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Temperature anisotropy at equilibrium reveals nonlocal entropic
contributions to interfacial properties
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Density gradient theory for fluids has played a key role in the study of interfacial phenomena for a century. In
this work, we revisit its fundamentals by examining the vapor-liquid interface of argon, represented by the cut and
shifted Lennard-Jones fluid. The starting point has traditionally been a Helmholtz energy functional using mass
densities as arguments. By using rather the internal energy as starting point and including the entropy density
as an additional argument, following thereby the phenomenological approach from classical thermodynamics,
the extended theory suggests that the configurational part of the temperature has different contributions from
the parallel and perpendicular directions at the interface, even at equilibrium. We find a similar anisotropy by
examining the configurational temperature in molecular dynamics simulations and obtain a qualitative agreement
between theory and simulations. The extended theory shows that the temperature anisotropy originates in nonlocal
entropic contributions, which are currently missing from the classical theory. The nonlocal entropic contributions
discussed in this work are likely to play a role in the description of both equilibrium and nonequilibrium properties
of interfaces. At equilibrium, they influence the temperature- and curvature-dependence of the surface tension.
Across the vapor-liquid interface of the Lennard Jones fluid, we find that the maximum in the temperature
anisotropy coincides precisely with the maximum in the thermal resistivity relative to the equimolar surface,
where the integral of the thermal resistivity gives the Kapitza resistance. This links the temperature anisotropy at
equilibrium to the Kapitza resistance of the vapor-liquid interface at nonequilibrium.
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I. INTRODUCTION

In the narrow interfacial region, properties change dramati-
cally in only a few nanometers. Interfacial properties are crucial
for a wide variety of phenomena, ranging from DNA repli-
cation [1] to volcano eruptions [2] and weather forecasts [3].
The time-average local structure of interfaces can be described
by classical density functional theory for fluids, which has
played a key role in the study of interfacial phenomena for
more than a century [4,5]. The first approximation to classical
density functional theory is called density gradient theory or
square gradient theory (SGT). Such theories have provided
insight into how the surface tension of fluids depends on
temperature, curvature, and composition [6–8]. They have also
been used to study nonequilibrium properties of interfaces such
as the temperature- and curvature-dependence of the interface
transfer coefficients [9–12].

There is still a disagreement between the theoretical pre-
dictions from classical density functional theory and exper-
imental values for the surface tension. This discrepancy has
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been attributed to temperature-dependent influence parameters
[13] or to capillary waves [14]. In this work we will show,
by an extension of SGT, how the classical expression for
the surface tension is missing terms originating in nonlocal
entropic contributions. These contributions could influence
both the temperature- and curvature-dependence of the surface
tension and may account for part of the discrepancy between
experiments and theory.

The extended theory presented in this work suggests that
the configurational part of the temperature has anisotropic
contributions across the interface, even under equilibrium
conditions. Even though temperature is a familiar concept
to most, it is debated in the literature [15–27]. Frequent
discussions debate whether the temperature of a nucleating
cluster is higher or lower than the temperature of the sur-
rounding vapor [25–27], or if the temperature of an imploding
bubble can become sufficiently high to trigger thermonuclear
fusion [21–23]. Further progress on these topics requires the
temperature to be properly understood in highly heterogeneous
systems such as at interfaces. We test our extension of SGT by
performing molecular dynamics (MD) simulations and find
a temperature anisotropy that agrees qualitatively with the
theoretical predictions.
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The results from our simulations also indicate a surprising
link between the anisotropy in the configurational temperature
in equilibrium simulations and the Kapitza resistance, which
quantifies the interfacial resistance to heat transfer under
nonequilibrium conditions [28–33]. For solid-solid and solid-
liquid interfaces, the Kapitza resistance has been described
theoretically in terms of the acoustic and diffuse mismatch
models [34]. For the vapor-liquid interface, however, the
Kapitza resistance remains poorly understood, despite its
importance in evaporation and condensation [35]. For instance,
according to kinetic gas theory [35], the Kapitza resistance
gives a temperature-jump that is located in the so-called
“Knudsen layer.” Kinetic gas theory correctly predicts that
the temperature-jump is at the vapor-side of the interface;
however, the predicted magnitudes are far from the values
found in experiments or simulations, even for simple fluids
[20,36]. Moreover, while nonequilibrium molecular dynamics
simulations show that the layer containing the temperature-
jump decreases in size with decreasing temperature, kinetic
gas theory predicts the opposite behavior [35,37].

Obtaining the Kapitza resistance with SGT requires today
a semiempirical fit of the local thermal resistivity function
by utilizing results from nonequilibrium molecular dynamics
simulations [11,37]. In this work, we connect the temperature
jump at nonequilibrium to equilibrium properties of the
interface. This sheds new light on the origin of the Kapitza
resistance of the vapor-liquid interface and may reveal a route
for further development of density functional theory for fluids
to make the theory predictive, not only for the surface tension,
but also for the transport properties of the interface such as
the Kapitza resistance.

The paper will be structured as follows. In Sec. II, we revisit
the fundamentals of density gradient theory and elaborate why
the classical theory is missing nonlocal entropic contributions.
It will also be explained why these are expected to result in
anisotropic contributions to the configurational temperature
across interfaces. We give in Sec. III the technical details
about our MD simulations. In Sec. IV we present the results,
where we show that the nonlocal entropic contributions that are
currently missing from the classical theory play a role in the
description of both equilibrium and nonequilibrium interfacial
properties. We shall demonstrate how a closer investigation of
the configurational temperature can be used to elucidate a part
of the interfacial structure that has hitherto remained hidden.
Eventually, concluding remarks are given in Sec. V.

II. THEORY

In this section, we shall revisit the fundamentals of square
gradient theory (SGT). We expect the general arguments par-
ticularized for SGT to apply also to more sophisticated variants
of density functional theory. SGT is capable of reproducing re-
sults from MD simulations to a good accuracy for many fluids.
In fact, for the particular fluid we consider in this work (ar-
gon/Lennard Jones fluid), the SGT approximation gives results
which rival those from more sophisticated formulations (see,
for instance, Refs. [5,38]). Rather than using the Helmholtz
energy as starting point like in the classical theory [39,40], we
shall in Sec. II A use the internal energy as starting point and in-
troduce the entropy density as additional variable. In Sec. II B,

we elaborate why the extended theory suggests that the config-
urational part of the temperature has anisotropic contributions
across the interface. Moreover, we show how the validity of
the theory can be evaluated by analyzing the kinetic and con-
figurational temperatures in molecular dynamics simulations.

A. Introducing the entropy density as a variable in the
thermodynamic description of interfaces

In homogeneous systems, classical thermodynamics states
that the internal energy density of a fluid is a function of
the mass densities and the entropy density [41]. On the
contrary, density functional theory for fluids has been based
on functional derivatives with respect to only mass densities
for the last century, following van der Waal’s pioneering work
on the topic [4,39,42–44]. The main justification for using
the Helmholtz energy as starting point is that the temperature
and mass densities are then canonical variables [41]. Since the
temperature is constant in space at equilibrium, only the mass
densities are relevant variables.

In this work, we follow the phenomenological approach
from classical thermodynamics and use rather the internal
energy as starting point. By properly Legendre transforming
the internal energy functional, we will demonstrate that the
Legendre transform of the internal energy to the Helmholtz
energy does not remove the entropic contributions with a non-
local dependence. Therefore, part of the information about the
structure of the interface, which in Sec. IV will be elucidated
with MD simulations, will be lost if the Helmholtz energy is
used as starting point.

1. A thermodynamic framework decomposed into
kinetic and configurational variables

The Hamiltonian of a classical fluid with N particles can be
written as

H (�) = K (p1, . . . ,p3N ) + V (q1, . . . ,q3N ), (1)

where � = (p1, . . . ,p3N,q1, . . . ,q3N ) is the phase-space vec-
tor with boldface symbols referring to vector quantities, qi and
pi are the generalized coordinates and momenta, K is the
kinetic energy, and V is the potential energy of the fluid. In the
following, we shall decompose some of the thermodynamic
variables into their kinetic and configurational contributions.
A contribution is defined to be kinetic if it depends only on the
generalized momenta and configurational if it depends only
on the generalized coordinates. In the canonical ensemble,
statistical mechanics gives that the internal energy density of
a uniform fluid (subscript 0) can be written as [45,46]

u0 = −
(

ln
(
Z0(k)

)
βV

)
+ T

s(k)︷ ︸︸ ︷(
∂

∂T

(
ln

(
Z0(k)

)
βV

))
︸ ︷︷ ︸

u0(k)

+

−
(

ln
(
Z0(c)

)
βV

)
+ T

s(c)︷ ︸︸ ︷(
∂

∂T

(
ln

(
Z0(c)

)
βV

))
︸ ︷︷ ︸

u0(c)

, (2)
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where subscripts “k” and “c” refer to the kinetic and configura-
tional contributions, Z is the partition function in the canonical
ensemble, T is the temperature, s is the entropy density, and
V the total volume. Furthermore,

β = 1

kBT
, (3)

Z0(k) = 1

h3NN !

∫
e−βK dp1... dp3N, (4)

Z0(c) =
∫

e−βV dq1... dq3N, (5)

where kB is Boltzmann’s constant and h is Planck’s constant.
Here, it has been used that Z is the product between the
kinetic and configurational partition functions, Z0(k) and Z0(c).
Equation (2) shows that in the canonical ensemble, it is possible
to decompose the internal energy densityu0 = u0(k) + u0(c) and
the entropy density s = sk + sc into their kinetic and config-
urational contributions, where u0(ρ,s(k),s(c)), u0(k)(ρ,s(k)), and
u0(c)(ρ,s(c)) for a single-component fluid, with ρ being the mass
density.

2. Extended square gradient theory

Cahn and Hilliard explained why the local argument of
the energy functional of a heterogeneous system to a first
approximation should contain terms with density gradients
squared [47]. Following Rowlinson and Widom [4], we include
also the entropy density, s, as a variable in the internal energy
functional of SGT:

U [sk(r),sc(r),ρ(r)]

=
∫

V

dr usgt(r)

=
∫

V

dr[u0(k)(sk(r),ρ(r)) + u0(c)(sc(r),ρ(r))

+ κρs∇ρ(r) · ∇sc(r) + 0.5κρ |∇ρ(r)|2
+ 0.5κs |∇sc(r)|2], (6)

where r the position vector. We shall hereby refer to this
formalism as extended SGT. The influence parameters κρ , κρs ,
κs can in principle depend also on the densities (s and ρ), but we
have in this work kept them constant as a first approximation.

The gradient terms represent nonlocal contributions to the
energy functional. We have in Eq. (6) decomposed the internal
energy density and the entropy density into their kinetic and
configurational parts, in accordance with the discussion in
Sec. II A 1. In a homogeneous system, this decomposition
is unnecessary. The argument for decomposition of these
variables in a heterogeneous system is that the kinetic part of
the Hamiltonian, K , is strictly local because it only involves
particle momenta. Therefore, only the configurational part of
the entropy density should give nonlocal gradient contributions
in the extended SGT framework.

In the canonical ensemble, i.e., at fixed temperature, T , vol-
ume V , and number of particles N , equilibrium is characterized
by a constrained minimum in the Helmholtz energy, which
results from Legendre transforming the internal energy [41].

This corresponds to

δA = δU − T δ

∫
V

drs(r) − λδ

∫
V

drρ(r) = 0, (7)

where the last term on the right-hand side takes into account the
fixed total number of particles and λ is a Lagrange multiplier.
The necessary conditions for a minimum are given by the
Euler-Lagrange equations:

T = Tsgt(k) = ∂u0(k)(r)

∂sk(r)
, (8)

T = Tsgt(c) = ∂u0(c)(r)

∂sc(r)
− κs∇2sc(r) − κρs∇2ρ(r), (9)

μ = μsgt = ∂u0(r)

∂ρ(r)
− κρs∇2sc(r) − κρ∇2ρ(r), (10)

where we have added the subscripts “k” and “c” to the tempera-
tures in Eqs. (8) and (9), since they are based only on the kinetic
and the configurational part of the Hamiltonian, respectively.
Furthermore, we identify the Lagrange multiplier to be the
chemical potential, λ = μ. The present framework differs
from the traditional approach mainly by using the internal
energy as starting point rather than the Helmholtz energy
[39,41]. It is evident from Eq. (7) that the Legendre transform
−T δ

∫
V

drs(r) keeps the nonlocal entropic contributions of
the functional unchanged, just like the term −μδ

∫
V

drρ(r)
conserves the nonlocal dependence with respect to ρ in the
classical theory. We define the scalar pressure as

psgt(r) = −usgt(r) + sk(r)Tsgt(k)

+ sc(r)Tsgt(c) + ρ(r)μsgt. (11)

At equilibrium, the momentum balance gives

∇psgt(r) + ∇ · σ (r) = 0, (12)

where σ is the tension tensor. We further determine σ by
following a similar procedure as Yang et al. [48]: Equation (8)
was multiplied with ∇sk, Eq. (9) with ∇sc, Eq. (10) with ∇ρ

and the sum was taken. By using Eq. (11) and tensor algebra,
the gradient ∇psgt can be separated out and the tension tensor
can be determined by use of Eq. (12):

σ (r) = κρ∇ρ(r)∇ρ(r)

+ 2κρs∇ρ(r)∇sc(r) + κs∇sc(r)∇sc(r). (13)

The expression in Eq. (13) reproduces the tension tensor
from classical SGT with κρs = 0 and κs = 0. For the planar
interface, we can now evaluate the pressure tensor, where the
parallel and perpendicular components of the pressure tensor
are

p‖(z) = psgt(z), (14)

p⊥(z) = psgt(z) + σzz(z), (15)

and the surface tension is

γ =
∫ ∞

−∞
dz[p⊥(z) − p‖(z)] =

∫ ∞

−∞
dz[σzz(z)], (16)

where z is the direction perpendicular to the interface. The
terms in Eq. (13) with gradients of the configurational entropy
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density represent new contributions to the surface tension that
are missing from the classical theory. They are of a different
origin and have a different behavior than the first term on the
right-hand side of Eq. (13) used in classical SGT.

B. A theoretical justification for a temperature with anisotropic
spatial contributions in heterogeneous systems

We shall next particularize to the planar interface, where
(x,y ∈‖) are the directions parallel and (z ∈⊥) is the direction
perpendicular to the interface. In this system, properties such
as the densities and the parallel component of the pressure
tensor vary only in the direction perpendicular to the interface,
i.e., in the z direction. At every position z, we assume that the
scalar temperature, T (z), can be decomposed into independent
contributions, ξx,ξy,ξz, from the x,y,z directions, respectively,
where

T (z) = ξx(z) + ξy(z) + ξz(z). (17)

A closer inspection of the contributions ξx(z), ξy(z), ξz(z) from
theory and simulations can be used as a route to evaluate
the influence of nonlocal entropic contributions on interfacial
properties. We discuss the predictions from the extended SGT
in Sec. II B 1 and how these predictions can be tested with MD
simulations in Sec. II B 2.

1. Spatial contributions to the temperature
in square gradient theory

A key assumption in SGT is that the terms and properties
that depend only on local variables behave like in a homo-
geneous fluid (subscript 0) and can thus be represented by
an equation of state. It is clear that ξx = ξy = ξz in the bulk
of a homogeneous fluid at equilibrium. By using this same
assumption, we find that the first term on the right-hand sides
of Eqs. (8) and (9) receives the same contribution from all
directions since it is local. The gradient terms on the other
hand, contribute only along the direction of the gradient, i.e.,
perpendicular to the interface. This means that for Tsgt(k), the
extended SGT formulation presented in Sec. II A suggests that

ξsgt(k),‖(z) = ξsgt(k),⊥(z) = 1

3

∂u0(k)(z)

∂sk(z)
, (18)

i.e., that there is no anisotropy in the contributions to the
kinetic part of the temperature. For Tsgt(c) on the other hand,
the extended SGT formalism suggests that

ξsgt(c),‖(z) = 1

3

∂u0(c)(z)

∂sc(z)
, (19)

ξsgt(c),⊥(z) = 1

3

∂u0(c)(z)

∂sc(z)

− κs

∂2sc(z)

∂z2
− κρs

∂2ρ(z)

∂z2
, (20)

where the extra terms in Eq. (20) are consequences of includ-
ing the entropy density as a variable in the thermodynamic
description [see Eq. (9)].

2. Spatial contributions to the temperature
in molecular simulations

Molecular dynamics simulations give the possibility to
independently evaluate the contributions in Eq. (17) from
information about the particle momenta as well as the particle
interaction forces. Jepps et al. proved that the relation [49]

1

kBT
= 〈∇� · B(�)〉

〈∇�H (�) · B(�)〉 , (21)

could be used to generate microscopic expressions for
the temperature by using an arbitrary vector field, B.
Here, 〈.〉 represents the time average in MD simula-
tions and we define the phase space derivative: ∇� ≡
(γp

∂
∂p1

, . . . γp
∂

∂p3N
,γq

∂
∂q1

, . . . γq
∂

∂q3N
). Following Morriss and

Rondoni [15], we have multiplied the components of ∇� ,
operating on the generalized momenta and coordinates, with γp

and γq respectively to make it dimensionless. The information
contained in the Hamiltonian of the fluid [Eq. (1)] consists
of a kinetic part (K ) and a configurational part (V ). Using
B(�) = ∇�K in Eq. (21), we obtain the standard kinetic
temperature:

Tmd(k)(z) =

ξmd(k),‖︷ ︸︸ ︷〈 ∑
i∈�z

p2
i,x

mi

〉
+

ξmd(k),‖︷ ︸︸ ︷〈 ∑
i∈�z

p2
i,y

mi

〉
+

ξmd(k),⊥︷ ︸︸ ︷〈 ∑
i∈�z

p2
i,z

mi

〉
kBNf(�z)

, (22)

which represents the most common way of obtaining the tem-
perature in equilibrium and nonequilibrium MD simulations.
If we use the remaining part of the Hamiltonian as generating
vector field in Eq. (21), i.e., B(�) = ∇�V , we obtain the
configurational temperature:

Tmd(c)(z) =

ξmd(c),‖︷ ︸︸ ︷〈 ∑
i∈�z

F 2
i,x

〉
+

ξmd(c),‖︷ ︸︸ ︷〈 ∑
i∈�z

F 2
i,y

〉
+

ξmd(c),⊥︷ ︸︸ ︷〈 ∑
i∈�z

F 2
i,z

〉

kB

〈
− ∑

i∈�z

∇i · Fi

〉 . (23)

The terms in the numerators of Eqs. (22) and (23) represent
independent contributions from each spatial direction, Nf is
the kinetic degrees of freedom, pi,j the momentum of particle
i in the j direction, mi the particle mass, and Fi = −∇V is
the force acting on the particle. Further, i ∈ �z means that the
sum only includes atoms within a volume element, �z around
a position z.

In previous work, it has been found that Eqs. (22) and
(23) are equally applicable for obtaining the local temperature,
T (z), in steady-state MD simulations, even under nonequilib-
rium conditions [50,51], given that the discontinuity in the
derivatives of the interaction potential is handled properly, by
using a sufficiently long truncation distance or tail corrections
[52]. Similar to Eq. (8) from the extended SGT, the temperature
in Eq. (22) is based only on the kinetic part of the Hamiltonian.
Equivalently, the temperatures in Eqs. (9) and (23) are both
based only on the configurational part of the Hamiltonian.
This suggests that by evaluating the contributions ξmd,‖(z) and
ξmd,⊥(z) in MD simulations, one can assess whether the theo-
retical predictions from the extended SGT presented in Eqs. (8)
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and (9) and in Eqs. (18)–(20) make any sense, and possibly also
reveal the presence of nonlocal entropic contributions, since
the difference between the spatial temperature contributions
across an interface can be explained on the basis of nonlocal
entropic contributions.

III. SIMULATION DETAILS

The vapor-liquid interface of argon as described by the
cut and shifted Lennard-Jones (LJ) fluid will be used as an
example in this work. This is because of its relative simplicity
and since argon (the LJ-fluid) is a popular fluid in simulations
and experiments. All simulations in this work were performed
with the LAMMPS software package [53]. Argon was modeled
with the truncated and shifted LJ potential with a well depth of
ε/kB = 119.8 K, a molecular diameter of d = 0.3405 nm, and
a truncation distance of 4d [54]. For completeness, we shall
also list the scaled temperature used in the simulations, T ∗ =
kBT/ε, where superscript ∗ refers to scaled variables. The
truncation distance was set according to the recommendations
in Ref. [50] and we calculated the configurational temperature
as prescribed in the same reference. All simulations were
performed with periodic boundaries and we used the velocity
Verlet integrator with a step size of 0.002 in reduced time
units. Liquid-vapor simulations were set up by initiating the
argon particles on a regular fcc lattice with a number density
equal to 0.8. The simulation cell was then expanded in the
z direction to give a rectangular simulation box with the
particles in the center, surrounded by vacuum. This system was
equilibrated for 2 × 107 time steps with a thermostat (Langevin
or Nose-Hoover). This allowed particles to evaporate, resulting
in a liquid-vapor system with a uniform temperature and steady
density profile. The resulting system was used as a starting
point for further investigations.

A. Equilibrium NVE simulations

For the equilibrium simulations with constant total energy
and volume, we used 106 particles (unless otherwise spec-
ified) in a rectangular simulation volume with dimensions
{Lx,Ly,Lz}={106d,106d,213d}, where the liquid phase was
located in the middle with vapor phases on each side. When
larger cross sectional areas were considered, Lx and Ly were
increased by equal amounts while Lz was keep unchanged.
After equilibration as described above, we simulated the
system for 106 time steps and calculated a local temperature
in bins along the z-direction of the simulation volume as
described in details in Ref. [50]. The pressure tensor across
the interface, was calculated as described in Ref. [55].

B. Nonequilibrium molecular dynamics

For the nonequilibrium simulations, we used a variant of
the boundary-driven nonequilibrium MD method developed
by Ikeshoji and Hafskjold [56]. A liquid slab was placed in the
middle of a rectangular simulation volume. We used 105 parti-
cles and the simulation-volume had dimensions {Lx,Ly,Lz} =
{40d,40d,200d}. The temperature gradient was imposed in
the z direction by thermostatting the region |z/Lz| < 0.05 to
a low temperature T ∗

c , and the regions 0.45 < |z/Lz| < 0.5
to a high temperature T ∗

h = T ∗
c + 0.5 (in reduced units) with

the Langevin thermostat. At steady state (i.e., with zero mass
flux), the heat flux, Jq , was constant and could be obtained from
the kinetic energy absorbed or desorbed in the thermostats. The
local thermal resistivity was defined by the following equation:

Jq = −λ(z)
∂T (z)

∂z
= − 1

rk(z)

∂T (z)

∂z
, (24)

where λ is the local thermal conductivity and rk is the local
thermal resistivity to heat transfer. We calculated the local
thermal resistivity by using Eq. [24], and the value of Jq and
∂T (z)

∂z
from the NEMD simulations. Moreover, the boundaries

of the interfacial region as well as the surface temperature were
calculated as described in previous work [57,58].

IV. RESULTS

A. Anisotropy in the spatial contributions to the
configurational temperature

1. Extended square gradient theory

To study the different contributions to the temperature
in Eq. (17) with extended SGT, we solved the coupled
differential equations defining the extended SGT framework
[Eqs. (8)–(10)] to a relative accuracy of 10−7. Here, the cubic
Peng-Robinson equation of state was used to describe the
thermodynamic properties of the homogeneous fluid of argon
[the terms with subscript 0 in Eqs. (8)–(10)] [59]. Different
choices of influence parameters were evaluated, where all
the choices reproduced the surface-tension of argon at 102 K
[60]. In addition, by requiring the extended SGT to reproduce
the maximum magnitude of ξ⊥(z) from MD simulations, i.e.,
ξmd(c),⊥(zT ) = ξsgt(c),⊥(zT ), resulted in the coefficients κρ =
5.97 × 10−15 Jm5/kmol2, κs = 3.5 × 10−24 K2m5/J and a
cross influence parameter equal to zero. We also explored the
possibility of having a nonzero cross-coefficient, κρs . Using
a nonzero cross-coefficient according to the geometric mean,
κρs = √

κρκs , resulted in contributions to the configurational
temperature with a wavelet-like behavior, but with the opposite
amplitudes compared to the MD-simulations. We found that
the reason for this was that the gradients of the mass densities
and the gradient of the configurational entropy density have the
opposite sign across vapor-liquid interfaces. For SGT to give
predictions which qualitatively agree with results from the MD
simulations, κρs should be close to zero.

For the configurational temperature, the contributions from
the directions parallel and perpendicular to the interface were
found to differ, both in theory and simulations. We have plotted
Eqs. (19) and (20) from the extended SGT-model as functions
of position across the interface in Fig. 1 (left). The theory
predicts that the perpendicular contribution to the temperature,
ξ(c),⊥(z), has a wavelet-like behavior with a positive maxi-
mum at the vapor-side of the equimolar surface. The parallel
contribution, ξ(c),‖(z), exhibits the opposite behavior with a
maximum at the liquid-side. Changing the magnitude of the
influence parameter κs , changed the amplitude of the wavelets,
but kept their qualitative behavior unchanged.

2. Molecular dynamics simulations

We performed standard MD simulations with constant total
volume and number of particles as described in Sec. III
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FIG. 1. (Top) A zoom-in at the interfacial region, showing the spatial contributions to the configurational temperatures perpendicular (ξ⊥)
and parallel (ξ‖) to the vapor-liquid interface of argon/LJ-fluid at equilibrium (T = 102 K, T ∗ = 0.85). The left figure plots Eqs. (19) and
(20) using results from extended SGT and the right figure plots the terms in Eq. (23) using results from MD with ξ‖=(ξx + ξy)/2. The vertical
dash-dot line shows the position of the equimolar surface and the horizontal solid line, the system temperature. The vertical solid line shows
the position of maximum temperature anisotropy, zT . Vapor is located at z < −2 and liquid at z > 2. (Bottom) Simulation snapshot illustrating
the different regions (vapor, interface, and liquid bulk) and directions in space.

and computed the spatial contributions to the configurational
temperature defined in Eq. (23). In Fig. 1 (right), they are
plotted as functions of position across the interface. The figure
displays a qualitative agreement between the theory [Fig. 1
(left)] and the analogous profiles from the MD simulations
[Fig. 1 (right)]. Both theory and simulations give the same
waveletlike behavior, where the perpendicular contribution has
a maximum at the vapor-side and a minimum at the liquid-side
of the equimolar surface (vertical dash-dot line). In Fig. 2, we
show that by using the same constant influence parameters
as in Fig. 1, there is still a qualitative agreement at other
temperatures as well, ranging from the triple point of argon
to close to the critical point. In particular, both simulations and
theory give that the extent of temperature anisotropy increases
with decreasing temperature.

For the kinetic temperature, the spatial contributions across
the interface from the MD simulations [Eq. (22)] have been
plotted in Fig. 3. Here, the perpendicular and parallel con-
tributions are the same. This is in agreement with the theory
presented in Sec. II; in particular, the results from the MD
simulations support the assumption in Eq. (6) that only the
configurational part of the entropy density gives nonlocal
contributions to the internal energy functional. We interpret the
different behavior of the spatial contributions to the kinetic and
configurational temperatures as a reflection of the fact that they
represent complementary parts of the information contained in

the actual temperature of the system, where the temperature
as defined in classical thermodynamics is based on the total
entropy and the total internal energy.

3. Differences between theory and simulations
and finite-size effects

Figure 1 displays a qualitative agreement between theory
and simulations, but there are some differences. Most notably,
the magnitude of the temperature anisotropy from the MD
simulations is much more pronounced at the vapor-side. This
suggests that the extended SGT theory derived in Sec. II has
potential for improvement. To obtain predictions similar to the
MD simulations, it is necessary to implement a more sophis-
ticated version of extended square gradient theory, where the
influence parameters, κρ and κs , are functions of the densities.

It is well known that interfacial properties from molecular
simulations depend strongly on both truncation distance and
system size [61–63]. Mecke and Winkelmann showed that
a sufficiently long truncation distance and tail corrections
were necessary to obtain the surface tension of the full LJ
potential to a high accuracy [61]. The surface width displays
a particularly strong dependence on system size [64]. For
the system size considered in our MD simulations however,
Malfreyt showed that the size dependence can be neglected
[63]. We showed in previous work how tail corrections are also
needed for the configurational temperature at low truncation

012126-6



TEMPERATURE ANISOTROPY AT EQUILIBRIUM REVEALS … PHYSICAL REVIEW E 97, 012126 (2018)

FIG. 2. The spatial contributions to the configurational temperatures perpendicular, ξ⊥ (blue solid lines), and parallel, ξ‖ (red dashed lines),
to the vapor-liquid interface of argon at equilibrium at different temperatures. The figures to the left (a, c, e) show results from extended SGT
and the figures to the right (b, d, f) show results from MD at T = 84 K, T ∗ = 0.7 (a, b), T = 108 K, T ∗ = 0.9 (c, d) and T = 120 K, T ∗ = 1
(e, f). The vertical dash-dot lines show the position of the equimolar surface.

distances [52], but such corrections can safely be neglected for
the truncation distance used in this work (4d). In the following,
we shall demonstrate that finite-size effects influence also the
parallel and perpendicular contributions to the configurational
temperature.

According to classical thermodynamics, the temperature at
equilibrium should be constant in space, T (z) = T . This is
in agreement with the theory derived in Sec. II. In the MD
simulations, we find that the configurational temperature is
constant and equal to the equilibrium temperature except in a

narrow region at the vapor-side of the equimolar surface, where
Tmd(c) exhibits a small positive deviation from T as shown in
Fig. 1. The maximum amplitude of this deviation is located
at zT and is similar in size to the temperature-fluctuations
in the vapor-phase. The deviation was also found in previous
work [51]. We find that the deviation decreases monotonically
with system size and is likely to be a consequence of the
methodology used to calculate Tmd(c) in the MD-simulations
(see Sec. III), which suffers from the small number of particles
in the bin, Nbin at the vapor-side of the equimolar surface.
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FIG. 3. The spatial contributions to the kinetic temperature de-
fined in Eq. (22) from the direction perpendicular, ξmd(k),⊥(z) (blue
solid line), and parallel, ξmd(k),‖(z) (red dashed and black dash-dot
lines), to the vapor-liquid interface of argon at equilibrium at T =
102 K, T ∗ = 0.85.

In agreement with previous work [51,52], we find that the
fluctuations in the configurational temperature are larger than
the fluctuations in the kinetic temperature.

We carried-out an in-depth analysis of the difference be-
tween Tmd(c) and T , i.e., the accuracy of which Tmd(c) can be
obtained by using the methodology described in Sec. III. By
performing NV E-simulations as described in Sec. III A with
varying cross-section area (LxLy) and thus varying number
of particles in each bin Nbin, we found that the magnitude
of Tmd(c)(zT ) − T decreased monotonically with increasing
number of particles in the bin and that the spatial contributions
depended on system-size according to the following power
laws:

ξ(c),⊥(z) = ξ∞
(c),⊥(z) + k⊥(z)N−n

bin , (25)

ξ(c),‖(z) = ξ∞
(c),‖(z) + k‖(z)N−n

bin , (26)

T(c)(z) = T ∞
(c) (z) + (2k‖(z) + k⊥(z))N−n

bin , (27)

where k⊥(z) and k‖(z) were spatially dependent parameters
and n was a positive constant. We found that a single value
for n was sufficient to account for all of the contributions
in Eqs. (25)–(27). An unconstrained optimization routine was
used to identify the parameters at zT that minimized the least
square distance between the MD results and the predictions
from Eqs. (25)–(27). The resulting parameters are presented
in the legends of Fig. 4.

Figure 4 plots ξmd(c),⊥, ξmd(c),‖, and Tmd(c) as functions of
Nbin. The figure shows that the resulting functions reproduce
the MD results to a good accuracy. Two important conclusions
can be made on the basis of the analysis:

(1) Eq. (27) fitted by an unconstrained optimization routine
to match the MD results gives that T ∞

md(c)(zT ) = T , showing
that the inaccuracy in the methodology described in Sec. III
vanishes in the limit of an infinitely large simulation volume.

(2) In an infinitely large simulation volume, Eqs. (25) and
(26) give that 3ξmd(c),⊥(zT ) �= 3ξmd(c),‖(zT ) �= T , thus showing

FIG. 4. The magnitude of the spatial contributions (a, b) and the
configurational temperature (c) in equilibrium MD simulations with
T = 102 K, T ∗ = 0.85 as a function of the number of particles in
the bin at zT [see Fig. 1 from MD simulations (red crosses)] and as
predicted by Eqs. (25)–(27) with parameters fitted to minimize the
least square distance between the MD-results and the equations. The
bin-width and Lz were kept unchanged, and Nbin was changed by
modifying N , Lx , and Ly .

that the anisotropy in the configurational temperature is also
present in an infinitely large simulation volume.

The coefficients in the power laws presented in the legends
of Fig. 4, reveal why Tmd(c) exhibits a positive deviation from T
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FIG. 5. The difference between the spatial contributions to the temperature (blue dash dot line) and the parallel and perpendicular components
of the pressure tensor (solid line). The surface tension equals the integral given by the shaded area. The results come from extended SGT-theory
or MD simulations at equilibrium at T = 108 K, T ∗ = 0.9 as described in Sec. III. Bulk vapor is at negative values of z and bulk liquid is at
positive values of z.

at zT . The coefficient k⊥(z) is larger than −2k‖(z). This means
that finite-size effects in the computation methodology have a
stronger influence on the perpendicular contribution than the
parallel contributions, which causes a small positive difference
between Tmd(c) and T .

B. The influence of nonlocal entropic contributions
on the equilibrium properties of interfaces

The qualitative agreement between theory and simulations
displayed in Figs. 1 and 2 shows that nonlocal entropic
contributions are likely to play a role in the thermodynamic
description of interfaces. The only other thermodynamic prop-
erties that have been documented to be anisotropic across the
planar vapor-liquid interface at equilibrium are the components
of the pressure tensor, p⊥(z) and p‖(z). The surface tension,
γ can be obtained by integrating, p⊥(z) − p‖(z), across the
interface, illustrated by the shaded area in Fig. 5.

Figure 5 shows that the components of the pressure tensor
behave fundamentally differently than ξ⊥(z) and ξ‖(z). For the
planar interface, we find that the perpendicular component
of the pressure tensor, p⊥(z) is constant and equal to the
coexistence pressure. In MD simulations [Fig. 5 (right)], the
difference, p⊥(z) − p‖(z), has a maximum at the liquid-side of
the equimolar surface (vertical dash-dot line). On the contrary,
the difference, ξ(c),⊥(z) − ξ(c),‖(z), has a maximum at the vapor-
side of the equimolar surface. The corresponding quantities
as predicted by extended SGT are shown in Fig. 5 (left).
Here, the difference, p⊥(z) − p‖(z), displays a maximum at
the vapor-side of the equimolar surface (vertical dash-dot line).

A striking difference between SGT and MD-simulations is
that p⊥(z) − p‖(z) displays a negative dip in MD-simulations
[see Fig. 5 (right)], while it is always positive according to
SGT [see Fig. 5 (left)]. The negative dip as well as the shift
of the maximum in p⊥(z) − p‖(z) toward the liquid side of
the equimolar surface observed in MD simulations can be
reproduced by using more sophisticated density functional
theory formulations (see, for instance, Fig. 6 in Ref. [65]).
This elucidates the shortcomings of SGT and suggests that
by including the entropy density as additional variable in a
more sophisticated density functional theory formulation, it

would also be possible to reproduce the shift of the maximum
in ξ(c),⊥(z) − ξ(c),‖(z) toward the vapor-side of the equimolar
surface. This represents important future work.

In Fig. 1, we chose the influence parameters such that
the theory reproduces the surface tension of argon at T =
102 K and so that ξsgt(c),⊥(zT ) = ξmd(c),⊥(zT ). For this choice
of influence parameters, nonlocal entropic contributions are
responsible for about 17% of the total magnitude of the surface
tension. This indicated that nonlocal entropic contributions
are of a similar magnitude as the terms from the classical
theory, although 17% is probably a too high estimate. Even
tough the extended SGT gives a temperature anisotropy that
follows the MD simulations reasonably well at the vapor side,
the extent of anisotropy at the liquid side is systematically
over predicted (See Fig. 2). Moreover, the finite-size effects
that come from the computational methodology discussed in
Sec. IV A 3 will lead to a further decrease in the magnitude
of the nonlocal entropic contributions in comparison to Fig. 1
(see Fig. 4). We find that the terms in Eq. (13) that come from
nonlocal entropic contributions exhibit a different behavior
than the terms from the classical theory and influence both the
predicted temperature and curvature dependence of the surface
tension. Since the extended SGT presented in Sec. II is unable
to reproduce the profiles from MD simulation quantitatively,
an accurate assessment of the magnitude of the nonlocal
entropic contributions and their influence on the temperature
dependence of the surface tension represents future work.

C. A link between the temperature anisotropy at equilibrium
and the Kapitza resistance at nonequilibrium

We shall next discuss a possible connection between the
nonlocal entropic contributions missing from the classical
theory and the transport properties of the interface at nonequi-
librium.

Figure 1 (right) and Fig. 2 demonstrate that the extent
of temperature anisotropy from simulations is much more
pronounced at the vapor-side of the equimolar surface where
ξmd(c),⊥ − ξmd(c),‖ displays a maximum at zT . No other equi-
librium property has so far been documented to display a
similar preference for the vapor-phase across the vapor-liquid
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interface. At nonequilibrium on the other hand, it has for long
been known that the characteristic temperature jump across
the vapor-liquid interface is located at the vapor side of the
equimolar surface [10,11,35,66]. By performing nonequilib-
rium molecular dynamics simulations (NEMD) as explained
in Sec. III, we find that the thermal resistivity (the reciprocal
thermal conductivity) exhibits a behavior that is remarkably
similar to the temperature anisotropy. This is evident by com-
paring Fig. 1 (right) with Fig. 6. Since the Kapitza resistance
can be obtained by integrating the local thermal resistivity
across the interfacial region, the shaded area in Fig. 6, the
thermal resistivity represents its local structure.

Similar to the temperature anisotropy, the thermal resistivity
has a maximum at the vapor side of the equimolar surface,
located at zK . We find that zK obtained from nonequilibrium
simulations matches almost perfectly with zT obtained from
equilibrium simulations when plotted as a function of the
surface temperature [57]. Both maxima follow the red dashed
line in Fig. 7, positioned ∼1 nm into the vapor side relative
to the equimolar surface. This links the anisotropy in the
configurational part of the temperature under equilibrium
conditions to the Kapitza resistance observed under nonequi-
librium conditions.

Since nonlocal entropic contributions give a qualitative
explanation for the temperature anisotropy found at equilib-
rium (see Fig. 1), they are also likely to play a role in the
theoretical description of the Kapitza resistance of the vapor-
liquid interface, a description that is currently missing [35].
The theory that links these properties remains to be developed.
Such a theory is important because it provides the means for
using SGT to estimate not only the surface tension, but also the
rates at which heat and mass are transferred across interfaces
at nonequilibrium by taking advantage of the so-called integral
relations [9]. At present, a semiempirical fit of the local thermal
resistivity function is required to obtain the transport properties
of the interface with SGT. This was accomplished in Ref. [37]
for both planar and curved interfaces of the LJ-fluid by com-
bining NEMD and a semi-empirical SGT formulation. Here,
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FIG. 7. Position of the maximum of the temperature anisotropy,
zT , and the maximum of the thermal resistivity, zK , plotted as
functions of the surface temperature for argon/the LJ fluid. The shaded
area is the interfacial region, where the solid lines and the surface
temperature have been calculated using the approach of Xu et al. in
Ref. [57].

the maximum of the local thermal resistivity was allocated to
the vapor-side of the equimolar surface by invoking an inverse
density dependence [11]. Rather than fitting this function, a
long-term aim should be to develop a predictive theory for the
local thermal resistivity across interfaces. Figure 7 suggests
that nonlocal entropic contributions will play a role in such a
description.

V. CONCLUSION

In this work, we have revisited the fundamentals of density
gradient theory. Rather than using the Helmholtz energy as
starting point like in the classical theory, we have used the
internal energy with the entropy density as additional variable.
The extended theory then suggests that the configurational
temperature has different contributions from the parallel and
perpendicular directions at the interface and that the kinetic
temperature has equal contributions.

We evaluated these predictions by use of standard molecular
dynamics simulations at constant total energy and volume and
obtained behaviors of the spatial contributions to the configu-
rational and kinetic temperatures that were in qualitative agree-
ment with the extended theory. The extended theory showed
that the anisotropy in the configurational temperature origi-
nates in nonlocal entropic contributions, which are currently
missing from the classical theory. Nonlocal entropic terms
enter the expression for the tension tensor and influence thus
the predicted surface tension. Since the nonlocal entropic terms
behave differently than the classical terms, they are likely to
influence both the temperature- and curvature-dependence of
the surface tension and may account for part of the discrepancy
between experiments and theory.

For a particular choice of influence parameters that repro-
duced certain characteristics of the simulations results, it was
shown that nonlocal entropic contributions were responsible
for about 17% of the total magnitude of the surface tension.
Nonlocal entropic contributions are thus of a similar magnitude
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as the classical terms, although 17% is probably a too high
estimate. Further development of the theory is necessary to re-
produce the results from MD quantitatively and to provide a re-
liable evaluation of the significance of nonlocal entropic terms.

The thermal resistivity gives the local structure of the
interfacial resistance to heat transfer, where the integral gives
the Kapitza resistance. Across the vapor-liquid interface of
the LJ-fluid, we found that the maximum in the tempera-
ture anisotropy at equilibrium coincided precisely with the
maximum in the thermal resistivity at nonequilibrium relative
to the equimolar surface, when plotted as a function of the
surface temperature. The similarity between the temperature
anisotropy and the thermal resistivity is striking and strongly
suggests that nonlocal entropic contributions may play a role
in the theoretical description of the Kapitza resistance of the

vapor-liquid interface. However, the theory that links these
properties remains to be developed. Such a theory is important
because it provides the means for using SGT to estimate not
only the surface tension, but also the rates at which heat and
mass are transferred across interfaces at nonequilibrium by
taking advantage of the so-called integral relations.
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