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Memory-induced resonancelike suppression of spike generation in a resonate-and-fire neuron model
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The behavior of a stochastic resonate-and-fire neuron model based on a reduction of a fractional noise-driven
generalized Langevin equation (GLE) with a power-law memory kernel is considered. The effect of temporally
correlated random activity of synaptic inputs, which arise from other neurons forming local and distant networks,
is modeled as an additive fractional Gaussian noise in the GLE. Using a first-passage-time formulation, in certain
system parameter domains exact expressions for the output interspike interval (ISI) density and for the survival
probability (the probability that a spike is not generated) are derived and their dependence on input parameters,
especially on the memory exponent, is analyzed. In the case of external white noise, it is shown that at intermediate
values of the memory exponent the survival probability is significantly enhanced in comparison with the cases
of strong and weak memory, which causes a resonancelike suppression of the probability of spike generation as
a function of the memory exponent. Moreover, an examination of the dependence of multimodality in the ISI
distribution on input parameters shows that there exists a critical memory exponent αc ≈ 0.402, which marks a
dynamical transition in the behavior of the system. That phenomenon is illustrated by a phase diagram describing
the emergence of three qualitatively different structures of the ISI distribution. Similarities and differences between
the behavior of the model at internal and external noises are also discussed.
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I. INTRODUCTION

Noise-induced phenomena in complex systems present a
fascinating subject of investigation since, contrary to intuition,
environmental randomness may induce more order in the
behavior of the system. Stochastic resonance [1,2], the ratchet
effect [3,4], anomalous diffusion [5–7], and noise-enhanced
stability [8,9] are a few examples in this field. An object of
special attention in this context is the noise-driven fractional
oscillator. As oscillators are simple toy models for different
phenomena in nature, they tend to serve as a theoretician’s
typical paradigm for various fundamental conceptions [10].

The fractional oscillator is a generalization of the harmonic
oscillator where the usual friction term in the dynamical
equation is replaced by a generalized friction term with a
power-law memory kernel [5,11–14]. The dynamical equation
for such an oscillator is a special case of the generalized
Langevin equation (GLE) (see, e.g., [15]). The main advantage
of this equation is that it provides a physically transparent
and mathematically tractable description of the stochastic
dynamics in systems with slow relaxation processes and
anomalously slow diffusion (subdiffusion). Examples of such
systems are colloidal suspensions, glasses, polymer solutions
[16,17], viscoelastic media, amorphous semiconductors [18–
20], cytoplasm of living cells [21], large proteins [22], and
dusty plasmas [23]. Also, diffusion on fractal structures and
on percolating clusters is anomalously slow [24,25] and thus
belongs on this list.

Noise-dependent behavior of neural systems has received
considerable attention [26–38]. Since the classical four-
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dimensional Hodgkin-Huxley neuron model requires nearly
20 parameters to be determined [39], stochastic versions for
reduced models of neurons, which capture the essence of the
electrical activity of a generic neuron, are more interesting
from both analytical and computational points of view. More-
over, an understanding of neuronal mechanisms gained from
reduced models could be useful in the engineering of artificial
neural devices designed to reproduce a given real biological
feature [40]. Two important classes of such models are the
integrate-and-fire (IF) [27,28] and the resonate-and-fire (RF)
[29,41–44] models. The RF model is more flexible than the
IF one (included in the RF model as a special case) and as
such is able to describe the dynamics of a larger class of
neural systems. It should be emphasized that the dynamics
of stochastic RF models is closely linked to the dynamical
behavior of noise-driven harmonic and anharmonic oscillators
[41,44].

Until relatively recently, most of the stochastic models
studied analytically in neuroscience had focused on Gaussian
white noise as well as on shot noise with exponentially
distributed weight input [27,28]. However, the real effective
random influence of other neurons on the synaptic inputs
of cortical neurons should be considered as a colored-noise-
generated process, where the stimulation from other neurons is
temporally correlated [30,37,45]. For example, pronounced in-
put correlations in time arise because of temporally correlated
input stimuli, presynaptic refractoriness or bursting, adapta-
tion, network-generated oscillations, and short-term synaptic
plasticity [37]. From the theoretical side, it is poorly understood
how these correlated stimuli affect the statistical structure of
neural spiking. Most of the analytical results for the cases of
input colored noises have been obtained for limits of slow and
fast noises [35], as well as in a weak-noise approximation
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[32,36]. The dichotomous Markov process [46], a two-state
noise with an exponential correlation function, is the rare
example of a driving colored noise that can lead to exact results
for IF neurons [33,35,37,47,48].

As mentioned above, the simplest possible formulation
of the RF model is based on the dynamics of the harmonic
oscillator driven by Gaussian white noise. The corresponding
Langevin equation is characterized by Gaussian white noise
and by time-local dissipative terms. This assumption is valid
only for particular limit cases. A more realistic description of
neural networks requires taking into account that information
exchange takes place during finite-time intervals, which must
lead to finite-memory effects and colored noise. One of the
possibilities of modeling such processes can be formulated
in the framework of a GLE, where a nonlocal dissipative
term (memory kernel) and correlated noise reflect finite-time
effects.

Recently, a generalization of the stochastic RF model to the
context of a GLE model with an exponential memory kernel,
driven by Ornstein-Uhlenbeck noise, was proposed in [40].
The comprehensive numerical simulation put forth in this paper
reveals a set of important features of the interspike interval (ISI)
distribution and of the coefficient of variation that stems from
the interplay between memory and colored noise. For example,
the emergence and suppression of multimodality in the ISI
distribution due to memory-induced subthreshold oscillations
was established, thus suggesting that memory can be seen as
an effective mechanism for generating and controlling neuron
variability [40]. We would note that it is empirically known that
the ISI density of real neurons (e.g., pallidal and ganglion cells)
can exhibit nontrivial patterns, such as a bimodal or multimodal
structure depending on the input [40,49,50]. However, in
Ref. [40] it is assumed that the memory kernel in the GLE
is characterized by a decaying exponential function. The latter
is irrelevant for neural networks with fractal structure, where
anomalous diffusion occurs. As recent investigations indicate,
some structures of complex brain neural networks have a fractal
character [51–53], thus it is of interest, from both theoretical
and possible experimental viewpoints, to know the behavior
of the ISI statistics of a stochastic RF model subject to a
power-law memory kernel.

In the present paper, inspired by the results of [40,51] and by
the reasons presented above, we consider an RF model based
on the dynamics of a fractional oscillator, where the effect of
temporally correlated random neuronal inputs is modeled as
a fractional Gaussian noise. The idea of the proposed model
is to describe the neuron membrane potential v(t) dynamics
by a time-nonhomogeneous one-dimensional (1D) Langevin
equation driven by white Gaussian noise, which is equivalent
to the basic stochastic fractional oscillator in the sense that
their one-time statistical properties in v space are identical.
The main contribution of this paper is as follows. We provide,
in the noise-induced spiking regime of the neuron, exact
analytical formulas for the dependence of some statistical
characteristics of the output spike train, such as the probability
distribution of the ISIs and the survival probability, on the
parameters of the input stimulus. On the basis of the exact
expressions, we have found two qualitatively different shapes
of the ISI distribution: one unimodal and the other multimodal.
Furthermore, we establish sufficient conditions for the validity

of the obtained formulas for the ISI density and analyze
the corresponding dynamical phase diagram in the system
parameter space. In particular, memory-induced transitions
between unimodal and multimodal structures of the ISI density
and a critical memory exponent which marks a dynamical
transition in the behavior of the system are found. Moreover,
in the case of external white noise, we demonstrate that at
intermediate values of the memory exponent, the survival
probability is significantly enhanced compared to the cases
of strong and weak memory, which cause a resonancelike
suppression of the probability of spike generation as a function
of the memory exponent. We also show that in the case of
internal noise, the just-mentioned phenomenon is absent, as in
this case the survival probability is independent of the memory
exponent.

The structure of the paper is as follows. In Sec. II, we present
the model investigated. In Sec. III, exact formulas are found
for the ISI statistics. In Sec IV, we discuss the behavior of the
statistical measures and illustrate their characteristic features.
Section V contains a summary. Some formulas are given in the
Appendixes.

II. MODEL

Damped fast subthreshold oscillations of the membrane
potential have been observed in many biological neurons
(see, e.g., [43,54,55] and references therein). This dynam-
ical property makes neurons sensitive to the timing of a
stimulus and may lead to many interesting phenomena [41].
This property also occurs in almost all biophysically detailed
Hodgkin-Huxley-type neural models, but is obscured by the
complexity of the models and may be difficult to understand
and simulate, especially in a network of neurons [41]. From
a dynamical viewpoint, such subthreshold oscillations occur
when the neurons operate close to an Andronov-Hopf bi-
furcation. Several reduced mathematical models of neurons
(called resonate-and-fire neuron models) have been used as
tools for the analysis of the aforementioned subthreshold
oscillations taking place in the complex activity of neurons
and their networks [40–43]. This kind of model is typically
characterized by a second-order differential equation whose
solution describes the time evolution of the subthreshold
membrane potential and an ad hoc rule according to which,
when the potential reaches the threshold, a spike is produced
and the potential is reset to a certain value representing the
effect of the inward-rectifier potassium channel [34,40]. More
precisely, in the Hodgkin-Huxley model, the reset rule reflects
the biophysical fact that, subsequent to a spike, all neuron state
variables return to a small region in the phase space. In the
RF model, the reset rule corresponds to the simplification that
replaces this small region by a single point. Although an RF
model is a gross oversimplification of any actual neural system,
it adequately describes the general features of the ISI statistics
for some neurons [41–43].

Before addressing the RF model proposed in the present
paper, let us briefly review the main features of the underlying
GLE model and the role of the reset rule in the stochastic
process associated with this GLE. We consider a fractional
oscillator subjected to an external input force, proportional to
the current, consisting of two parts, the constant average μ > 0
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and a fluctuating part ξ (t), as

v̈(t) + γ
dα

dtα
v(t) + ω2v(t) = μ + ξ (t), (1)

where v̇ ≡ dv
dt

, v(t) is the membrane potential at time t , γ is a
damping constant, the square of the eigenfrequency ω can be
interpreted in mechanical terms as the stiffness of an effective
trapping potential

Ueff = ω2

2
v2 − μv, (2)

and the operator dα

dtα
with a memory exponent α denotes the

fractional derivative in Caputo’s sense, given by [56]

dα

dtα
v(t) = 1

�(1 − α)

∫ t

0

v̇(t ′)
(t − t ′)α

dt ′, (3)

�(y) being the Gamma function and 0 < α < 1. Fluctuations
of the input force, which arise from other neurons forming a
fractal network, are expressed as a stationary fractional Gaus-
sian noise ξ (t) with a zero mean 〈ξ (t)〉 = 0 and a correlation
function

〈ξ (t)ξ (t ′)〉 = C(|t − t ′|) = D

�(1 − β)|t − t ′|β , (4)

where D characterizes the noise intensity and 0 < β < 1.
Depending on the physical situation, the driving noise ξ (t)
can be regarded either as an internal noise (thermal noise) or
as an external noise. If the noise ξ (t) is internal, the dissipative
memory kernel

η(τ ) = 1

�(1 − α)τα
(5)

arising in Eq. (1) due to the fractional derivative dαv(t)/dtα

[see also Eq. (3)] is related to the noise correlation function
C(|τ |) via Kubo’s second fluctuation-dissipation theorem [57]

C(|τ |) = kBT γ η(|τ |), (6)

where T is the absolute temperature of the heat bath and kB

is the Boltzmann constant. This means that the fluctuations
and dissipation come from the same source, i.e., due to the
impact of the environment on the particle. In this case the
system described by the GLE (1) with Eq. (6) reaches a state of
thermal equilibrium. Note that when the noise ξ (t) is internal,
from Eqs. (4)–(6) it follows that the noise exponent is the
same as the memory exponent, β = α. In the case of external
noise however, the driving noise ξ (t) and dissipation may have
different origins and no fluctuation-dissipation relation holds,
in this case β �= α. By taking the limit β → 1 in Eq. (4), we can
see that the correlation function (4) possesses all the properties
of the δ function (its δ-functional behavior manifests itself in
the integrals) and thus the noise ξ (t) corresponds to white noise
and consequently, in the case of internal noise, to nonretarded
friction in the GLE (1).

Equation (1), describing the subthreshold evolution of the
membrane potential, is the basic equation of this paper. We
adopt the following fire-and-reset rule: If the voltage reaches
a certain threshold value v(t) = vc, then a spike is considered
to have occurred at time t and the voltage is reset to the state

v = vr = μ

ω2
, v̇ = v̇r = 0, (7)

which corresponds, in the case without noise, to the equilibrium
state, i.e., to the minimum of the effective potential Ueff [cf. Eq.
(2)]. As the reset state is a stable equilibrium for the solutions
of the deterministic version of Eq. (1), to make the neuron
fire (v = vc), external perturbations [the noise ξ (t) in Eq. (1)]
should push v(t) far enough from the reset state. Thus, in
the proposed model, the probability of spike occurrence is
non-null only in the stochastic case. One refers to this case
as the noise-induced firing regime of a neuron. The main
source of information about the dynamics of a neuron is the ISI
distribution. This distribution equals the probability density of
the time needed to reach the voltage threshold for the first time
after starting at the reset value. Obtaining such a distribution is
known as a first-passage-time (FPT) approach (see, e.g., [42]).

Unfortunately, the process v(t) described by Eq. (1) is
highly non-Markovian and there does not exist a finite-
dimensional supplementary variable representation to make
it Markovian. As a result of the intrinsically non-Markovian
character of Eq. (1), the determination of its FPT distribution
becomes difficult and so far no exact results have been obtained
(see also [58]).

Various methods have been used to approximately deter-
mine the FPT distribution of non-Markovian processes [42,58].
As an example, perhaps more important in the context of
RF models, we mention here Ref. [42], where a general
expression for the FPT density for stochastic processes with
differentiable trajectories is given. As this expression results
in an infinite series of integrals over joint densities of multiple
level crossings, some approximations based on the truncation
or an approximate summation of this series are necessary for
calculations. To improve the reliability of an approximation, a
large number of terms needs to be calculated semianalytically
and then the computational cost for obtaining the approximate
results rapidly approaches the one for simulating the dynamical
equations [40,42].

In the present paper we propose, based on the dynamical
equation (1), an alternative RF model, which is able to mimic
some crucial aspects of RF models, such as a bimodal or
multimodal structure of the ISI distribution depending on the
input. The proposed 1D model is Markovian and is fully
characterizable by a Fokker-Planck equation (FPE), which
coincides exactly with the master equation for the one-time
conditional probability densities of the process v(t) described
by Eq. (1) [see Appendix A, Eq. (A7)]. The main advantage
of this model is that, in some parameter regimes, it enables
one to derive exact analytical expressions for the FPT density.
However, it should be pointed out that writing an FPE for a
non-Markovian system is a simplification (effects of multitime
statistical characteristics of the non-Markovian process are
ignored) that in general can give different results for FPT
densities.

Inspired by the original idea of Gerstein and Mandelbrot
[26] to describe neuronal activity by a stochastic perfect
integrate-and-fire model driven by a Gaussian white noise,
where the key quantity is the one-time probability density in v

space, we consider an ordinary overdamped Langevin equation
with explicitly time-dependent drift and diffusion terms

dv(t) = A(t)dt +
√

2D(t)dW (t), (8)
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where W (t) is a Wiener process, as an RF model for membrane
potential dynamics. The functions A(t) and D(t) are deter-
mined from Eq. (1) by the condition that one-time conditional
probability densities in v space, p(v,t |v0,v̇0,0), for both pro-
cesses described by Eqs. (1) and (8), respectively, coincide in
all values of time t � 0 (see also Appendix A). More precisely,
in Appendix A we show that in the case of σ̇vv(t) � 0 the
appropriate drift and diffusion terms A(t) and D(t) are given
by the equations

A(t) = 〈v̇(t)〉, D(t) = 1
2 σ̇vv(t), (9)

where the variance σvv(t) = 〈[v(t) − 〈v(t)〉]2〉 and the mean
〈v(t)〉 can be obtained with the help of Eq. (1) and the angular
brackets denote averaging over an ensemble of realizations of
the noise ξ (t) (see also Sec. III). Since the process described
by Eq. (8) is Markovian, v(t) is fully characterized by an
FPE. Thus the FPT distribution of v(t) can be determined by
considering the effective FPE with an appropriate boundary
condition [59], which is equivalent to the fire-and-reset rule.
Since we are interested in the first arrival time at which this
process reaches a threshold vc for the first time, we consider
the process up to that time and then kill it by absorption. In
other words, one works with an absorbing boundary at v = vc,
i.e.,

p(vc,t |v0,v̇0,0) = 0. (10)

Finally, we again point out that although the dynamics (and
also the corresponding FPT distributions) of the stochastic
differential equations (SDEs) (1) and (8) are different, they are
equivalent in the sense that their one-time statistical properties
in v space should be identical. Therefore, Eq. (8) with Eq. (9)
also describes the positionv of a 1D Brownian particle evolving
with time in the GLE (1) picture.

III. EXACT ISI DISTRIBUTION

To find FPT statistics, such as the survival probability and
the FPT density, we start from a description of the evolution
of the statistical moments for the voltage v(t) determined by
Eq. (1).

A. First and second moments

To find the statistical moments of v(t) we follow the
calculation scheme described in Ref. [13]. The second-order
differential equation (1) can be written as two first-order
equations for v(t) and y(t) = v̇(t), which, after averaging over
the ensemble of realizations of the random process ξ (t), take
the following form:

〈v(t)〉̇ = 〈y(t)〉,

〈y(t)〉̇ + γ

∫ t

0
η(t − t ′)〈y(t ′)〉dt ′ + ω2〈v(t)〉 = μ. (11)

Here we have used that the noise ξ (t) is zero centered. Thus, it
turns out that fluctuations of the driving random force ξ (t) do
not affect the first moments 〈v(t)〉 and 〈v̇(t)〉 of the voltage and
〈v(t)〉 remains equal to the noise-free solution. By applying
the Laplace transformation to Eq. (1), one can easily obtain
formal expressions for the oscillator displacement v(t) and the

velocity v̇(t) in the following forms:

v(t) = 〈v(t)〉 +
∫ t

0
H (t − τ )ξ (τ )dτ, (12)

v̇(t) = 〈v̇(t)〉 +
∫ t

0
Ḣ (t − τ )ξ (τ )dτ, (13)

where the averages 〈v(t)〉 and 〈v̇(t)〉 are given by

〈v(t)〉 = μ

ω2
+ v̇0H (t) +

(
v0 − μ

ω2

)

×
(

1 − ω2
∫ t

0
H (τ )dτ

)
(14)

and

〈v̇(t)〉 = v̇0Ḣ (t) − ω2
(
v0 − μ

ω2

)
H (t), (15)

respectively, with deterministic initial conditions v(0) = v0

and v̇(0) = v̇0 (see also Appendix B). The kernel H (t) with
the initial conditions H (0) = 0 and Ḣ (0) = 1 is the Laplace
inversion of

Ĥ (s) = 1

s2 + γ sα + ω2
, (16)

where

Ĥ (s) =
∫ ∞

0
e−stH (t)dt. (17)

From Eqs. (12) and (13), also taking into account the
symmetry of the correlation function C(|t − t ′|), it is
easy to obtain explicit expressions for the second mo-
ments σvv(t) = 〈[v(t) − 〈v(t)〉]2〉, σyy(t) = 〈[v̇(t) − 〈v̇(t)〉]2〉,
and σyv = 〈[v̇(t) − 〈v̇(t)〉][v(t) − 〈v(t)〉]〉 of the process (1):

σvv(t) = 2
∫ t

0
H (t1)M(t1)dt1, (18)

σyy(t) = 2
∫ t

0
Ḣ (t1)Ṁ(t1)dt1, (19)

σyv(t) = 1

2
σ̇vv(t) = M(t)H (t), (20)

where

M(t) =
∫ t

0
H (t − t1)C(t1)dt1. (21)

In the case of internal noise, Eqs. (18)–(20) can be simplified
to (cf. also Ref. [13])

σvv(t) = kBT

ω2
[1 − ω2H 2(t) − ω4(G(t))2], (22)

σyy(t) = kBT [1 − Ḣ 2(t) − ω2H 2(t)], (23)

σyv(t) = kBT H (t)[ω2G(t) − Ḣ (t)], (24)

where

G(t) =
∫ ∞

t

H (t ′)dt ′. (25)

An integral representation of the relaxation functions H (t),
M(t), and G(t) is given by Eqs. (B6)–(B15) in Appendix B.
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Due to the Gaussian property of the noise ξ (t) and the
linearity of Eq. (1), the joint probability density p(v,v̇,t)
must also be Gaussian. The marginal probability density
P (v,t) ≡ p(v,t |v0,v̇0,0) for the process v(t) with deterministic
initial conditions v(0) = v0 and v̇(0) = v̇0 satisfies the master
equation [13]

∂

∂t
P (v,t) = −〈v̇(t)〉 ∂

∂v
P (v,t) + σyv(t)

∂2

∂v2
P (v,t), (26)

where 〈v̇(t)〉 and σyv are determined by Eqs. (15) and (20),
respectively (see Appendix A). Equation (26), with Eqs. (15)
and (20), is crucial for solving the FPT problem to obtain the
ISI distribution generated by the model (8) and (9). Here we
emphasize that Eq. (26) is the exact Fokker-Planck equation
for the SDE (8) with Eq. (9).

B. First-passage-time distributions

From now on, we consider the FPT problem for the reduced
RF model (8) and (9), which is the main goal of the present
paper. First, we recall that since the process described by
Eq. (8) is Markovian, the evolution of the voltage v(t) is fully
characterized by the FPE (26) with the notation P (v,t) ≡
p(v,t |v0,v̇0,0) [cf. Eq. (A7)]. As mentioned above, for the
subthreshold voltage evolution process v(t) commencing at
the reset state [see Eq. (7)] at t = 0, the time at which this
process reaches the threshold vc for the first time is itself
a random variable whose statistics are fundamental for the
ISI distribution. The FPT problem from v = vr = μ

ω2 and
v̇ = v̇r = 0 to v = vc >

μ

ω2 is associated with a solution of
the FPE (26) with the δ-distributed initial condition

P (v,0) = δ

(
v − μ

ω2

)
(27)

in the presence of an absorbing boundary at v = vc,

P (vc,t) = 0. (28)

Using the conditions (7), from Eq. (15) one can see that the
average 〈v̇(t)〉 vanishes, i.e., 〈v̇(t)〉 = 0 for t � 0, and Eq. (26)
reduces to a diffusion equation without drift and with the time-
dependent diffusion coefficient σyv(t). The corresponding
normalized solution of Eq. (26) with the initial condition (27)
for an unrestricted process (without an absorbing boundary),
starting from the reset state, can be obtained as

Pu(v,t) = 1√
2πσvv(t)

exp

[
− (v − μ/ω2)2

2σvv(t)

]
. (29)

If the condition

σyv(t) = H (t)M(t) � 0 (30)

is fulfilled in the time interval (0,t), then in the same interval,
Eq. (26), with the absorbing boundary at vc and with the initial
condition (27), can be readily solved by the method of images
with a mirror source at v = 2vc − μ/ω2 [59]. The solution can
be written as

P (v,t) = 1√
2πσvv(t)

[
exp

(
− (v − μ/ω2)2

2σvv(t)

)

− exp

(
− (v − 2vc + μ/ω2)2

2σvv(t)

)]
, (31)

where −∞ < v � vc. The survival probability F (t) is defined
as the probability of the process trajectories not being absorbed
before time t [or the probability that a spike is not generated
in the interval (0,t)],

F (t) =
∫ vc

−∞
P (v,t)dv = erf

(
vc − μ/ω2

√
2σvv(t)

)
, (32)

where erf(y) is the standard normal integral

erf(y) = 2√
π

∫ y

0
e−x2

dx. (33)

The FPT density (or the ISI distribution) w(t |vc) is given by

w(t |vc) = −Ḟ (t) =
√

2H (t)M(t)(vc − μ/ω2)√
π [σvv(t)]3/2

×exp

[
− (vc − μ/ω2)2

2σvv(t)

]
, (34)

if σ̇vv(t) = 2H (t)M(t) � 0 [cf. Eq. (30)]. Particularly in the
case of Gaussian white noise ξ (t) [β → 1 in Eq. (4)] the
inequality (30) is always fulfilled and the formulas (32) and
(34) are consequently applicable for all values of time t ∈
(0,∞). Since in the limit t → ∞ the varianceσvv(t) saturates to
a finite value (except for some very special parameter regimes)
0 < σvv(∞) < ∞, then, as a rule, the survival probability
F (∞) is not zero, i.e., there is a finite probability that a spike
is not generated in the time interval (0,∞). Thus w(t |vc)dt

is actually the joint probability for two events: that a spike is
generated at all and that this spike appears in the interval
(t,t + dt). Evidently, one obtains∫ ∞

0
w(t |vc)dt = 1 − F (∞). (35)

Although the integral (35) is not normalized to 1, for conve-
nience we will henceforth refer to w(t |vc) as the ISI density
(or FPT density).

The exact formulas (32), (34), and (35) are the main analyt-
ical results of the present paper, as they permit the analysis of
the role of memory in the behavior of the ISI distribution, as
well as the calculation of the statistical moments of interspike
intervals. In particular, those formulas are crucial to establish
the phenomenon of memory-induced resonancelike suppres-
sion of the probability of spike generation (see Sec. IV B).

IV. RESULTS

A. Memory-induced transitions

As mentioned in Sec. III, the inequality (30) is crucial for
the derivation of the ISI distribution (34). Assuming that the
correlation function 〈ξ (t)ξ (t ′)〉 of the colored noise ξ (t) [e.g.,
β �= 1 in Eq. (4)] is non-negative, which is the case considered
in this paper [see Eq. (4)], from Eqs. (20), (21), and (30) one
can see that the inequality (30) is fulfilled in the time interval
(0,t) if and only if

H (t ′) � 0 (36)

for all t ′ ∈ (0,t). Thus, we can discern two cases: (i) the case
where the condition (36) is valid in the whole semiaxis, i.e.,
t ′ ∈ (0,∞), and (ii) the case where Eq. (36) is only valid in a
finite interval (0,t).
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FIG. 1. Behavior of the relaxation function H (t) computed from
Eqs. (B6)–(B12) for various values of the memory exponent α and the
damping constant γ : (a) α = 0.2 and γ = 0.5 (solid line) and α = 0.2
and γ = 2.5 (dashed line) and (b) α = 0.7 and γ = 0.5 (solid line)
and α = 0.7 and γ = 2.5 (dashed line). Note the absence of sign
reversals of H (t) in (b) at γ = 2.5 (dashed line). All quantities are
dimensionless, with time scaling determined by ω = 1.

In Figs. 1(a) and 1(b) we depict the dependence of the
relaxation function H (t) for various values of the damping
constant γ and the memory exponent α on time t . From Fig. 1
one notices that there are two different types of oscillating
behaviors of H (t), one with zero crossings and the other
without. It is seen that, contrary to the case of low values of the
memory exponent (α = 0.2 in Fig. 1), where the sign reversals
of H (t) versus t occur for any γ , at relatively high values of α

(α = 0.7 in Fig. 1) and the damping coefficient γ the relaxation
function H (t) is positive for all values of t .

This indicates that in the phase space of the system param-
eters (γ,ω,α), a critical surface γc(α,ω) should exist, which
divides the phase space into two different regions: a region
where the relaxation function H (t) is non-negative and one
where it exhibits sign reversals. In order to find such a critical
surface, two conditions must be satisfied:

H (t) = 0, Ḣ (t) = 0. (37)

Using Eqs. (B16) and (B17), we find in Appendix B from
dimensional analysis

γc

ω2−α
= κ(α), (38)

FIG. 2. Phase diagram of the fractional oscillator (1). In the
shaded region, the relaxation function H (t) [see Eqs. (16) and (17)]
is always non-negative. In the unshaded domain, sign reversals of
H (t) occur. The critical curve (solid line) γc/ω

2−α = κ(α) [see Eq.
(38)] tends to infinity at α = αc ≈ 0.402. The thin dotted lines mark
the positions of the critical exponent αc and the minimal value of
κ(α), respectively; min κ(α) = κ(αm) ≈ 1.461 with αm ≈ 0.849. The
bold dashed line marks another critical curve γc1/ω

2−α = κ1(α) above
which the ISI distribution (34) is, in the case of internal noise at system
parameters kBT = 0.15, ω = μ = 1, and vc = 1.75, unimodal.

where the function κ(α) depends only on the memory exponent
α. By investigating the analytical solutions of H (t) [Eqs. (B6)–
(B12)] numerically for various values of α and with ω = 1, we
obtain from the conditions (37) a numerical representation of
the function κ(α). The resulting phase diagram is represented
in Fig. 2. The shaded region on the phase diagram corresponds
to the system parameter domain where H (t) � 0 for all values
of t ; in the unshaded region, the sign reversals of H (t)
versus t occur. In the limit of vanishing memory α → 1,
the critical curve κ(α) tends to the value 2, which reflects
the well-known dynamics transition of the ordinary harmonic
oscillator from an underdamped regime to an overdamped
regime (the corresponding critical damping constant for the
ordinary oscillator is γc = 2ω). An important behavior is
observed for κ(α): As can be seen in Fig. 2, a phase transition
occurs around α = αc ≈ 0.402. If α → αc, the value of κ(α)
tends to infinity and consequently for α < αc, the relaxation
function exhibits sign reversals versus time t for all values of
the other system parameters.

It should be noted that previously, the same value of
the critical memory exponent, αc ≈ 0.402, was obtained by
analysis of the normalized correlation function of a fractional
oscillator in Ref. [11], but the connection between the phase
diagram and the behavior of the relaxation function was not
considered there. In this reference, based on the cage effect
[7,11], we also find a physical explanation for the role of the
memory exponent α in the dynamics of the fractional oscillator.
Namely, from a mechanical point of view, for small α the
friction force induced by a viscoelastic medium [the nonlocal
fractional derivative in Eq. (1)] is not just slowing down the
particle but also causing the particle to undergo a rattling
motion, which can be explained by the harmonic motion of
the particle in a cage formed by the surrounding particles
[11]. Here, at small α the medium is binding the particle, thus
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FIG. 3. The ISI distribution w(t |vc) versus time t [see Eq. (34)].
All quantities are dimensionless, with time and voltage scaling
determined by ω = 1 and μ = 1, respectively. The system parameter
values are γ = 2.5, D = 1, and vc = 1.75. (a) Case of white driving
noise [β → 1 in Eq. (4)] for α = 0.2 (solid line) and α = 0.8 (dashed
line). (b) Case of colored noise (β �= 1) for β = α = 0.6 (internal
noise) (solid line) and β = 0.3 and α = 0.6 (external noise) (dashed
line). At large values of time t → ∞, all curves tend to zero.

preventing diffusion, but forcing oscillations. Thus, the critical
memory exponent αc marks a dynamical transition from the
regime where dissipation (normal friction) dominates in the
nonlocal friction force to the regime where elastic friction
dominates.

Figures 3 and 4 show, for various regimes of system
parameters, the typical forms of the ISI distribution w(t |vc)
[see Eq. (34)]. In Fig. 3(a), the case of external white noise
[β → 1 in Eq. (4)] is considered at various values of the
memory exponent α. It can be seen that, contrary to the case
of a relatively strong memory (α = 0.2), where w(t |vc) is
multimodal, the case of a relatively weak memory (α = 0.8)
demonstrates a unimodal dependence of w(t |vc) on time t

(at least if the damping coefficient γ is large enough). This
circumstance is in accordance with the fact that, as a rule,
the damping of the oscillations of w(t |vc) versus t increases
as the memory exponent α grows. Here we recall that in the
case of external white noise, condition (30) is fulfilled in the
time interval (0,∞) for all values of other system parameters
(including α). Figure 3(b) illustrates, in the shaded domain of
the phase diagram (see Fig. 2), the influence of the noise color

FIG. 4. Behavior of the ISI distribution w(t |vc) at ω = μ = 1,
α = 0.2, and vc = 1.75. (a) Case of internal noise (β = α = 0.2). The
system parameter values are γ = 2.5 and kBT = 0.5. The solid line is
computed from Eqs. (A16)–(A18). The dots represent the calculation
data obtained after averaging over 102 time steps from the numerical
results of a computer simulation of Eq. (A10). The integration time
step was set to 0.001 for 106 trajectories of v(t). Note that w(t |vc) = 0
at t1 ≈ 1.7. (b) Case of an external noise, computed from Eq. (34) at
β = 0.6 and D = 1. The parameters are γ = 0.5 (solid line), γ = 2.5
(dashed line), and γ = 4 (dotted line). Note that in those parameter
regimes the condition (36) is valid only in a finite-time interval.

exponent β �= 1 on the behavior of the ISI distribution. For
increasing β, the main effect, which can also be observed in
Fig. 3(b), consists in a more rapid decrease of w(t |vc) as a
function of t . From Eqs. (B6)–(B15), (34), and (C1) it is easily
seen that for large t the probability density w(t |vc) decays as
a power law

w(t |vc) ∼ 1

t1+α+β
, β �= 1, (39)

demonstrating that such a tendency, i.e., a more rapid decrease
of w(t |vc) in time by increasing β, also occurs in the asymptotic
regime t → ∞.

In the unshaded domain of the phase diagram (see Fig. 2),
the behavior of the ISI distribution is qualitatively different
from the one described above. Namely, in this region of system
parameter values the multimodal structure of w(t |vc) versus
time is characterized by time instants where spike firing is
not possible [see also Fig. 4(a)]. In this case formula (34)
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is applicable only for a finite time interval (0,t1), where the
inequality (30) is valid, i.e., before the first zero of w(t |vc)
in Fig. 4(a). It should be noted that we have been unable to
derive an exact ISI distribution for the times t > t1. Therefore,
in Appendix A we present an extended model in the complex
form (A10). In Fig. 4(a) the dependence of w(t |vc) on time
t computed from Eqs. (A16)–(A18) at β = α = 0.2 and
γ /ω2−α = 2.5 is compared with the computer simulation of
Eq. (A10) using the program Mathematica 10 to generate the
trajectories of white Gaussian noise. The integration time step
�t was set to 0.001 and 106 sample trajectories were used for
the evaluation of w(t |vc). The results of the simulation show
good qualitative agreement with the exact values of w(t |vc)
predicted by the extended model (A10). For the case of an
external noise the dependence of the ISI distribution w(t |vc)
on time t in the interval (0,t1) is illustrated in Fig. 4(b) at
various values of the damping coefficient γ . It can be seen that
by increasing γ in this parameter regime, the peak of w(t |vc)
decreases and the time interval (0,t1) becomes narrower. More
precisely, at α < αc it follows from Eqs. (34) and (B6) that
at increasing γ the time t1 decreases from π/ω (at γ → 0) to
zero according to a power law

t1 
 π

γ 1/(2−α) sin
(

π
2−α

) , γ → ∞. (40)

Notably in the unshaded domain of the phase diagram (see
Fig. 2) the time interval (0,t1) depends only on the memory
kernel and is independent of any external random force ξ (t)
[cf. also Figs. 3(a) and 4(b)]. The fact that at the instant t1 the
probability density w(t |vc) tends to zero is in sharp contrast
with the results for the shaded domain of Fig. 2, where w(t |vc)
is always positive for all finite values of time. In a sense, the
behavior of the ISI density in the unshaded domain is more
similar to the multimodal behavior of w(t |vc) for the model
with an external white noise, where zeros of w(t |vc) appear at
finite-time instants.

Relying on Fig. 2, one can establish the emergence of
memory-induced transitions in the shape of the ISI distribution
due to variation of the memory exponent. For example, in the
case of min[ω2−ακ(α)] < γ < 2ω, ω � 1, these transitions are
characterized by the following scenario: For small values of
the memory exponent α < α1, where α1 is the first (smallest)
solution of the equation ω2−ακ(α) = γ , the ISI density w(t |vc)
exhibits zeros between peaks. At α = α1 the zeros of w(t |vc)
disappear and in the interval α1 < α < α2, where α2 is the
second solution of the equation ω2−ακ(α) = γ , the multimodal
behavior of w(t |vc) is described by Eq. (34). By a further
increase of α, at α = α2, a reentrant transition to the ISI
distribution occurs, characterized by time instants at which
the probability density of spike firing vanishes. In the case
of γ > 2ω, memory-induced transitions different from those
considered above can be observed on the phase diagram in
Fig. 2. Namely, in Fig. 2 the dashed line represents, in the case
of internal noise at the parameter regime ω = μ = 1, kBT =
0.15, and vc = 1.75, a critical curve (see also Appendix B)

γc1(α) = ω2−ακ1(α,ρ), ρ = (vc − μ/ω2)2ω2

2kBT
(41)

on which a transition from a bimodal shape of w(t |vc) to
a unimodal shape appears. Thus, by increasing α the ISI

FIG. 5. Dependence of the scaling function κ̃1(α,β,ρ̃) [see also
Eq. (42)] on the memory exponent α computed from Eqs. (34), (B6),
(B15), and (C3) at different values of the noise exponent β in the case
of external noise. The time scaling is determined with ω = 1 and the
chosen value of the parameter ρ̃ = 0.281. The vertical dashed line
indicates the critical memory exponent αc ≈ 0.402. The solid line
shows β = 0.2, the dashed line β = 0.6, and the dotted line β = 0.9.

distribution undergoes two transitions: from the shape with
zeros between peaks to a multimodal one without zeros and
further to the unimodal shape. It should be noted that for
external noise, the critical curve γ̃c1(α), which determines the
transitions between bimodal and unimodal shapes of w(t |vc),
satisfies the relation

γ̃c1(α) = ω2−ακ̃1(α,β,ρ̃), ρ̃ = (vcω
2 − μ)2

2Dωβ
, (42)

which is different from Eq. (41). An important difference
between the critical curves γc(α) and γ̃c1(α) described by
Eqs. (38) and (42), respectively, is that for γc the scaling
function κ(α) depends only on the memory exponent α and
as such is quite universal (applicable for both internal and
external noises), but for γ̃c1, in the scaling function κ̃(α,β,ρ̃)
an additional dependence on the noise exponent β as well as on
the other system parameters occurs. Remarkably, according to
Eq. (42), by the time scaling ω = 1 the critical curve γ̃c1(α,β)
depends on other system parameters only through the single
parameter ρ̃. This implies that an increase in the threshold
potential vc can leave the transition point on the phase space
(γ -α) unchanged if the noise parameter D (or the input force
μ) is increased at the same time so that ρ̃ remains unaffected.
In Fig. 5 we illustrate, in the case of an external noise of a
fixed value ρ̃, the dependence of the function κ̃1(α,β,ρ̃) on the
memory exponent α at various values of the noise exponent β.

A peculiarity of Fig. 5 is the hysteresislike behavior of
κ̃1(α) in the interval α ∈ (0.6,0.7). If the memory exponent
α is greater than 0.7, the dependence of κ̃1(α,β,ρ̃) on β is
almost unnoticeable, but for α < 0.6 the influence of the noise
exponent β is significant. In the last case, a monotonic increase
in the function κ̃1(α,β,ρ̃) with an increasing β can be seen. In
the region of hysteresis, we observe an interesting behavior
of w(t |vc): As the friction coefficient γ increases, not only
one transition from a bimodal to unimodal structure of w(t |vc)
occurs, but we observe three transitions: from a bimodal to a
unimodal one, then back to bimodal, and finally a reentrant
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transition to a unimodal structure [cf. also Eq. (42)]. Note that
the hysteresislike behavior of κ̃1(α) vs α is quite robust; it
exists for a large range of values of ρ̃ and even in the case of
an internal noise (see also Fig. 2).

B. Memory-induced resonancelike suppression

We now turn to describing the behavior of the survival
probability F (t) [see also Eq. (32)] in the long-time limit t →
∞. Here we recall that 1 − F (∞) gives the probability that a
spike is generated in the time interval (0,∞). In the following,
we confine ourselves to the cases where the condition (30) is
satisfied in the infinite time interval t ∈ (0,∞). From Eqs. (32)
and (C2) it follows that in the case of internal noise the survival
probability F (∞) is independent of the memory exponent α:

F (∞) = erf

(
vcω

2 − μ

ω
√

2kBT

)
. (43)

FIG. 6. Dependence of the survival probability F (∞), computed
from Eqs. (32) and (C1), on the memory exponent α. All quantities are
dimensionless with time and voltage scaling determined by ω = 1 and
μ = 1, respectively. The system parameter values are D = 1 and vc =
1.5. (a) Case of white external noise for β = 1 and γ = 6 (solid line),
γ = 2.5 (dashed line), and γ = 1 (dotted). (b) Behavior of F (∞) for
various values of the noise exponent β at γ = 3: β = 0.9 (solid line),
β = 0.6 (dashed line), and β = 0.3 (dotted line). The thin vertical
dashed line indicates the value of the memory exponent α ≈ 0.52,
below which the condition (30) is not fulfilled for any t ∈ (0,∞). At
α = 0 all curves tend to zero very fast.

Thus F (∞) increases monotonically as the temperature T

of the heat bath decreases or as the threshold potential vc

increases, which can also be expected from a physical point
of view. The case of external noise is more interesting. In
Figs. 6(a) and 6(b) the graphs depict, by the time and voltage
scaling ω = μ = 1, the dependence of F (∞) on the memory
exponent α for various values of the noise exponent β and
the damping coefficient γ . These graphs show a typical
resonancelike behavior of F (∞) versus α. The phenomenon
is more pronounced at higher values of the friction constant
γ > 1 [see also Fig. 6(a)]. As a rule, the maximal value of
F (∞) increases as the value of the damping coefficient γ

increases. Thus, at intermediate values of the memory exponent
α, the survival probability is significantly enhanced, compared
to the cases of weak and strong memory (at least if β = 1 and
γ > 1). From Fig. 6(b) it can be seen that the memory-induced
enhancement of F (∞) is stronger at smaller values of the
noise exponent β, while the positions of the maxima are
monotonically shifted to lower α as β decreases. However,
it should be noted that in the parameter regime displayed in
Fig. 6(b) the resonancelike maxima of F (∞) are quite formal,
since in those regimes the condition (30) at α < 0.52 is not
fulfilled on the whole semiaxis t ∈ (0,∞) and that renders the
formula (32) for α < 0.52 physically meaningless (if t → ∞).
Bearing in mind the results obtained and Eq. (35), one can
conclude that in the case of external noise, for sufficiently
large values of the damping coefficient γ , the ISI probability
density w(t |vc) is significantly suppressed at moderate values
of the memory exponent α in the sense that the probability
of spike generation in the time interval (0,∞), 1 − F (∞),
is suppressed at moderate values of α [see also Eq. (35)].
This statement is illustrated in Fig. 7, where in the case of
white external noise, three graphs for w(t |vc) versus time t at
different values of α are presented. Finally, we call attention
to the fact that while memory shows up as the fundamental

FIG. 7. Memory-induced suppression of the ISI distribution
w(t |vc). The graphs of w(t |vc) versus time t are computed from
Eqs. (34), (B6), (C1), and (C3). All quantities are dimensionless
with the time and voltage scaling determined by ω = 1 and μ = 1,
respectively. The system parameter values are D = 1, β = 1, γ = 6,
vc = 1.5, and α = 0.2 (solid line), α = 0.5 (dashed line), and α = 0.9
(dotted line). Note the suppression of w(t |vc) at α = 0.5 (dashed line),
i.e., the area under the dashed line is smaller than those under other
lines.
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ingredient leading to a qualitative change in the structure of the
ISI distribution, the exponent of the fractional Gaussian noise
is not able to change the qualitative aspects of the graphs (an
exception is the transition from β �= 1 to the white noise limit
β → 1), but it is important for the quantitative description of
the ISIs.

V. CONCLUSION

Motivated by studies of the dynamics of resonant neurons,
we have considered a first-passage-time problem for an RF
neuron model, where the neuron membrane potential v(t) dy-
namics is described by a time-nonhomogeneous 1D Langevin
equation driven by white Gaussian noise. The dynamical
equation of this model is a reduction of a GLE with a power-law
memory kernel, where fluctuations of the input, arising from
other neurons forming a network with a fractal structure, are
expressed as a fractional Gaussian noise. More precisely, the
proposed RF model is constructed so that its one-time statistical
properties in v space are the same as for the basic GLE.
Despite the long history and importance for a large variety
of problems in natural sciences, explicit expressions for the
FPT density are only known for a few cases [42]. The main
aim of the present paper was, using the FPT approach, to
obtain the exact formulas for the ISI distribution generated
by the model considered. In the noise-induced firing regime,
we have been able to derive, for certain system parameter
domains, exact analytical expressions of the output ISI density
and the probability for the occurrence of an inactive phase
(i.e., the probability that the generation of spikes is absent
in the whole time domain). As one of our main results,
we have established memory-induced transitions in the ISI
distribution. For example, in the case of the external white
noise, if the damping coefficient is large enough, a decrease of
the memory exponent α reproduces transitions between three
qualitatively different structures of the ISI distribution (caused
by the subthreshold dynamics of the model): from monomodal
through bimodal to multimodal densities with several decaying
maxima, separated by points where a spike generation is
absent. Moreover, we have found a critical memory exponent
αc ≈ 0.402, below which the ISI density is at all values of
other system parameters multimodal with decaying maxima.
It should be noted that in the multimodal regimes, the first
maximum is mostly very sharp and corresponds to the ISIs
within a burst of spike generation. Thus, this regime assumes a
bursting effect, actually observed in natural resonant neurons
[60]. We have shown that there is no pronounced qualitative
difference between the memory-induced transitions for the
shape of the ISI density generated by internal and external
noises. An exception is white external noise, at which the
formula obtained for the ISI distribution [see Eq. (34)] is
applicable in the time interval (0,∞) for the whole system
parameters space. Furthermore, another interesting result is
that for external noises, the model predicts, at intermediate
values of the memory exponent α, a suppression of the spike
generation. Such behavior of the ISI distribution contrasts
with that of the model with internal noise, where such a
memory-induced suppression is absent. This effect deserves
deeper investigations in the neurobiological context in the
future. One should take care not to confuse the phenomenon

of inverse stochastic resonance considered in the context of a
single Hodgkin-Huxley neuron [61] with the memory-induced
resonancelike suppression of spike generation considered in
this paper. The former reveals that a neuron’s firing rate
may undergo a pronounced minimum as the noise intensity
increases, but in our model such a resonancelike dependence
on the noise intensity is absent.

Although the theoretical results of the present paper are
restricted with the conditions for the reset state [see Eq. (7)], the
model considered here can nevertheless also be of interest from
the experimental point of view, since the control parameter is
the input force μ, which can be easily adjusted in possible
experiments. However, a further detailed study, especially a
comparison of the FPT densities predicted by both models
[Eq. (1) and Eqs. (8) and (9)], is necessary. Undoubtedly, the
ultimate verification of the relevance of the proposed model
for neuroscience lies with experimentalists.

We believe that our exact results can be a good starting
point for investigations of more elaborate model systems for
neuronal dynamics in networks and can also be of interest in
other fields where issues of excitability, memory, and colored
noise play an important role, e.g., in biophysics and physical
chemistry [62].
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APPENDIX A: THE SDE (8) IN v SPACE

1. Functions A(t) and D(t) for the model (8)

In order to find the functions A(t) and D(t) for Eq. (8) we
first derive a Fokker-Planck-type master equation in v space
for the position conditional probability density p(v,t |v0,v̇0,0)
associated with the GLE (1). Using the characteristic function
method, such a master equation has previously been found
in [13]. Here we will use an alternative method presented in
[46,63].

For a given realization of the noise φ(t),

φ(t) ≡
∫ t

0
Ḣ (t − τ )ξ (τ )dτ, (A1)

Eq. (13) describes a flow in v space. The indicator function of
this flow

f (v,t) = δ(v(t) − v), (A2)

where v(t) is the solution to Eq. (13), evolves in time according
to the stochastic Liouville equation

∂

∂t
f (v[φ],t) = − ∂

∂v

[
f (v[φ],t)

∂v[φ]

∂t

]
, (A3)

where v[φ] marks that v(t) is a functional of the noise φ(t).
The probability density of the fixed realization v at time t ,
p(v,t |v0,v̇0,0), can be obtained by averaging the indicator
function over the distribution of the colored noise φ(t) [46,63],
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namely,

p(v,t |v0,v̇0,0) = 〈f (v[φ],t)〉φ. (A4)

Here the subscript φ is a reminder that the probability density
of the colored noise φ(t) has to be employed in the calculation
of the average. Now, by substituting Eq. (13) into Eq. (A3), the
equation satisfied by p(v,t |v0,v̇0,0) reads

∂

∂t
p(v,t |v0,v̇0,0) = −〈v̇(t)〉 ∂

∂v
p(v,t |v0,v̇0,0)

− ∂

∂v
〈f (v[φ],t)φ(t)〉φ. (A5)

Since φ(t) is a zero-mean Gaussian noise, the correlator
〈f (v[φ],t)φ(t)〉φ is given by the Furutsu-Novikov formula
[63–65]

〈f (v[φ],t)φ(t)〉φ = −
∫ t

0
〈φ(t)φ(τ )〉

×
〈
∂f (v[φ],t)

∂v[φ]

δv[φ]

δφ(τ )

〉
dτ

= −
∫ t

0
〈φ(t)φ(τ )〉dτ

∂

∂v
p(v,t |v0,v̇0,0),

(A6)

where the functional derivative δv[φ]/δφ(τ ) = 1 can be ob-
tained from Eqs. (12) and (A1). Next, substituting Eq. (A6)
into Eq. (A5) and using Eqs. (A1), (20), and (21), we finally
find that p(v,t |v0v̇0,0) satisfies the Fokker-Planck-type master
equation

∂

∂t
p(v,t |v0,v̇0,0) = −〈v̇(t)〉 ∂

∂v
p(v,t |v0,v̇0,0)

+ 1

2
σ̇vv(t)

∂2

∂v2
p(v,t |v0,v̇0,0). (A7)

Notably, this equation is just the same as the master equation
obtained in [13]. Since Eq. (A7) is a well-defined master
equation, by inspection, in the case of σ̇vv(t) � 0 it can be
reinterpreted as resulting from the SDE

dv(t) = 〈v̇(t)〉dt +
√

σ̇vv(t) dW (t), (A8)

where W (t) is a Wiener process. Thus, comparing this equation
with Eq. (8), we can identify the functions A(t) and D(t) with
〈v̇(t)〉 and 1

2 σ̇vv(t), respectively. It should be pointed out that
a similar reduction of a GLE to a one-dimensional SDE was
previously considered in Ref. [63], where possible applications
were also discussed.

Finally, we note that the SDE (8) with Eq. (9) can be
obtained in a more direct way. Due to the Gaussian property
of the noise ξ (t) and the linearity of Eq. (1), the conditional
probability density p(v,t |v0,v̇0,0) for an unrestricted process
v(t) must also be Gaussian [46], i.e.,

p(v,t |v0,v̇0,0) = 1√
2σvv(t)

exp

[
− [v − 〈v(t)〉]2

2σvv(t)

]
, (A9)

with Eqs. (14) and (18). From Eq. (A9) it follows immediately
that the dynamical equation for p(v,t |v0,v̇0,0) is exactly the
same as Eq. (A7). Interpreting this dynamical equation as a

time-dependent FPE, we obtain the equivalent SDE (8) with
Eq. (9).

2. Extended model

In Sec. IV A we have shown that in some parameter regimes
the cross correlationσyv(t) = 1

2 σ̇vv(t) becomes negative valued
in a set of discrete time intervals (t2n−1,t2n), where n =
1,2, . . . ,N . To access the voltage v(t) evolution in the whole
time semiaxis t ∈ (0,∞), we postulated that v(t) dynamics can
be described by an extended model in the complex form

d

dt
z(t) = 〈v̇(t)〉 +

√
σ̇vv(t)dW (t), (A10)

where

z(t) = v(t) + ib(t). (A11)

Here z(t) is a complex-valued variable that describes the
activity of the neuron. The real part v(t) = Re z(t) is the
membrane voltage. The imaginary part b(t) = Im z(t) is a
currentlike auxiliary variable. The model is completed upon
specification of the fire-and-reset rule, which reads as follows:
If Re z(t) = vc, then a spike is considered to have occurred at
time t and z(t) is reset to the state [cf. Eq. (7)]

z = vr = μ

ω2
, ż = v̇r = 0. (A12)

To solve the FPT problem from the reset state (A12) to Re z =
vc >

μ

ω2 we use, in the case of σ̇vv(t) � 0, that the stochastic
process Re z(t) = v(t) is described by the FPE (A7). As by the
initial conditions (A12) the average 〈v̇(t)〉 vanishes [see also
Eq. (15)], 〈v̇(t)〉 = 0, we obtain from Eqs. (A10) and (A11)
that the conditional probability density p(v,t |v0,v̇0,0) for the
process with an absorbing boundary at v = vc can be found as

p(v,t |v0,v̇0,0) = p(v,t2n−1|v0,v̇0,0) (A13)

if t ∈ (t2n−1,t2n) and in the intervals t ∈ (t2n,t2n+1) it is given
by the solution of Eq. (A7) with the initial condition

p(v,t2n|v0,v̇0,0) = p(v,t2n−1|v0,v̇0,0) (A14)

in the presence of an absorbing boundary at v = vc,

p(vc,t |v0,v̇0,0) = 0. (A15)

Now the survival probability F (t) can be found analogously to
the case considered in Sec. III B. Finally, we obtain

F (t) = erf

{(
vc − μ

ω2

)[
2

(
σvv(t)

+
2n∑

k=1

(−1)k+1σvv(tk)

)]−1/2}
(A16)

if t2n+1 � t � t2n and

F (t) = erf

{(
vc − μ

ω2

)

×
[

2
2n−1∑
k=1

(−1)k+1σvv(tk)

)]−1/2}
(A17)
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if t2n � t � t2n−1, n = 1,2, . . .. The corresponding ISI distri-
bution w(t |vc) is given by

w(t |vc) = −Ḟ (t). (A18)

Note that in the case t � t1 the survival probability F (t) is
determined by Eq. (32).

APPENDIX B: DERIVATION OF EQS. (12)–(15) AND
FORMULAS FOR THE RELAXATION FUNCTIONS

1. Formal solution of the GLE (1)

The GLE (1) can be formally solved by means of Laplace
transformation. Taking into account the deterministic initial
conditions v0 = v(0) and v̇0 = v̇(0), the evolution of the
Laplace transform v̂(s) of the voltage v(t) reads

v̂(s) = 1

s
(μ − ω2v0)Ĥ (s)

+ v̇0Ĥ (s) + ξ̂ (s)Ĥ (s) + v0

s
, (B1)

where

Ĥ (s) := 1

s2 + γ sα + ω2
, (B2)

ξ̂ (s) is the Laplace transform of the noise ξ (t), and we have used
the fact that the Laplace transform of the fractional derivative
dαv(t)/dtα is given by

̂

(
dα

dtα
v

)
= sαv̂(s) − v0s

α−1. (B3)

From Eqs. (B1) and (B2), an expression for the voltage v(t)
can be found by means of the inverse Laplace transformation

v(t) = v0 + v̇0H (t) + (μ − ω2v0)
∫ t

0
H (τ )dτ

+
∫ t

0
H (t − τ )ξ (τ )dτ, (B4)

where the response function H (t) is the Laplace inversion of
Ĥ (s). Again, from Eq. (B4) one gets Eqs. (12) and (14). Using
that

H (0) = lim
s→∞[sĤ (s)] = 0, (B5)

the formulas (13) and (15) can be obtained from Eq. (B4) by
differentiation.

2. Formulas for the relaxation functions

The relaxation functions H (t), G(t), and M(t) in Eqs. (18)–
(24) can be obtained by means of the Laplace transformation
technique. To evaluate the inverse Laplace transform of Ĥ (s)
[see Eq. (B2)], we use the residue theorem method described
in [66]. The inverse Laplace transform gives

H (t) = 2√
u2 + v2

Im[eiθ e−(ν−iω∗)t ]

+ γ sin(απ )

π

∫ ∞

0

rαe−rt dr

B(r)
. (B6)

Here s1,2 = −ν ± iω∗ (ν > 0 and ω∗ > 0) are the pair of
complex-conjugate zeros of the equation

s2 + γ sα + ω2 = 0, (B7)

where Eq. (B7) is defined by the principal branch of sα . The
quantities u, v, θ , and B(r) are determined by

u = −2ν + γα cos[(1 − α)ϕ]

(ν2 + ω∗2 )(1−α)/2
, (B8)

v = 2ω∗ − γα sin[(1 − α)ϕ]

(ν2 + ω∗2 )(1−α)/2
, (B9)

with

ϕ = π + arctan

(
−ω∗

ν

)
, (B10)

θ = arctan

(
u

v

)
, (B11)

and

B(r) = [r2 + γ rαcos(απ ) + ω2]2 + γ 2r2αsin2(απ ). (B12)

The relaxation function H (t) can be represented via Mittag-
Leffler-type special functions [56]. However, as in the last
case the numerical calculations are very complicated, so we
suggest, apart from possible representations via Mittag-Leffler
functions, a numerical treatment of Eq. (B6). It should be noted
that the representation (B6) of the relaxation function H (t) was
previously used in an analysis of the energetic stability of a
fractional oscillator with multiplicative noise [67].

From Eqs. (25) and (B6) one can conclude that the relax-
ation function G(t) [see Eq. (25)] is given by

G(t) = 2√
u2 + v2

Im

[
eiθ e−(ν−iω∗)t

(ν − iω∗)

]

+γ sin(απ )

π

∫ ∞

0

e−rt dr

r1−αB(r)
. (B13)

To derive a convenient representation of M(t) defined by
Eq. (21), we start from a Laplace transform M̂(s) of the
function M(t) [see also Eqs. (B2) and (4)],

M̂(s) = Dsβ−1

s2 + γ sα + ω2
. (B14)

Using the residue theorem method, the inverse Laplace trans-
form gives

M(t) = D

{
2√

u2 + v2
Im[(−ν + iω∗)β−1eiθ e−(ν−iω∗)t ]

+ 1

π

∫ ∞

0

rβ−1e−rt

B(r)
{(r2 + ω2) sin(βπ )

+ γ rα sin[(β − α)π ]}dr

}
. (B15)

From Eq. (B15) it follows that in the case of external white
noise (i.e., β = 1) M(t) = DH (t), which can be expected. So
in this particular case the condition (30) is fulfilled in the time
interval (0,∞) for all values of other system parameters.
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3. Critical curves (38) and (41)

Using that the relaxation function H (t) is the solution of
the equation

Ḧ (t) + γ
dα

dtα
H (t) + ω2H (t) = 0 (B16)

with initial conditions

H (0) = 0, Ḣ (0) = 1, (B17)

we obtain by the time scaling t̃ = tω that H (t) and γ satisfy
the scaling laws

γ = ω2−αγ̃ ,

H (t ; γ,α,ω) = 1

ω
H (t̃ ; γ̃ ,α,1). (B18)

Thus the conditions (37) for the critical curve γ̃c(α) [Eq. (38)]
can be represented in the form

H (t̃1; γ̃c,α,1) = 0,
∂

∂t̃
H (t̃ ; γ̃c,α,1)|t̃=t̃1 = 0, (B19)

where the time instant t1 = t̃1/ω > 0 corresponds to the first
zero of H (t) on the critical curve. From Eq. (B19) it follows
that both the critical curve γ̃c(α) and t̃1(α) only depend on the
memory exponent α. Thus Eq. (38) is recovered.

To obtain Eq. (41) we use similar arguments as above. The
critical curve γc1(α) [Eq. (41)] is determined by the equations

ẇ(t |vc) = 0, ẅ(t |vc) = 0. (B20)

Defining

ρ = ω2
(
vc − μ

ω2

)2

2kBT
(B21)

and

f (t) ≡ f (t ; γ,α,ω) = ω2

kBT
σvv(t), (B22)

from Eq. (34) we obtain

w(t ; γ,ρ,α,ω) ≡ w(t |vc)

=
√

ρ ḟ (t)√
π f (t)3/2

exp

[
− ρ

f (t)

]
. (B23)

From Eqs. (22), (25), and (B18) one can see that

f (t ; γ,α,ω) = f (t̃ ; γ̃ ,α,1) (B24)

and consequently

w(t ; γ,ρ,α,ω) = ωw(t̃ ; γ̃ ,ρ,α,1). (B25)

Using Eq. (B25), the conditions (B20) for the critical curve
γc1(α) [Eq. (41)] can be written as

∂

∂t̃
w(t̃ ; γ̃cr ,ρ,α,1)|t̃=t̃1 = 0,

∂2

∂t̃2
w(t̃ ; γ̃cr ,ρ,α,1)|t̃=t̃1 = 0. (B26)

Thus, from (B26) and (B18) it follows that

γc1 = ω2−αγ̃cr (α,ρ), (B27)

which is equivalent to Eq. (41). Finally, we note that Eq. (42)
for the critical curve γ̃c1(α) can be found, starting from Eq. (34),
analogously to the derivation of γc1(α).

APPENDIX C: FORMULAS FOR THE VARIANCE

Here the exact expression for the computation of the
variance σvv(t) [see Eq. (18)], which determines the behavior
of the ISI density (34) and the survival probability (32), is
presented. From Eqs. (18) and (B6) it follows that in the
long-time limit t → ∞ the variance σvv is given by

σvv(∞) = 4√
u2 + v2

Im[eiθ M̂(ν − iω∗)]

+ 2γ sin(πα)

π

∫ ∞

0

rαM̂(r)

B(r)
dr, (C1)

where M̂(s) is determined by Eq. (B14). In the case of internal
noise β = α, the formula (C1) reduces to the equation [see also
Eqs. (4)–(6) and (22)]

σvv(∞) = D

γω2
= kBT

ω2
. (C2)

For finite times, from Eqs. (18), (B6), and (B15) we obtain

σvv(t) = σvv(∞) − 2D

{
γ sin(απ )

π2

∫ ∞

0

rαe−rt

B(r)

∫ ∞

0

e−r ′t r ′β−1f (r ′)
(r + r ′)B(r ′)

dr dr ′ + 2

π
√

u2 + v2

× Im

[
eiθ

∫ ∞

0

e−(r+ν−iω∗)t

B(r)(r + ν − iω∗)
[(−ν + iω∗)β−1γ rα sin(απ ) + rβ−1f (r)]dr

]

+ 1

ν(u2 + v2)
Im

[
eiθ (−ν + iω∗)β−1e−(2ν−iω∗)t

(
sin(ω∗t + θ ) + ν sin(ω∗t + θ ) + ω∗cos(ω∗t + θ )

ν − iω∗

)]}
, (C3)

where

f (r) = (r2 + ω2) sin(βπ ) + γ rα sin[(β − α)π ]. (C4)

Finally, we note that although the formula (C3) is valid for both internal and external driving noises, in the case of internal noise
it is more convenient to use Eq. (22) with Eqs. (B6) and (B13).
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