact results. In addition,
we investigate the full phase-space barrier crossing of Lévy
types by employing the trajectory-based formulation, or the
fractional equation of trajectory in phase space. It is shown that
the survival probability decays proximate exponentially and
the decay rate increases quickly with the decrease of α. This is
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consistent with the characteristic of a Lévy motion occurring
on a confined interval between two absorbing boundaries [52].
In phase space, by observing the motions of the trajectories,
the features of Lévy flight are interpreted vividly.

Recently, a measurement of the phase-space density dis-
tribution (PSDD) of ultra-cold 87Rb atoms performing 1D
anomalous diffusion was shown [53]. It was shown that the
position-velocity correlation function Cxv(t), obtained from
the PSDD, decays asymptotically as a function of time with
a power law. Based on our theoretical framework, we can in-
vestigate this dynamical anomalous correlation in phase space
to present their dynamical behaviors of anomalous diffusion
and the power-law asymptotic dynamics of the position and
velocity. Also, by following the dynamical evolution of the
trajectory, we could glance at the anomalous behaviors.

It is correct that the method works only within a certain
amount of time and within a finite spatial domain, but by
increasing the number of trajectories, we can increase the
accuracy. Future work can deal with the proposition of the
replacement of the Gaussian kernel with the adaptive kernel,
which might increase the level of accuracy of the method.
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