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First-passage times in renewal and nonrenewal systems
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Fluctuations in stochastic systems are usually characterized by full counting statistics, which analyzes the
distribution of the number of events taking place in the fixed time interval. In an alternative approach, the
distribution of the first-passage times, i.e., the time delays after which the counting variable reaches a certain
threshold value, is studied. This paper presents the approach to calculate the first-passage time distribution in
systems in which the analyzed current is associated with an arbitrary set of transitions within the Markovian
network. Using this approach, it is shown that when the subsequent first-passage times are uncorrelated, there
exist strict relations between the cumulants of the full counting statistics and the first-passage time distribution.
On the other hand, when the correlations of the first-passage times are present, their distribution may provide
additional information about the internal dynamics of the system in comparison to the full counting statistics; for
example, it may reveal the switching between different dynamical states of the system. Additionally, I show that
breaking of the fluctuation theorem for first-passage times may reveal the multicyclic nature of the Markovian
network.
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I. INTRODUCTION

Statistics of fluctuations in stochastic systems provide
important information about their dynamics and thermody-
namics. A noteworthy example of this are fluctuation theorems,
such as that of Jarzynski [1] or Crooks [2], which describe
the universal properties of nonequilibrium fluctuations of
thermodynamic quantities (cf. the review paper by Seifert [3]).
Apart from their fundamental importance in nonequilibrium
thermodynamics, they have been applied experimentally to
reconstruct the free-energy landscape of molecules [4–6].
Another example are the universal thermodynamic bounds on
cumulants of current fluctuations [7–13]. Fluctuations may
also provide information about the details of the internal dy-
namics. For example, cumulants of current fluctuations provide
a bound on the minimal number of states within the Markovian
network [14,15]. In some cases, they may even enable the
whole reconstruction of the generator of the dynamics of the
system [16]. An analysis of current fluctuations has already
been applied to the study of transport mechanisms in electronic
systems [17–26], biomolecular kinetics [14,27–29], or the
dynamics of photon emitters [30].

The statistics of fluctuations can be divided into fixed time
and fluctuating time statistics [31,32]. Fixed time statistics
includes full counting statistics [33–35], which determines the
probability distribution of the number of events taking place
in a given time interval. Analysis is usually focused on zero-
frequency counting statistics, which assumes a time interval
tending to infinity. Fluctuating time statistics includes, for
example, the waiting time distribution [36], which determines
the probability density of the time delays between events of
the same type.
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One may wonder whether fixed time and fluctuating time
statistics are equivalent, or if they provide distinct information.
If the observed process can be described by the renewal theory,
which assumes that the waiting times between subsequent
events are uncorrelated, the former appears to be true. For
example, there exist strict relations between cumulants of the
zero-frequency full counting statistics and the waiting time
distribution [37,38]. In Markovian systems, all elementary
processes, i.e., transitions between single states of the network,
are always renewal processes. However, the observed events
(such as the electron jumps, photon emissions, steps of the
molecular motor, etc.) are often associated with a set of two
or more elementary transitions; in such a case, the analyzed
process may exhibit a nonrenewal behavior. Such a situation
has already been investigated for the cases of enzymatic
reactions [39,40], molecular motors [41], emission of photons
by fluctuating emitters [42–45] or Josephson junctions [46],
electron transport through quantum dots [47,48] and molecules
[49], or statistics of neuronal spike trains [50]. When the
renewal theory no longer holds, no obvious relation between
fixed time and fluctuating time statistics exists, and thus both
approaches may provide complementary information [47]. It
has been shown recently, using the example of the double
quantum dot molecule, that in nonrenewal systems the waiting
time distribution may give information about the internal
dynamics that cannot be provided by the zero-frequency full
counting statistics at all [48]. This highlights the usefulness of
the analysis of fluctuating time statistics.

However, while the waiting time distribution is well suited
for an analysis of currents associated with unidirectional
transitions between states of the Markovian network, it does
not provide a consistent description of currents associated with
bidirectional transitions. Bidirectionality of transitions is, on
the other hand, required for thermodynamic consistency within
the formalism of stochastic thermodynamics [3]. As a matter
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of fact, many physical processes observed in nature, such as
the motion of molecular motors [51] or electron tunneling
through quantum dots [52], involve bidirectional transitions.
Fluctuating time statistics of bidirectional transitions can be,
however, characterized by using the first-passage time distribu-
tion [53–57]. In this approach, the distribution of time delays,
after which the observed quantity (for example, the number of
transitions) reaches some threshold value, is analyzed. Since
the observed quantity can be defined as a difference of the
number of transitions in different directions, the bidirectional
processes can be consistently investigated; for example, this
enables us to derive fluctuation theorems relating the first-
passage time distribution to entropy production [53–56].

It is then natural to wonder whether the first-passage time
distribution is in some way related to fixed time statistics.
This paper provides an answer to this question. I investigate
the first-passage times in a discrete Markovian network using
the approach introduced by Saito and Dhar [55], generalized
by me in Sec. II to describe both renewal and nonrenewal
systems. In Sec. III, for a special class of single-reset systems,
which are known to exhibit renewal behavior, the relations
between cumulants of the first-passage time distribution and
the full counting statistics are derived; they generalize the
previously known relations between the full counting statistics
and the waiting time distribution. I also provide a heuristic
argument for the generality of these relations for an arbitrary
renewal system, which is relegated to Appendix B. Section IV
shows that the derived formulas no longer hold in the case
of nonrenewal systems, and I present a way to characterize
the correlation between subsequent first-passage times. In
Sec. V, the difference between unicyclic and multicyclic
systems is briefly discussed by analyzing the validity of the
fluctuation theorem for the first-passage times. Section VI
contains conclusions following from my results. Appendix A
includes some mathematical details.

II. CALCULATION OF THE FIRST-PASSAGE TIME
DISTRIBUTION

I consider a Markovian network consisting of M discrete
states i connected to K thermal reservoirs α with correspond-
ing temperatures Tα . The transition rate from state j to state i is
denoted as kij . Each transition rate can be further decomposed
into a sum of rates corresponding to different reservoirs: kij =∑

α kα
ij . When each transition associated with each reservoir is

reversible (for each kα
ij the condition kα

ij /kα
ji > 0 is fulfilled),

the model is thermodynamically consistent [3]. The dynamics
of the system can be described by the master equation

ṗ(t) = Wp(t), (1)

where p(t) is the vector of state probabilities pi(t), and W
is the matrix containing the elements Wij = kij for i �= j

and Wii = −∑
j �=i kji . Here I focus on systems in which

quantum coherence is absent; however, the method can be
easily generalized to describe the coherent systems described
by means of the quantum master equation [58,59].

Let us now define two operators JF and JB corresponding
to two different sets of transitions kα

ij , later referred to as
“forward” and “backward” transitions. These operators may
correspond, for example, to electron jumps to (from) a chosen

lead or to the steps of the molecular motor in the forward
(backward) directions. Let us also define the jump number
n = nF − nB , where nF (nB) is a number of forward (back-
ward) transitions occurring in the time interval [0,t]. The
first-passage time distribution F (N |τ ) is then defined as the
probability density that the jump number n reaches the value
N in the moment τ for the first time. This function depends on
the initial state described by the vector p(0).

To determine F (N |τ ), the following procedure, developed
by Saito and Dhar [55], is used. First, the vector p(t) is
decomposed into a sum of vectors corresponding to a specific
value of the jump number:

p(t) =
∞∑

n=−∞
p(n)(t). (2)

It is also useful to define the generating function

p(z,t) =
∞∑

n=−∞
znp(n)(t), (3)

where z is a complex number. It is given by the following
equation:

p(z,t) = eWztp(0), (4)

which is a solution of the equation ṗ(z,t) = Wzp(z,t) with
Wz = W − JF − JB + JF z + JB/z. The n-conditioned prob-
ability vector p(n)(t) can then be written as

p(n)(t) = 1

2πi

∮
dz

zn+1
p(z,t) = T(n|t)p(0), (5)

where the integration goes along the unit circle around 0. T(n|t)
is the transition matrix defined in the following way:

T(n|t) = 1

2πi

∮
dz

zn+1
eWzt . (6)

It is also useful to consider its Laplace transform:

T̂(n|s) = 1

2πi

∮
dz

zn+1

1

s − Wz

= 1

2πi

∮
dz

zn+1

C(z,s)

det[s − Wz]
, (7)

where C(z,s) is the cofactor matrix of the matrix s − Wz.
Now, one can determine the first-passage time distribution.

In the paper of Saito and Dhar [55], the case when the counted
process is associated with a single transition between states of
the Markovian network, i.e., the matrices JF and JB contain
only one nonzero element, has been considered. Here the
general case when the jump operator is associated with an
arbitrary set of transitions within the network (i.e., the matrices
JF and JB may contain several nonzero elements in different
rows and columns) is analyzed. As a matter of fact, in many
physical systems the observed current is associated with such
complex jump operators [36,39,47,60]. Let us consider how the
jump-number-conditioned probability of state i in the moment
t , denoted as p

(N)
i (t), can be determined. First, according to

Eq. (5) one obtains

p
(N)
i (t) =

∑
j

Tij (N |t)pj (0), (8)
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where Tij (N |t) is the element of the matrix T(N |t) (represent-
ing the transition from the j to the i state) whereas pj (0) is the
element of the vector p(0).

On the other hand, one may observe that in the time interval
[0,t] many different stochastic trajectories (i.e., sequences of
transitions between states of the Markovian network) can be
realized. Let us use the following notation: a situation in which
state k is occupied and the jump number equals n is denoted as
(k,n). The probability of the state (k,n) in the moment t ′ is equal
to p

(n)
k (t ′). Each transition changes the state of the system, and it

may also change the jump number; such transitions are denoted
as (k,n) → (l,n′), where n′ ∈ {n − 1,n,n + 1}. Without a loss
of generality, let us now consider the case of N > 0. The state
(i,N ) can be reached through different stochastic trajectories
of the type

(j,0) → · · · → (k,N − 1) → (l,N ) → · · · → (i,N ). (9)

Here (k,N − 1) → (l,N ) denotes the transition in which the
jump number reaches the threshold value N for the first time.
Such trajectories can then be divided into different sets. Let
us consider the set of trajectories for which some transition
(k,N − 1) → (l,N ), with arbitrary k but specific l, takes place
in the moment τ . The probability density that the trajectory
belongs to such a set is equal to Fl(N |τ )Til(0|t − τ ). The first
factor, Fl(N |τ ), is the probability density that the transition
(k,N − 1) → (l,N ) (as above, with arbitrary k) takes place
in the moment τ ; i.e., this is the probability density that two
conditions are met: the jump number reaches N in the moment
τ for the first time, and this is associated with initialization
of state l. As the first-passage time distribution, the function
Fl(N |t) depends on the initial vector p(0). Summing such
functions over all states l, one obtains the total first-passage
time distribution:

F (N |τ ) =
∑

l

Fl(N |τ ). (10)

The second factor, Til(0|t − τ ), is the conditional probability
that if state l is occupied in the moment τ , then state i will
be occupied in the moment t without a change of the jump
number. The probability p

(N)
i (t) is then the sum of terms

Fl(N |τ )Til(0|t − τ ) over all sets of trajectories, which can be
expressed as

p
(N)
i (t) =

∑
l

∫ t

0
Fl(N |τ )Til(0|t − τ )dτ. (11)

The same result can be derived for N < 0 [with the
transition (k,N − 1) → (l,N ) in Eq. (9) replaced by
(k,N + 1) → (l,N )].

Comparing Eqs. (8) and (11), and changing index l → j in
Eq. (11), one obtains

∑
j

Tij (N |t)pj (0) =
∑

j

∫ t

0
Fj (N |τ )Tij (0|t − τ )dτ. (12)

One can write a system of such equations for different final
states i. Solving such a system, one may determine all functions
Fj (N |τ ) and then calculate the first-passage time distribution
F (N |τ ) using Eq. (10). This is the first main result of the paper.

Equation (12) is a Volterra equation of a convolution type,
which can be solved using the Laplace transform∑

j

T̂ij (N |s)pj (0) =
∑

j

F̂j (N |s)T̂ij (0|s). (13)

Functions F̂j (N |s) can then be obtained by solving a system
of linear equations. Here and throughout the paper, the “hat”
symbol is used to denote the Laplace transform. Equation (13)
can be written in the matrix form

T̂(N |s)p(0) = T̂(0|s)F̂(N |s), (14)

where the column vector F̂(N |s) is defined as F̂ =
(F̂1,F̂2, . . . )T . Multiplying both sides by T̂(0|s)−1, tracing both
sides, and applying Eq. (10), one obtains the solution

F̂ (N |s) = Tr[T̂(0|s)−1T̂(N |s)p(0)], (15)

which exhibits some similarity to the formula for the waiting
time distribution derived by Brandes [36].

It is often useful to consider cumulants of the first-passage
time distribution instead of the distribution itself. They can be
calculated in the following way:

κN
m = (−1)m lim

s→0+

[
dm

dsm
ln F̂ (N |s)

]
. (16)

One should be aware that since the matrix Wz is singular for
z = 1 (because a sum of all elements in each column equals 0),
the matrix T̂(n|s), and therefore the right-hand side of Eq. (15),
is not defined for s = 0 [cf. Eq (7)]. This is why the right-sided
limit is used in Eq. (16).

In practice, the most demanding part of the calculation is the
evaluation of the integral over a complex variable z in Eqs. (6)
and (7), which often requires the use of numerical methods. For
the calculation of the cumulants, it is convenient to expand the
function C(z,s)/ det[s − Wz] into a Taylor series about a very
small but finite value of s, and then numerically integrate every
element of the series over z to obtain the Taylor expansion of
T̂(n|s). When the system is far from equilibrium, it is often
sufficient to use only the first few elements of the series to
achieve a good convergence of the low-order cumulants.

In general, the vector of the initial state p(0) can be chosen
in an arbitrary way. However, to make the method comparable
to the previously considered approaches, the following con-
vention will be used from hereon to define p(0): when one
determines the distribution F (N |τ ) for the positive threshold
value (N > 0), the measurement of the single first-passage
time begins when some “forward” jump takes place (the initial
jump is not yet counted) and stops when the jump number
reaches N due to another “forward” jump. This is analogous
to the measurement of the waiting time distribution, in which
one determines the time delays between subsequent jumps
[36]. In the same way, when F (N |τ ) for N < 0 is analyzed,
the measurement begins when some “backward” jump occurs
and stops when the threshold N is reached due to another
“backward” transition. For such a convention, the vector of
the initial state is defined as

p(0) =
{

JF ps/Tr(JF ps) for N > 0,

JBps/Tr(JBps) for N < 0,
(17)
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where ps is the vector of the stationary state (solution of
the equation Wps = 0). When such a definition is used,
in the case of unidirectional transitions (JB = 0) the first-
passage time distribution F (1|τ ) is equivalent to the waiting
time distribution defined by Brandes [36].

III. FIRST-PASSAGE TIMES IN SINGLE-RESET SYSTEMS

In this section I consider single-reset systems, defined as
systems in which every “forward” jump leads to the initializa-
tion of the same state ν. This means that matrix JF contains
nonzero elements only in the νth row, and F (N |τ ) = Fν(N |τ )
for N > 0. As a matter of fact, many relevant systems, such as
quantum dots in the strong Coulomb blockade regime [36] or
simple molecular motors and enzymatic networks [39,61], are
single-reset ones. In such systems, in the case of unidirectional
transitions (JB = 0), the waiting time distribution exhibits
the renewal property, i.e., the subsequent waiting times are
uncorrelated [36,47]. Here I prove that the same is true for
the first-passage time distribution in the case of bidirectional
transitions. Moreover, the relations between cumulants of the
first-passage time distribution and the full counting statistics
are derived; they are generalizations of those relating the
cumulants of the full counting statistics and the waiting time
distribution in the renewal systems, which have been presented
in Refs. [37,38].

I focus on the situation when N > 0 and the current in the
forward direction is positive: Tr[(JF − JB)ps] > 0. According
to the applied convention [Eq. (17)], state ν is the initial state
(one should be aware that all results below are valid only when
this convention is used). For the case analyzed, Eq. (13) takes
the simple form

F̂ (N |s) = T̂νν(N |s)

T̂νν(0|s)
, (18)

where the element Tνν(n|t) of the transition matrix reads

T̂νν(n|s) = 1

2πi

∮
dz

zn+1

(
1

s − Wz

)
νν

(19)

= 1

2πi

∮
dz

zn+1

Cνν(z,s)

det[s − Wz]
.

In the matrix s − Wz only the νth row and the νth column
contain elements z and z−1, respectively. This has two impor-
tant consequences. First, the cofactor Cνν(z,s) = Cνν(s) is z-
independent. Secondly, the determinant det[s − Wz] contains
only elements proportional to z, z0, and z−1, and therefore it
can be expressed in the following way:

det[s − Wz] = a(s)
[z − z+(s)][z − z−(s)]

z
, (20)

where a(s) is some function of s, whereas z+(s) and z−(s)
are the higher and the smaller root of the equation det[s −
Wz] = 0. Derivation of Eq. (20) is based on the properties
of the determinants of the block matrices (see Appendix A).
Equation (19) can then be rewritten as

T̂νν(n|s) = f (s)

2πi

∮
dz

zn[z − z+(s)][z − z−(s)]
, (21)

where f (s) = a(s)Cνν(s).

FIG. 1. Plot of an exemplary function g(z) illustrating the prop-
erties of the functions z+(s) and z−(s), i.e., the larger and the smaller
root of the equation g(z) = s [cf. the discussion below Eq. (22)].

On the other hand, the equation

det[g(z) − Wz] = 0 (22)

defines the scaled cumulant-generating function g(z), which,
for systems having a unique stationary state, is a dominant
eigenvalue of the matrix Wz [34]. This function is more
commonly expressed in the form λ(l) = g(el); here its different
form is used to simplify some derivations. Comparing Eqs. (20)
and (22), one finds that z+(s) and z−(s) are two roots of the
equation g(z) = s: the equality g(z) = s is satisfied only when
the right-hand side of Eq. (20) is equal to 0, i.e., z = z+(s)
or z = z−(s). This indicates that either z = z+[g(z)] or z =
z−[g(z)] must hold. Because for real z the function g(z) is
convex and has a unique global minimum at z < 1 [34], the
smaller root of the equation g(z) = s must be lower than 1,
i.e., z−(s) < 1. Therefore, for z � 1 the relation z = z+[g(z)]
holds. Furthermore, since g(1) = 0 [34] one finds z+[g(1)] =
z+(0) = 1. Due to the convexity of the function g(z), the
relation g(z) > 0 holds for z > 1; as a consequence, z+(s) > 1
for s > 0. These properties are illustrated in Fig. 1.

Using the properties z+(s) > 1 and z−(s) < 1 for s >

0, one can solve the integral in Eq. (21). It is equal to
the (n − 1)th element of the Laurent series of the function
{[z − z+(s)][z − z−(s)]}−1, which can be found directly by
expanding [z − z+(s)]−1 = −[1/z+(s)]

∑∞
n=0[z/z+(s)]n and

[z − z−(s)]−1 = (1/z)
∑∞

n=0[z−(s)/z]n. Equation (21) can
then be expressed in the simple form

T̂νν(n|s) = f (s)z+(s)−n

z−(s) − z+(s)
. (23)

Finally, using Eq. (18) one obtains

F̂ (N |s) = [z+(s)]−N, (24)

which enables a relatively easy calculation of the first-passage
time distribution in the case of single-reset systems.

Let us now directly prove that in the single-reset systems,
the first-passage time distribution exhibits the renewal property
(i.e., the subsequent first-passage times are uncorrelated). The
general mathematical conditions of the renewal property can
be defined as follows: The joint first-passage time distribution,
i.e., the probability density F (N ′,N ′′|τ ′,τ ′′) that the jump
number reaches the threshold N ′ in the moment τ ′ and then the
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threshold N ′′ in the moment τ ′′, is a product of two single-time
first-passage time distributions:

F (N ′,N ′′|τ ′,τ ′′) = F (N ′|τ ′′)F (N ′′ − N ′|τ ′′ − τ ′). (25)

For a similar definition of the renewal property in the case of
the waiting time distribution, see Refs. [38,39,42]. As a result,

F (N ′′|τ ′′) =
∫ τ ′′

0
F (N ′,N ′′|τ ′,τ ′′)dτ ′

=
∫ τ ′′

0
F (N ′|τ ′)F (N ′′ − N ′|τ ′′ − τ ′)dτ ′, (26)

and therefore

F̂ (N ′′|s) = F̂ (N ′|s)F̂ (N ′′ − N ′|s), (27)

when again the Laplace transform was applied. Equation (27)
implies that F̂ (N |s) = F̂ (N − 1|s)F̂ (1|s) = · · · = F̂ (1|s)N .
This is the necessary and sufficient condition of the renewal
property. As one can observe, the relation F̂ (N |s) = F̂ (1|s)N

results directly from Eq. (24) [with F̂ (1|s) = [z+(s)]−1]. This
proves that the first-passage time distribution in the singlet-
reset systems exhibits the renewal property.

It is also apparent that in renewal systems, cumulants of the
first-passage time distribution are linear functions of N :

κN
m = (−1)m lim

s→0+

[
dm

dsm
ln F̂ (N |s)

]
= Nκ1

m, (28)

where again the relation F̂ (N |s) = F̂ (1|s)N was used.
Furthermore, substituting s → g(z) in Eq. (24) and using

the identity z+[g(z)] = z [see the discussion below Eq. (22)],
the following relations can be found:

F̂ [N |g(z)] − z−N = 0 for z > 1, (29)

ln F̂ [N |λ(l)] + Nl = 0 for l > 0, (30)

where, as previously mentioned, λ(l) = g(el). Since Eq. (30)
implies that the expression ln F̂ [N |λ(l)] + Nl is a constant
function of l for l > 0, one obtains

lim
l→0+

(
dm

dlm
{ln F̂ [N |λ(l)] + Nl}

)
= 0. (31)

Solving this equation for subsequent values of m, taking into
account that due to λ(0) = 0, λ′(0) > 0 [34], the following
relation results from Eq. (16):

κN
m = (−1)m lim

l→0+

{
dm

d[λ(l)]m
ln F̂ [N |λ(l)]

}
, (32)

and using the definition of the scaled cumulants of the full
counting statistics [16],

cm =
[

dm

dlm
λ(l)

]
l=0

, (33)

one can obtain the relations between the cumulants of the full
counting statistics and the first-passage time distribution. For

example, the first three relations read

c1 = N

κN
1

= N

〈τN 〉 , (34)

c2

c1
= N

κN
2(

κN
1

)2 = N

〈
�τ 2

N

〉
〈τN 〉2

, (35)

c3

c1
= N2

[
3

(
κN

2

)2(
κN

1

)4 − κN
3(

κN
1

)3

]
, (36)

where 〈τN 〉 and 〈�τ 2
N 〉 are the mean value and the variance

of the distribution F (N |τ ). This is the second main result of
the paper. As mentioned, similar relations for cumulants of the
waiting time distribution have been derived in Refs. [37,38];
here they are generalized to the case of bidirectional transitions.
In Appendix B, I present an alternative, heuristic derivation of
the relation between the first-passage time distribution and the
full counting statistics based only on the renewal property. It
may suggest that these relations apply also for general renewal
systems.

It should be noted that the relations between the first-
passage time distribution and the full counting statistics have
already been studied by Gingrich and Horowitz [60]. However,
the relations they presented were valid only in the limit of large
threshold N ; in contrast, the results presented here apply also
to the case of low threshold values.

IV. FIRST-PASSAGE TIMES IN NONRENEWAL SYSTEMS

In this section, I consider a model multireset system in
which the renewal property does not hold—the subsequent
first-passage times are correlated. The presence of the cor-
relations is directly confirmed by the analysis of cumulants
of the distribution F (N |τ ) for the subsequent values of N .
Moreover, I show that in the multireset system, the relation
given by Eq. (35) is violated. A joint analysis of the full
counting statistics and the first-passage time distribution may
therefore reveal the multireset nature of the system.

To analyze the nonrenewal behavior, I consider a model sys-
tem of two capacitively coupled quantum dots, each attached
to two separate leads [Fig. 2(a)]. Current fluctuations in similar
systems have already been studied both theoretically [62–64]
and experimentally [65,66]. In particular, a double-dot system
has been shown to exhibit nonrenewal behavior in Ref. [47],
where unidirectional electron transport was analyzed. Here,
bidirectional tunneling in the upper dot is enabled; for the sake
of simplicity, the voltage bias in the lower dot is assumed to be
large in comparison with kBT , such that transport through this
dot is unidirectional. I also assume that the intradot Coulomb
interaction is strong, such that only the zero and the single
occupancy of the dot is allowed. Furthermore, for the sake of
simplicity, the spin is neglected; experimentally, the effectively
spinless system can be obtained by applying a strong magnetic
field, which breaks the degeneracy of the spin levels [67]. Due
to the Coulomb interaction between the dots, tunneling through
the lower dot switches the charging energy in the upper dot
between the following two values: ε and ε + U . This results in
switching between two values of the conductance of the upper
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ΓL ΓR

γL γR

μL,TL μR,TRε

ΓL(1-fL)

γL γR γRγL
ΓLfL

ΓRfR

ΓRfR

ΓR(1-fR)

ΓR(1-fR)U

U

ΓLfLU

ΓL(1-fL)U

FIG. 2. (a) Scheme of the system of two capacitively coupled
quantum dots, each attached to two leads. Orbital energy in the upper
dot is equal to ε. The electrochemical potentials and temperatures of
the leads attached to the upper dot are equal to μα and Tα , respectively,
with α ∈ {L,R}. The transport in the lower dot is unidirectional,
occurring from the left to the right lead, due to the high voltage
bias. Interdot Coulomb interaction is equal to U . Tunneling rates in
the upper and lower dot, respectively, are denoted as 
α and γα . (b)
Four-state model of the dynamics of the system. Terms fα and f U

α are
Fermi distribution functions defined as fα = f [(ε − μα)/kBTα] and
f U

α = f [(ε + U − μα)/kBTα]. Red arrows with bullet tails denote
the forward transitions, and blue arrows with square tails denote the
backward transitions.

dot. Such a phenomenon is often referred to as telegraphic
switching [47].

In the weak tunnel coupling regime, the system can be
described by a Markovian master equation [62–64]. The four-
state model of the dynamics of the system is shown in Fig. 2(b).
One may notice a similarity of the studied model to the
ones describing the enzymatic networks with conformational
fluctuations [8,68,69]. The counted forward and backward
transitions are associated with tunneling between the upper
dot and the upper left lead. As one can notice, each such
transition is associated with two elementary transitions within
the Markovian model, corresponding to different charge states
of the lower dot.

I will focus on an analysis of two quantities, namely the
randomness parameter RN and the Fano factor (FF), which
characterize the variances of the first-passage time distribution
and the full counting statistics, respectively. They are defined as

RN = κN
2(

κN
1

)2 =
〈
�τ 2

N

〉
〈τN 〉2

, (37)

FF = c2

c1
= lim

t→∞
〈�n(t)2〉
〈n(t)〉 , (38)

FIG. 3. Randomness parameterRN multiplied by N in the double-
dot system as a function of N for different values of γ /
 (with γ =
γL = γR and 
 = 
L = 
R). All results for ε = 0, μL = 1, μR = −1,
kBTL = kBTR = 1, and U = 3.

where 〈n(t)〉 and 〈�n(t)2〉 are the mean value and the variance
of the jump number n(t) in the moment t . Due to the taken limit
t → ∞, the Fano factor characterizes the long-time behavior
of the current fluctuations. The randomness parameter, on the
other hand, can characterize the short-time dynamics of the
system.

Let us consider the dependence of the randomness param-
eter RN on N . Equation (28) implies that in renewal systems,
RN = R1/N . As Fig. 3 shows, in nonrenewal systems this
relation no longer holds. This is associated with the presence
of the correlation between subsequent waiting times. Variance
of the distribution F (2|τ ) is equal to〈

�τ 2
2

〉 = 〈(τ1 + τ ′
1 − 2〈τ1〉)2〉 (39)

= 2
〈
�τ 2

1

〉 + 2〈�τ1�τ ′
1〉,

where τ1 and τ ′
1 are two subsequent first-passage times for

N = 1. It is apparent that it depends on the cross-correlation
term 2〈�τ1�τ ′

1〉. The randomness parameter R2 can then be
expressed as

R2 = R1
1 + NCC

2
, (40)

where

NCC = 〈�τ1�τ ′
1〉〈

�τ 2
1

〉 (41)

is the normalized cross-correlation of two subsequent first-
passage times. For the analyzed system, R2 � R1/2, and thus
the NCC is non-negative. The positive cross-correlation of
first-passage times results from switching between the “fast”
and the “slow” transport channels due to tunneling in the
lower dot—when the “fast” channel is open, two subsequent
first-passage times tend to be shorter than the mean and vice
versa. A similar behavior of waiting times in the case of
unidirectional transport has been observed in Ref. [47].

As Eq. (35) implies, in single-reset systems there exists a
strict relation between the Fano factor and the randomness
parameters. Figure 4 shows that in the analyzed double-dot
system, this relation no longer holds. The difference between
the Fano factor and the randomness parameter R1 depends
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FIG. 4. The Fano factor (FF) (red solid line) and the randomness
parameter R1 (black dots) in the double-dot system as a function
of (a) U for kBTL = kBTR = 1, and (b) kBT (= kBTL = kBTR) for
U = 2. All results for ε = 0, μL = 1, μR = −1, 
L = 
R = 1, and
γL = γR = 0.05.

on the value of the intradot Coulomb interaction [Fig. 4(a)].
For U = 0 both parameters are equal, since the transport in
the upper dot is not affected by the dynamics of the lower
dot. The difference is largest for intermediate values of U . For
U → ∞, the parameters become equal again because transport
is completely blocked when the lower dot is occupied, and
the system is again a renewal system—there is no transport
through a “slow” channel, and therefore there are no series of
subsequent “long” first-passage times.

The dependence of the analyzed quantities on the tem-
perature is shown in Fig. 4(b). One can observe that for
kBT > U , the Fano factor and the randomness parameter R1

are approximately equal. This results from strong thermal
fluctuations that mask the influence of the Coulomb interaction
on the transport. Current fluctuations in this regime result
mainly from the thermal noise, and telegraphic switching
is not observed. The inequality of the Fano factor and the
randomness parameter can be observed for kBT < U when
current fluctuations are strongly affected by nonthermal effects
such as telegraphic switching.

V. VIOLATION OF THE FLUCTUATION THEOREM
IN MULTICYCLIC SYSTEMS

As mentioned in Sec. I, the current fluctuation statistics can
be used to infer the structure and dynamics of the Markovian
network. The previous sections have shown that the first-
passage time distribution can be used to distinguish between

ΓR
BΓL

B

ΓL
A ΓR

A

μL,TL

μR,TR

εA

εB

ΓL(1-fL)

ΓLfL

ΓRfR

A B

A

ΓR(1-fR)
A

A

A ΓL(1-fL)

ΓLfL

ΓRfR
B

ΓR(1-fR)
B

B

B

A

A

A

A B

B

B

B

0

FIG. 5. (a) Scheme of the transport through a single quantum
dot. The cases when a single level A or two levels A and B are
available for transport are considered. The energies of the dot levels
A and B are equal to εA and εB . The dot is attached to two leads with
electrochemical potentials μα and temperatures Tα with α ∈ {L,R}.
Tunneling rates between the leads and specific levels are denoted as

i

α with i ∈ {A,B}. (b) Three-state Markovian model of the dynamics
of the system. Terms f i

α are the Fermi distribution functions defined
as f i

α = f [(εi − μα)/kBTα]. Solid (dashed) lines correspond to the
tunneling through the level A (B). Red arrows with bullet tails denote
the forward transitions, while blue arrows with square tails denote the
backward transitions.

renewal and nonrenewal systems; this may enable us, for
example, to infer the presence of the switching mechanism.
This section shows that it can also be applied to distinguish be-
tween unicyclic and multicyclic systems. These terms have the
following meaning: According to the decomposition scheme
of Schnakenberg [70], in each Markovian network one can
identify a complete set of fundamental cycles. Each cycle is
associated with an affinityAβ . If there is only one fundamental
cycle, the system is referred to as a unicyclic one; otherwise, it
is a multicyclic one. In the case of unidirectional transitions, it
has been shown that the multicyclic nature of the system can be
inferred via an analysis of higher moments of the waiting time
distribution [15]. Here I show that in the case of a bidirectional
transition, this can be revealed by breaking the fluctuation
theorem that is valid for unicyclic systems, derived by Bauer
and Cornu [53].

The difference between unicyclic and multicyclic systems
will be discussed on the basis of the model of transport through
a single spinless quantum dot in a strong Coulomb blockade
regime (i.e., with only a single occupancy of the dot allowed),
with either one or two levels [Fig. 5(a)]. As a Markovian
model of the dynamics presented in Fig. 5(b) shows, tunneling
through a single-level dot (with only the level A available for
the transport) is associated with a single thermodynamic cycle
(denoted by the solid lines). The upper (lower) branch of the
cycle is associated with tunneling through the right (left) lead.
On the other hand, tunneling through a two-level quantum
dot is described by a bicyclic model, with separate cycles
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FIG. 6. First-passage time distribution F (1|τ ) (orange solid
line) and the normalized first-passage time distribution F̃ (−1|τ ) =
F (−1|τ )/[

∫ ∞
0 F (−1|τ )dτ ] (black dashed line) for (a) a single-level

dot with εA = 0 and 
A
L = 
A

R = 
, and (b) a two-level dot with
εA = 0, εB = −2, and 
A

L = 
A
R = 
B

L = 
B
L = 
. All results for

μL = 1, μR = −1, kBTL = 1, and kBTR = 2.

corresponding to tunneling through levels A (solid lines) and B

(dashed lines). On can notice that both systems are single-reset
ones, since after each tunneling from the dot the system returns
to the same state 0.

First, I focus on the case of the unicyclic single-level dot
system. Here the forward and backward transitions correspond
to jumps in the clockwise and anticlockwise direction within
the cycle. The first-passage time distributions for forward
and backward transitions are then related by the fluctuation
theorem of Bauer and Cornu [53],

F (1|τ )

F (−1|τ )
= eA, (42)

where A is the affinity of the cycle measured in the clockwise
direction [here A = (μL − εA)/kBTL + (εA − μR)/kBTR].
Figure 6(a) illustrates the validity of this theorem.

As Fig. 6(b) shows, in the case of the two-level dot
distributions, F (1|τ ) and F (−1|τ ) are not proportional to each
other any longer [F (1|τ )/F (−1|τ ) �= const]. This is due to the
fact that the counted transition corresponds now to jumps in two
distinct cycles associated with different affinities. Violation of
the fluctuation theorem for the first-passage times given by
Eq. (42) may therefore reveal the multicyclic character of the
system. It should be noted that this can also be inferred from
breaking of the Gallavotti-Cohen symmetry for nonentropic
currents [71].

VI. CONCLUSIONS

First-passage time distribution, i.e., the distribution of time
delays after which the measured quantity reaches some target
value, has been studied in systems described by discrete
Markovian networks by means of the master equation. In
Sec. II, the equation enabling us to determine the first-passage
time distribution for currents associated with arbitrary sets of
transitions within the system has been derived. In Secs. III
and IV, this equation has been applied to study the relation
between the first-passage time distribution and full counting
statistics in system in which subsequent first-passage times
are either correlated or uncorrelated (referred to as renewal
and nonrenewal systems, respectively). In single-reset systems,
which are renewal systems, the cumulants of the first-passage
time distribution are shown to be related to the cumulants
of full counting statistics. The obtained relations no longer
hold in the case of nonrenewal systems. Moreover, correlations
between subsequent first-passage times can be investigated by
measuring cumulants of the first-passage time distribution for
different target values.

Furthermore, in Sec. V the behavior of the first-passage
time distribution in unicyclic and multicyclic systems has
been investigated. In unicyclic systems the fluctuation theorem
holds, which concerns the first-passage time distributions for
target values of different signs. In multicyclic systems this
theorem, in general, no longer holds. Therefore, the first-
passage time distribution may be used to infer the multicyclic
nature of the Markovian network.

The first-passage time distribution may therefore be a useful
tool to characterize the statistical kinetics of biomolecular
reactions or electronic transport in mesoscopic systems. It
seems to be particularly valuable in the case of nonrenewal sys-
tems, when it provides additional information in comparison
to that provided by full counting statistics. An analysis of the
nonrenewal behavior may reveal and characterize the hidden
internal dynamics of the system, which may be associated, for
example, with the switching between the conformational states
of the molecule [39,68,69], or charge [22,47], spin [23,48], or
phonon [19,26,49] dynamics in electronic systems.

There are still some open issues. For example, cumulants of
the full counting statistics have been shown to provide bounds
on minimal entropy production in the system [7–13]. A similar
bound was also derived for the first-passage time distribution
in the limit of a large threshold; it is equivalent to the one
provided by the zero-frequency full counting statistics [60]. In
nonrenewal systems, it would be worthwhile to check whether
similar but independent (and possibly tighter) bounds can be
provided by the cumulants of the first-passage time distribution
for an arbitrary threshold. However, due to the technical
difficulty of determining the analytical form of the first-passage
time distribution in multireset systems (associated with the
necessity of calculating the complex integrals), the derivation
of such bounds represents a serious mathematical challenge.
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APPENDIX A: DERIVATION OF EQ. (20)

First, let us choose ν = M , where M is the rank of the matrix
Wz. The matrix s − Wz can then be written in the block form

s − Wz =
(

U Z−
Z+ s − WMM

)
, (A1)

where WMM = −∑
i<M kiM , and U is the matrix of rank

M − 1. Only Z+ and Z− matrix vectors contain elements pro-
portional to z or z−1. Using the properties of the determinants
of the block matrices [72], one obtains

det[s − Wz] = det U det[s − WMM − Z+U−1Z−]

= det U
[
s − WMM

−
∑

i,j<M

(
kF
Miz + kR

Mi

)(
kB
jM/z + kR

jM

)
Vij

]
,

(A2)

where terms Vij are elements of the matrix V = U−1, kF
Mi +

kR
Mi = kMi and kB

jM + kR
jM = kjM . This expression contains

only elements proportional to z, z0, and z−1, and therefore it
can be expressed as in Eq. (20).

APPENDIX B: ALTERNATIVE DERIVATION OF EQ. (29)

Here I provide a heuristic argument for the applicability of
Eqs. (34)–(36) to any systems that exhibit the renewal property.
First, I notice that if the transitions in the forward direction
are more probable than the reverse process, for sufficiently
large times n-conditioned probabilities p(n)(t) = Tr[p(n)(t)]
for n < 0 can be neglected, and the generating function

p(z,t) = Tr[p(z,t)] can be expressed as

p(z,t) =
∞∑

n=0

znp(n)(t). (B1)

Secondly, I assume that probabilities p(n)(t) for n > 0 can be
expressed by an equation similar to Eq. (18):

p(n)(t) =
∫ t

0
F (n|τ )p(0)(t − τ )dτ. (B2)

This assumption may be considered as a definition of the
renewal property. Then I apply the Laplace transform to
Eq. (B1) and use the property F̂ (n|s) = F̂ (1|s)n. In this way,
one obtains

p(z,s) =
∞∑

n=0

znp(n)(s) =
∞∑

n=0

p(0)(s)F̂ (1|s)nzn

= p(0)(s)

1 − F̂ (1|s)z
. (B3)

On the other hand, for sufficiently large times p(z,t) =
exp[g(z)t] [34]. Applying the Laplace transform, one obtains

p(z,s) = 1

s − g(z)
. (B4)

Now I look for a condition in which both expressions for
p(z,s) given by Eqs. (B3) and (B4) are equivalent. I make
a bold assumption: the condition is met when both expres-
sions are singular, i.e., when s = g(z) and 1 − F̂ (1|s)z =
1 − F̂ [1|g(z)]z = 0. This leads to Eq. (29) from which
Eqs. (34)–(36) can be derived.

It should be noticed that during the derivation, I made
assumptions that are not easy to justify. For example, the
Laplace transform is applied to functions that approximate
p(z,t) for large times; the Laplace transform, on the other
hand, involves the integration over the whole time domain.
Therefore, this heuristic argument should not be considered as
a formal proof.
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