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Dynamic phase transition of the Blume-Capel model in an oscillating magnetic field
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We employ numerical simulations and finite-size scaling techniques to investigate the properties of the dynamic
phase transition that is encountered in the Blume-Capel model subjected to a periodically oscillating magnetic
field. We mainly focus on the study of the two-dimensional system for various values of the crystal-field coupling in
the second-order transition regime. Our results indicate that the present nonequilibrium phase transition belongs to
the universality class of the equilibrium Ising model and allow us to construct a dynamic phase diagram, in analogy
with the equilibrium case, at least for the range of parameters considered. Finally, we present some complementary
results for the three-dimensional model, where again the obtained estimates for the critical exponents fall into the
universality class of the corresponding three-dimensional equilibrium Ising ferromagnet.
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I. INTRODUCTION

Although our understanding of equilibrium critical phe-
nomena has developed to the point where well-established
theories and results are available for a wide variety of systems,
far less is known for the physical mechanisms underlying the
nonequilibrium phase transitions of many-body interacting
systems. In this respect, theoretical but also experimental
studies deserve particular attention in order to provide further
insight into the universality and scaling principles of this
type of phenomenon. We know today that when a ferro-
magnetic system, below its Curie temperature, is exposed to
a time-dependent oscillating magnetic field, it may exhibit
a fascinating dynamic magnetic behavior, which cannot be
directly obtained via its corresponding equilibrium part [1].
In a typical ferromagnetic system being subjected to an
oscillating magnetic field, there occurs a competition between
the time scales of the applied field period and the metastable
lifetime, τ , of the system. When the period of the external
field is selected to be smaller than τ , the time-dependent
magnetization tends to oscillate around a nonzero value, which
corresponds to the dynamically ordered phase. In this region,
the time-dependent magnetization is not capable of following
the external field instantaneously. However, for larger values
of the period of the external field, the system is given enough
time to indeed follow the external field. Hence, in this case the
time-dependent magnetization oscillates around its 0 value,
indicating a dynamically disordered phase. When the period
of the external field becomes comparable to τ , a dynamic phase
transition takes place between the dynamically ordered and the
disordered phases.

Up to now, there have been several theoretical [2–21]
and experimental [22–26] studies regarding dynamic phase
transitions, as well as the hysteresis properties of different types
of magnetic materials. These works indicate that, in addition
to the temperature, both the amplitude and the period of the
time-dependent magnetic field play a key role in dynamical
critical phenomena. On the other hand, and to the best of

our knowledge, there exist only a few studies focusing on
the critical exponents and universality aspects of spin models
driven by a time-dependent oscillating magnetic field [27–33].
In particular, by means of Monte Carlo simulations and finite-
size scaling analysis, it has been suggested that the critical
exponents of the two-dimensional (2D) kinetic Ising model are
compatible to those of the corresponding 2D equilibrium Ising
model [27–29]. In another relevant work [30], Buendía and
Rikvold used soft Glauber dynamics to estimate the critical
exponents of the same system, providing strong evidence
that the characteristics of the phase transition are universal
with respect to the choice of the stochastic dynamics. The
above results have been corroborated by a numerical study
of the triangular-lattice Ising model [33], where the obtained
critical exponents were found to be consistent within errors to
those of the equilibrium Ising counterpart. Furthermore, the
universality features of the 3D kinetic Ising model have been
clarified by Park and Pleimling [31]: the critical exponents
of the 3D kinetic Ising model are in good agreement with
those of the corresponding equilibrium 3D case. Last but not
least, the role of surfaces in nonequilibrium phase transitions
has been elucidated in Ref. [34], where the nonequilibrium
surface exponents were found not to coincide with those of
the equilibrium critical surface, and even more recently the
fluctuations in a square-lattice ferromagnetic model driven by
a slowly oscillating field with a constant bias have been studied
in Ref. [35]. The latter work provided us with the ubiquitous
reminder that the equivalence of the dynamic phase transition
to an equilibrium phase transition is limited to the critical
region near the critical period and zero bias.

It is evident from the above discussion that most of the
numerical work performed to clarify the universality classes
of dynamic phase transitions has been devoted to the kinetic
spin-1/2 Ising type of models. Still, there is another suitable
candidate model in which the above predictions may be tested:
the so-called Blume-Capel model [36,37]. The Blume-Capel
model is defined by a spin-1 Ising Hamiltonian with a single-
ion uniaxial crystal-field anisotropy (or simpler crystal-field
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coupling) � [36,37] [see also Eq. (1) below]. The fact that
this model has been very widely studied in statistical and
condensed-matter physics is explained not only by its relative
simplicity and the fundamental theoretical interest arising from
the richness of its phase diagram, but also by a number of
different physical realizations of variants of the model [38,39].
From the theoretical point of view, in order to have a better
understanding of the equilibrium phase transition characteris-
tics, the model and its variants have been intensively studied
by making use of different methods, such as renormalization-
group calculations [40–42], Monte Carlo simulations [43–51],
and mean-field-theory approaches [52–54].

Despite intensive investigations devoted to the determina-
tion of time-dependent magnetic-field effects on the dynamic
phase transition nature of the spin-1 Blume-Capel model
[8,15,16,18,55,56], critical exponents and universality prop-
erties of the model have not been elucidated. To fill this gap,
we present in this paper the first study of universality of the
spin-1 square-lattice Blume-Capel model in the neighborhood
of a dynamic phase transition under the presence of a time-
dependent magnetic field. The aim of our study is twofold:
First, we would like to check how the critical exponents of
the kinetic spin-1 Blume-Capel model, estimated at various
values of � in the second-order transition regime, compare to
those of the corresponding equilibrium Ising model. Second,
we target the construction of a dynamic phase diagram on
the related plane for the range of � values considered. In a
nutshell, our results indicate that the dynamic phase transition
of the present kinetic system belongs to the universality class
of the equilibrium Ising model. Some complementary results
obtained for the 3D version of this spin-1 kinetic model,
presented at the end of this paper, provide additional support
in favor of this claim. Furthermore, the obtained dynamic
phase diagram is found to be qualitatively similar to the
equilibrium phase diagram constructed on the crystal-field–
temperature plane [45,47,51]. Last but not least, the data given
in this study qualitatively support previously published studies,
where general dynamic phase transition features of the same
system have been investigated via mean-field-theory [15,16]
and effective-field-theory [18] treatments.

The outline of the remaining parts of the paper is as
follows: In Sec. II we introduce the model and the details
of our simulation protocol. In Sec. III we define the relevant
observables that will facilitate our finite-size scaling analysis
for the characterization of the universality principles of this
dynamic phase transition. The numerical results and discussion
of the 2D and 3D models are presented in Secs. IV and
V, respectively. Finally, Sec. VI presents a summary of our
conclusions.

II. MODEL AND SIMULATION DETAILS

We consider the square-lattice Blume-Capel model under
the existence of a time-dependent oscillating magnetic field.
The Hamiltonian of the system reads as

H = −J
∑
〈xy〉

σxσy + �
∑

x

σ 2
x − h(t)

∑
x

σx, (1)

where the spin variable σx takes on the value −1, 0, or +1, 〈xy〉
indicates summation over nearest neighbors, and J > 0 is the

ferromagnetic exchange interaction.�denotes the crystal-field
coupling and controls the density of vacancies (σx = 0). For
� → −∞ vacancies are suppressed and the model becomes
equivalent to the Ising model. The term h(t) corresponds to a
spatially uniform periodically oscillating magnetic field, and,
following the prescription in Refs. [29–31], we assume that all
lattice sites are exposed to a square-wave magnetic field with
amplitude h0 and half-period t1/2.

The phase diagram of the equilibrium Blume-Capel model
on the crystal-field–temperature plane consists of a bound-
ary that separates the ferromagnetic from the paramagnetic
phase. The ferromagnetic phase is characterized by an ordered
alignment of ±1 spins. The paramagnetic phase, on the other
hand, can be either a completely disordered arrangement at
high temperatures or a ±1-spin gas in a spin-0-dominated
environment at low temperatures and high crystal fields. At
high temperatures and low crystal fields, the ferromagnetic-
paramagnetic transition is a continuous phase transition in
the Ising universality class, whereas at low temperatures and
high crystal fields the transition is of first-order character
[36,37]. The model is thus a classic and paradigmatic example
of a system with a tricritical point [�t,Tt] [38], where the
two segments of the phase boundary meet. A most recent
reproduction of the phase diagram of the model can be found
in Ref. [51], and an accurate estimation of the location of
the tricritical point has been given in Ref. [50]: [�t,Tt] =
[1.9660(1),0.6080(1)]. However, for the needs of the current
work we restricted our analysis to the second-order transition
regime of the model � < �t . In particular, we studied the
system at the following crystal-field values: � = 0, 0.5, 1, 1.5,
and 1.75.

In numerical grounds, we performed Monte Carlo simu-
lations on square lattices with periodic boundary conditions
using the single-site update Metropolis algorithm [57–59].
This approach, together with the alternative option of stochas-
tic Glauber dynamics [60], comprises the standard recipe in
kinetic Monte Carlo simulations, as also noted in Ref. [30].
In fact, very recently, the surface phase diagram of the 3D
kinetic Ising model in an oscillating magnetic field has been
studied within the framework of both Glauber and Metropolis
dynamics and it has been shown that the results remain qualita-
tively unchanged when different single-spin flip dynamics are
used [32].

In our simulations, N = L × L defines the total number of
spins and L the linear dimension of the lattice, taking values
within the range L = 32−256. For each pair of (L, �) param-
eters we performed several independent long runs, tailored to
the value of � under study, using the following protocol: the
first 103 periods of the external field have been discarded during
the thermalization process and numerical data were collected
and analyzed during the following 104 periods of the field. We
note that the time unit in our simulations is one Monte Carlo
step per site (MCSS) and that error bars have been estimated
using the jackknife method [59]. To set the temperature scale
we fixed units by choosing J = 1 and kB = 1, where kB is the
Boltzmann constant. Appropriate choices of the magnetic-field
strength, h0 = 0.2, and the temperature, T (�) = 0.8Tc(�),
ensured that the system is in the multidroplet regime [31]. Here,
Tc(�) denotes the set of critical temperatures of the equilibrium
square-lattice Blume-Capel model, as estimated in Ref. [47]
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TABLE I. Summary of estimates for the critical half-period t c
1/2,

the critical exponent ν, and the magnetic exponent ratio γ /ν of
the spin-1 kinetic Blume-Capel model for various values of the
crystal-field coupling �, as listed. The second column lists the critical
temperatures of the equilibrium Blume-Capel model, as estimated in
Ref. [47].

� Tc [47] t c
1/2 ν γ /ν

0.00 1.693(3) 206.4 ± 1.2 1.05(8) 1.74(3)
0.50 1.564(3) 166.6 ± 1.1 1.01(7) 1.75(1)
1.00 1.398(2) 112.3 ± 1.3 1.03(9) 1.75(2)
1.50 1.151(1) 61.0 ± 0.3 0.98(6) 1.76(1)
1.75 0.958(1) 43.1 ± 0.2 1.02(6) 1.76(2)

and also reported in Table I. Finally, for the application of
finite-size scaling to the numerical data, we have restricted
ourselves to data with L � Lmin. As usual, to determine an
acceptable Lmin we employed the standard χ2 test of goodness
of fit [61]. Specifically, the p value of our χ2 test is the
probability of finding an χ2 value which is even larger than
the one actually found from our data. We considered a fit to be
fair only if 10% < p < 90%.

A similar prescription was also followed for the study of the
3D version of the model and the details of this implementation
are given at the beginning of Sec. V.

III. OBSERVABLES

In order to determine the universality aspects of the kinetic
Blume-Capel model, we consider the half-period dependencies
of various thermodynamic observables. The main quantity of
interest is the period-averaged magnetization

Q = 1

2t1/2

∮
M(t)dt, (2)

where the integration is performed over one cycle of the os-
cillating field. Given that for finite systems in the dynamically
ordered phase the probability density of Q becomes bimodal,
one has to measure the average norm of Q in order to capture
symmetry breaking, so that 〈|Q|〉 defines the dynamic order
parameter of the system. In Eq. (2), M(t) is the time-dependent
magnetization per site,

M(t) = 1

N

N∑
x=1

σx(t). (3)

To characterize and quantify the transition using finite-size
scaling arguments we must also define quantities analogous to
the susceptibility in equilibrium systems. The scaled variance
of the dynamic order parameter

χ
Q
L = N

[〈Q2〉L − 〈|Q|〉2
L

]
(4)

has been suggested as a proxy for the nonequilibrium suscep-
tibility, also theoretically justified via fluctuation-dissipation
relations [17]. Similarly, one may also measure the scaled
variance of the period-averaged energy

χE
L = N

[〈E2〉L − 〈E〉2
L

]
, (5)

so that χE
L can be considered the relevant heat capacity of the

dynamic system. Here E denotes the cycle-averaged energy
corresponding to the cooperative part of the Hamiltonian, (1):

E = 1

2t1/2N

∮ ⎡
⎣−J

∑
〈xy〉

σxσy + �
∑

x

σ 2
x

⎤
⎦dt. (6)

A few comments are in order at this point with respect to the
use of Eqs. (5) and (6), where we focus only on the cooperative
part of the energy in order to calculate the time-averaged energy
over a full cycle of the external field and its corresponding
variance. Conceptually, the role of the time-averaged energy
originating from an oscillating magnetic field (namely, the
time-dependent Zeeman term) can be better understood with
the help of the dynamic correlation function. In spin systems
driven by a time-dependent external field there may be some
dynamic correlations between the time-dependent magnetic
field and the time-dependent magnetization, which strongly
depend on the chosen temperature, including other parameters
as well. In order to explain this point in detail, let us define the
dynamic correlation function G = 〈M(t)h(t)〉 − 〈M(t)〉〈h(t)〉,
where 〈. . . 〉 denotes the time average over a full cycle of the
external field [4]. Since 〈h(t)〉 = 0, we are allowed to simplify
as G = 〈M(t)h(t)〉. We know that in the relatively strong ferro-
magnetic phase the spin-spin interactions are dominant against
the field energy. Therefore, the spins do not tend to respond
to the varying magnetic field for fixed system parameters. In
other words, the corresponding dynamic correlation function is
almost 0 in this region. In the regions, except from the strongly
ferromagnetic and paramagnetic phases, the relevant term may
have a nonzero value, however, the energy term coming from
this type of behavior does not affect the true dynamic phase
transition point [6].

Finally, with the help of the dynamic order parameter Q we
may define the corresponding fourth-order Binder cumulant
[27,28]

UL = 1 − 〈|Q|4〉L
3〈|Q|2〉2

L

, (7)

which provides us with an alternative estimation of the critical
point, at the same giving time a flavor of universality at its
intersection point [62].

IV. RESULTS AND DISCUSSION

It may be useful at this point to briefly describe the
mechanism underlying the dynamical ordering that takes place
in kinetic ferromagnets, as exemplified in Figs. 1 and 2 for
the case of the � = 1 Blume-Capel model and a system size
of L = 128. In particular, Fig. 1 presents the time evolution
of the magnetization and Fig. 2 the period dependencies of
the dynamic order parameter Q. Several comments are in
order at this point: For slowly varying fields [Fig. 1(a)] the
magnetization follows the field, switching every half-period.
In this region, as expected, Q ≈ 0, as also shown by the
blue line in Fig. 2. On the other hand, for rapidly varying
fields [Fig. 1(c)] the magnetization does not have enough
time to switch during a single half-period and remains nearly
constant for many successive field cycles, as also illustrated
by the black line in Fig. 2. In other words, whereas in
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(b)

(c)

(a)

FIG. 1. Time series of the magnetization (solid red curves) of
the � = 1 kinetic spin-1 Blume-Capel model under the presence
of a square-wave magnetic field (dashed black lines) for L =
128 and three values of the half-period of the external field: (a)
t1/2 = 200 MCSS, corresponding to a dynamically disordered phase;
(b) t1/2 = 113 MCSS, close to the dynamic phase transition; and
(c) t1/2 = 50 MCSS, corresponding to a dynamically ordered phase.
Note that for the sake of clarity the ratio h(t)/h0 is displayed.

the dynamically disordered phase the ferromagnet is able to
reverse its magnetization before the field changes again, in
the dynamically ordered phase this is not possible and therefore
the time-dependent magnetization oscillates around a finite
value. The competition between the magnetic field and the
metastable state is captured by the half-period parameter t1/2

FIG. 2. Period dependencies of the dynamic order parameter of
the� = 1 kinetic spin-1 Blume-Capel model forL = 128. Results are
shown for three characteristic cases of the half-period of the external
field: t1/2 = 200 MCSS (blue line), t1/2 = 113 MCSS (red line), and
t1/2 = 50 MCSS (black line). The strongly fluctuating trace (red line)
corresponds to the vicinity of the dynamic phase transition, given that
t1/2 ≈ t c

1/2 = 112.3 ± 1.3, as shown below.

(or by the normalized parameter � = t1/2/τ , with τ being the
metastable lifetime [31]). Obviously, t1/2 plays the role of the
temperature in the corresponding equilibrium system. Now,
the transition between the two regimes is characterized by
strong fluctuations in Q [see Fig. 1(b) and the evolution of
the red line in Fig. 2]. This behavior is indicative of a dynamic
phase transition and occurs for values of the half-period close
to the critical one tc

1/2 (otherwise stated, when t1/2 ≈ τ , so that
� ≈ 1). Of course, since the value t1/2 = 113 MCSS used for
this illustration is slightly higher than the value of tc

1/2 for the
case � = 1 (see Table I), the observed behavior also includes
some nonvanishing finite-size effects.

To illustrate the spatial aspects of the transition scenario
described in Figs. 1 and 2, we also show the configurations
of the local order parameter {Qx} in Fig. 3 for the case of
the � = 1.75 Blume-Capel model and a system of linear size
L = 128. When the period of the external field is selected to
be larger than the relaxation time of the system, above tc

1/2 [see
Fig. 3(a)], the system follows the field in every half-period,
with some phase lag, and Qx ≈ 0 at all sites x. In other words
the system lies in the dynamically disordered phase. On the
other hand, below tc

1/2 [see Fig. 3(c)], the majority of spins
spend most of their time in the +1 state, i.e., in the metastable
phase during the first half-period and in the stable equilibrium
phase during the second half-period, except for equilibrium
fluctuations. Thus most Qx ≈ +1. The system is now in the
dynamically ordered phase. Near tc

1/2 and the expected dynamic
phase transition, there are large clusters of both +1 and −1
states, within a sea of 0-state spins, as clearly illustrated in
Fig. 3(b).

However, the value of the local order parameter {Qx} does
not distinguish between random distributions of σx = ±1 and
regions of σx = 0. To highlight this distinction, we present in
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FIG. 3. Configurations of the local dynamic order parameter {Qx}
of the � = 1.75 kinetic spin-1 Blume-Capel model for L = 128.
The “snapshots” of {Qx} for each regime are the set of local
period-averaged spins during some representative period: (a) t1/2 =
100 MCSS > t c

1/2, dynamically disordered phase; (b) t1/2 = 43 MCSS
≈ t c

1/2, near the dynamic phase transition; and (c) t1/2 = 20 MCSS
< t c

1/2, dynamically ordered phase.

Fig. 4 similar snapshots of the dynamic quadrupole moment
over a full cycle of the external field, O = 1

2t1/2

∮
q(t)dt , where

q(t) = 1
N

∑N
x=1 σ 2

x . The simulation parameters are exactly the
same as those used in Figs. 3(a)–3(c). Of course, the dynamic
quadrupole moment is always 1 for the kinetic spin-1/2 Ising
model, because σx = ±1 in this case. In the spin-1 Blume-

FIG. 4. In full analogy with Fig. 3 we show snapshots of the
period-averaged quadrupole moment conjugate to the crystal-field
coupling �. Simulation parameters are exactly the same as those used
in Figs. 3(a)–3(c).

Capel model the density of the (σx = 0) vacancies is controlled
by the the crystal-field coupling �, and, thus the value of the
dynamic quadrupole moment changes depending on �. When
the value of � increases, starting from its Ising limit (� →
−∞), the number of vacancies also increases in the system, so
that the dynamic quadrupole moment tends to decrease from its
maximum value. In Fig. 4, except for the red regions, indicating
the +1 state, regions enclosed by finite values exemplify the
role played by the the crystal-field coupling in the system.
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FIG. 5. Half-period dependency of the dynamic order parameter
of the kinetic spin-1 � = 1.5 Blume-Capel model for a wide range
of system sizes studied. Inset: Half-period dependency of the corre-
sponding dynamic susceptibility χ

Q

L .

To further explore the nature of the dynamic phase
transition, we performed a finite-size scaling analysis of the
simulation data obtained for various values of the crystal-field
coupling �, as outlined above. Previous studies in the field
indicated that although scaling laws and finite-size scaling are
tools that have been designed for the study of equilibrium phase
transitions, they also can be successfully applied to systems far
from equilibrium, like the current kinetic spin-1 Blume-Capel
model [27–31].

As an illustrative example of the case � = 1.5, we present
in Fig. 5 the finite-size behavior of the dynamic order parameter
and in its inset the corresponding dynamic susceptibility for a
wide range of system sizes studied. The figure clearly shows
that this dynamic order parameter goes from a finite value to
0 values as the half-period increases, showing a sharp change
around the value of the half-period that can be mapped to the
corresponding peak in the plot of the dynamic susceptibility.
The height and the location of the maximum χ

Q
L change with

the system size and we may define these point locations as
suitable pseudocritical half-periods, denoted hereafter t∗1/2. The

corresponding maxima may be similarly defined as (χQ
L )∗.

Moreover, the absence of finite-size effects below the critical
point is a clear signature of a divergent length scale. Of
course, similar plots may be prepared for all the other values of
� studied, providing us with suitable pseudocritical points and
susceptibility maxima that will allow us to perform finite-size
scaling.

The shift behavior of the peak locations t∗1/2 is plotted in
Fig. 6 as a function of 1/L for all the values of the crystal-field
coupling considered. Solid lines are fits of the usual shift form
[63–65]

t∗1/2 = tc
1/2 + bL−1/ν, (8)

where tc
1/2 defines the critical half-period of the system and is

a function of � and ν is the critical exponent of the correlation
length. The obtained values for the critical half-period are listed
in the third column in Table I. The relevant values for the

FIG. 6. Estimation of the critical half-period t c
1/2 and the correla-

tion length’s exponent ν of the kinetic spin-1 Blume-Capel model for
all values of � considered. Solid lines are fits of the form of (8).

critical exponent ν are given in the legend to Fig. 6 but are also
listed in the fourth column in Table I. These values suggest
that the critical exponent ν of the kinetic Blume-Capel model is
compatible, up to a very good accuracy, with the value ν = 1 of
the 2D equilibrium Ising model, thus providing the first strong
element of universality. Subsequently, in Fig. 7 we present the
finite-size scaling analysis behavior of the peaks of the dynamic
susceptibility and the solid lines are fits of the form [66]

(
χ

Q
L

)∗ ∼ Lγ/ν. (9)

The results for the magnetic exponent ratio γ /ν are given in
the legend to Fig. 7 and also in the fifth column in Table I.
Again, these values for all � cases studied in the present work
are in good agreement with the expected Ising value γ /ν =
1.75, reinforcing the scenario of universality for the kinetic
Blume-Capel model.

In addition to γ /ν, further evidence may be provided via
the alternative magnetic exponent ratio, namely, β/ν, obtained

FIG. 7. Finite-size scaling analysis of the maxima (χQ

L )∗ of the
kinetic spin-1 Blume-Capel model for all values of � considered.
Solid lines are fits of the form of (9).
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FIG. 8. Finite-size scaling analysis of the dynamic order param-
eter estimated at the critical half-period, (〈|Q|〉L)∗, of the 2D kinetic
spin-1 Blume-Capel model at � = 1. The solid line is a power-law
fit of the form of (10).

from the scaling behavior of the dynamic order parameter at
the critical point via

(〈|Q|〉L)∗ ∼ L−β/ν. (10)

One characteristic example of this expected scaling behavior
for the kinetic spin-1 Blume-Capel model is shown in Fig. 8 for
� = 1. A power-law fit of the form of (10) gives an estimate
0.124(3) for β/ν, in good agreement with the Ising value 1/8 =
0.125. Let us note here that similar results have been obtained
in our fitting attempts for all the other � values studied in this
work.

As mentioned in Sec. III, we also measured the energy
and its corresponding scaled variance, the heat capacity, (5).
Both quantities are shown in Fig. 9 and its inset, respectively.
Ideally, we would like to observe logarithmic scaling behavior
of the maxima of the heat capacity (χE

L )∗. Indeed, as shown in

FIG. 9. Half-period dependency of the energy of the kinetic spin-1
� = 1.5 Blume-Capel model for a wide range of system sizes studied.
Inset: Half-period dependency of the corresponding heat capacity χE

L .

FIG. 10. Illustration of the logarithmic scaling behavior of the
maxima of the heat capacity, (χE

L )∗, for all values of � considered in
this work. Solid lines are fits of the form of (11).

Fig. 10, the data for the maxima of the heat capacity show a
clear logarithmic divergence of the form [67](

χE
L

)∗ ∝ c1 + c2 ln (L), (11)

as expected for a 2D Ising ferromagnet.
A final verification of the equilibrium Ising universality

class comes from the study of the Binder cumulant, as defined
above for the case of the dynamic order parameter [see Eq. (7)].
In Fig. 11 we plot the fourth-order cumulant UL for the
case � = 1.5 for the various system sizes considered in this
work. The inset is a mere enlargement of the intersection
area. The dashed vertical line marks the critical half-period
value of the system tc

1/2 = 61.0 ± 0.3, as estimated in Fig. 6,
and the dotted horizontal line represents the universal value
U ∗ = 0.610 692 4(16) of the 2D equilibrium Ising model [68],
which is consistent with the crossing point of our numerical

FIG. 11. Half-period dependency of the fourth-order Binder cu-
mulant UL of the kinetic spin-1 � = 1.5 Blume-Capel model for a
wide range of system sizes studied. Inset: An enhancement of the
intersection area.
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FIG. 12. Dynamic � − t c
1/2 phase boundary of the kinetic spin-1

square-lattice Blume-Capel model. Inset: For the sake of complete-
ness we provide a part of the phase diagram of the equilibrium
counterpart on the (� − Tc) plane using the results from Ref. [47]
that were used in the present work. The dotted line is a simple guide
for the eye.

data. Certainly, the crossing point is expected to depend on
the lattice size L (as also shown in the figure) and the term
universal is valid for given lattice shapes, boundary conditions,
and isotropic interactions. For a detailed discussion of this topic
we refer the reader to Refs. [69] and [70]. Still, the scope of the
current Fig. 11 is to show qualitatively another instance of the
Ising universality. Similar plots and conclusions hold also for
the other values of � studied but are omitted for brevity. As a
note, we remind the reader that an alternative way to estimate
the critical exponent ν comes from the scaling behavior of the
derivative of the Binder cumulant at the corresponding crossing
points, via (∂UL/∂t1/2) ∝ L1/ν , an approach that demands
quite accurate data at the area of the crossing points for safe
estimation of derivatives [58].

We complete our analysis of the 2D model by presenting in
Fig. 12 an illustrative formulation of a dynamic phase diagram
for the kinetic spin-1 Blume-Capel model on the (� − tc

1/2)
plane, using the values for the critical half-period listed in
Table I. We also include a complementary inset with the corre-
sponding equilibrium counterpart on the (� − Tc) plane using
the results in Ref. [47] for the regime of continuous transitions.
As shown in Fig. 12, the values of tc

1/2 decrease almost linearly
with increasing �. We are not currently sure whether this
is due to the particular selection of the chosen temperatures,
0.8Tc(�), or is a general result for any temperature well below
Tc. Further simulations are needed to clarify this point, but they
are beyond the scope of the current study.

V. ON THE DYNAMIC PHASE TRANSITION OF THE
3D BLUME-CAPEL MODEL

In this section we present some complementary results on
the dynamic phase transition of the kinetic spin-1 3D Blume-
Capel model, as defined in Eq. (1), but with the spins living on
the simple cubic lattice. In this case N = L × L × L, where
L ∈ {8,16,24,32,48,64}. The analysis below is presented for

FIG. 13. Finite-size scaling analysis of the maxima (χQ

L )∗. Inset:
Shift behavior of the corresponding pseudocritical half-periods t∗

1/2 of
the 3D kinetic spin-1 Blume-Capel model.

a single value of the crystal-field coupling in the second-order
transition regime of the phase diagram, namely, for � = 0.655.
For this value of �, the critical temperature of the model
has been very accurately determined by Hasenbusch to be
Tc = 2.579 169 [71]. Our Monte Carlo simulations followed
the protocol defined in Sec. II for the case of the square-lattice
model, using now h0 = 0.6 and T = 0.8Tc as appropriate
choices for the magnetic-field strength and the temperature,
respectively.

We summarize our results in Figs. 13–15. In particular,
in Fig. 13 we present the finite-size scaling behavior of the
maxima (χQ

L )∗. The solid line is a fit of the form of (9),
providing us with the estimate γ /ν = 1.97(2), which is in
very good agreement with the Ising value 1.963 70(2) of the
equilibrium 3D Ising ferromagnet [72]. In the corresponding
inset we illustrate the shift behavior of the pseudocritical
half-periods t∗1/2 as a function of L−1/ν , where ν has been

FIG. 14. Finite-size scaling analysis of the dynamic order param-
eter estimated at the critical half-period, (〈|Q|〉L)∗, of the 3D kinetic
spin-1 Blume-Capel model. The solid line is a power-law fit of the
form of (10).
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FIG. 15. Finite-size scaling analysis of the maxima (χE
L )∗ of the

3D kinetic spin-1 Blume-Capel model. The solid line is a power-law
fit of the form of (12).

fixed at the Ising value 0.629 971 [72]. The numerical data
are well described by a linear extrapolation to the L → ∞
limit [see also Eq. (8)], indicating that the critical exponent ν

of the kinetic version of the 3D Blume-Capel model shares the
value of its equilibrium counterpart. The critical half-period is
also estimated to be tc

1/2 = 72.1 ± 0.6 for the particular case
of � studied here, as also indicated in the inset in Fig. 13.

Figure 14 illustrates the scaling behavior of the dynamic
order parameter of the 3D kinetic spin-1 Blume-Capel model
at the above estimated critical half-period, (〈|Q|〉L)∗. Similarly
to the 2D model, the solid line is a power-law fit of the form of
(10), providing the estimate β/ν = 0.516(37) for the magnetic
exponent ratio, to be compared with the value 0.5181 49(6) of
the 3D Ising model [72]. Again, the agreement is beyond any
(numerical) doubt.

Finally, we discuss the scaling behavior of the heat capacity,
(5). In Fig. 15 we present the size evolution of the maxima of
the heat capacity (χE

L )∗ of the 3D kinetic spin-1 Blume-Capel
model. The solid line is a power-law fit of the form [64](

χE
L

)∗ ∼ Lα/ν, (12)

and the obtained estimate for the critical exponent ratio
α/ν = 0.17(2) nicely compares to the equilibrium valueα/ν =
0.17475(2) of the 3D Ising ferromagnet [72], thus supporting
the conclusion of the earlier work by Park and Pleimling on
the 3D kinetic Ising model [31].

VI. SUMMARY

In the present work we have investigated the dynamical
response of the 2D Blume-Capel model exposed to a square-
wave oscillating external field. Using Monte Carlo simulations
and finite-size scaling techniques we have studied the system at
various values of the crystal-field coupling within the second-
order transition regime. Our results for the critical exponent
ν, the magnetic exponent ratios γ /ν and β/ν, the universal
Binder cumulant, and the observed logarithmic divergence of
the heat capacity indicate that the present nonequilibrium phase
transition belongs to the universality class of the equilibrium
Ising model. Furthermore, with the numerical data at hand,
we have been able to construct a 2D dynamic phase diagram
for the range of parameters considered, in analogy with the
equilibrium case. Additional evidence in favor of this univer-
sality scenario between the dynamic phase transition and its
equilibrium counterpart has been provided via a supplemental
study of the 3D Blume-Capel model.

To conclude, the results presented in the current paper,
together with existing results for the 2D and 3D kinetic Ising
models [27–33], establish a clear universality between the
equilibrium and the dynamic phase transitions of Ising spin
models. They also provide additional support for the symmetry
arguments put forward by Grinstein et al. [73] a few decades
ago, underlying the role of symmetries in nonequilibrium
critical phenomena.

ACKNOWLEDGMENTS

The authors would like to thank P. A. Rikvold and W.
Selke for many useful comments on the manuscript. The
numerical calculations reported in this paper were performed
at Tübitak Ulakbim (Turkish agency), High Performance and
Grid Computing Center (TRUBA Resources).

[1] T. Tomé and M. J. de Oliveira, Phys. Rev. A 41, 4251 (1990).
[2] W. S. Lo and R. A. Pelcovits, Phys. Rev. A 42, 7471 (1990).
[3] M. F. Zimmer, Phys. Rev. E 47, 3950 (1993).
[4] M. Acharyya and B. K. Chakrabarti, Phys. Rev. B 52, 6550

(1995).
[5] B. K. Chakrabarti and M. Acharyya, Rev. Mod. Phys. 71, 847

(1999).
[6] M. Acharyya, Phys. Rev. E 56, 1234 (1997).
[7] M. Acharyya, Phys. Rev. E 69, 027105 (2004).
[8] G. M. Buendía and E. Machado, Phys. Rev. E 58, 1260 (1998).
[9] G. M. Buendía and E. Machado, Phys. Rev. B 61, 14686 (2000).

[10] H. Jang, M. J. Grimson, and C. K. Hall, Phys. Rev. E 68, 046115
(2003).

[11] H. Jang, M. J. Grimson, and C. K. Hall, Phys. Rev. B 67, 094411
(2003).

[12] X. Shi, G. Wei, and L. Li, Phys. Lett. A 372, 5922 (2008).
[13] A. Punya, R. Yimnirun, P. Laoratanakul, and Y. Laosiritaworn,

Physica B 405, 3482 (2010).
[14] P. Riego and A. Berger, Phys. Rev. E 91, 062141

(2015).
[15] M. Keskin, O. Canko, and U. Temizer, Phys. Rev. E 72, 036125

(2005).
[16] M. Keskin, O. Canko, and Ü. Temizer, J. Exp. Theor. Phys. 104,

936 (2007).
[17] D. T. Robb, P. A. Rikvold, A. Berger, and M. A. Novotny, Phys.

Rev. E 76, 021124 (2007).
[18] B. Deviren and M. Keskin, J. Magn. Magn. Mater. 324, 1051

(2012).
[19] Y. Yüksel, E. Vatansever, and H. Polat, J. Phys.: Condens. Matter

24, 436004 (2012).

012122-9

https://doi.org/10.1103/PhysRevA.41.4251
https://doi.org/10.1103/PhysRevA.41.4251
https://doi.org/10.1103/PhysRevA.41.4251
https://doi.org/10.1103/PhysRevA.41.4251
https://doi.org/10.1103/PhysRevA.42.7471
https://doi.org/10.1103/PhysRevA.42.7471
https://doi.org/10.1103/PhysRevA.42.7471
https://doi.org/10.1103/PhysRevA.42.7471
https://doi.org/10.1103/PhysRevE.47.3950
https://doi.org/10.1103/PhysRevE.47.3950
https://doi.org/10.1103/PhysRevE.47.3950
https://doi.org/10.1103/PhysRevE.47.3950
https://doi.org/10.1103/PhysRevB.52.6550
https://doi.org/10.1103/PhysRevB.52.6550
https://doi.org/10.1103/PhysRevB.52.6550
https://doi.org/10.1103/PhysRevB.52.6550
https://doi.org/10.1103/RevModPhys.71.847
https://doi.org/10.1103/RevModPhys.71.847
https://doi.org/10.1103/RevModPhys.71.847
https://doi.org/10.1103/RevModPhys.71.847
https://doi.org/10.1103/PhysRevE.56.1234
https://doi.org/10.1103/PhysRevE.56.1234
https://doi.org/10.1103/PhysRevE.56.1234
https://doi.org/10.1103/PhysRevE.56.1234
https://doi.org/10.1103/PhysRevE.69.027105
https://doi.org/10.1103/PhysRevE.69.027105
https://doi.org/10.1103/PhysRevE.69.027105
https://doi.org/10.1103/PhysRevE.69.027105
https://doi.org/10.1103/PhysRevE.58.1260
https://doi.org/10.1103/PhysRevE.58.1260
https://doi.org/10.1103/PhysRevE.58.1260
https://doi.org/10.1103/PhysRevE.58.1260
https://doi.org/10.1103/PhysRevB.61.14686
https://doi.org/10.1103/PhysRevB.61.14686
https://doi.org/10.1103/PhysRevB.61.14686
https://doi.org/10.1103/PhysRevB.61.14686
https://doi.org/10.1103/PhysRevE.68.046115
https://doi.org/10.1103/PhysRevE.68.046115
https://doi.org/10.1103/PhysRevE.68.046115
https://doi.org/10.1103/PhysRevE.68.046115
https://doi.org/10.1103/PhysRevB.67.094411
https://doi.org/10.1103/PhysRevB.67.094411
https://doi.org/10.1103/PhysRevB.67.094411
https://doi.org/10.1103/PhysRevB.67.094411
https://doi.org/10.1016/j.physleta.2008.07.050
https://doi.org/10.1016/j.physleta.2008.07.050
https://doi.org/10.1016/j.physleta.2008.07.050
https://doi.org/10.1016/j.physleta.2008.07.050
https://doi.org/10.1016/j.physb.2010.05.028
https://doi.org/10.1016/j.physb.2010.05.028
https://doi.org/10.1016/j.physb.2010.05.028
https://doi.org/10.1016/j.physb.2010.05.028
https://doi.org/10.1103/PhysRevE.91.062141
https://doi.org/10.1103/PhysRevE.91.062141
https://doi.org/10.1103/PhysRevE.91.062141
https://doi.org/10.1103/PhysRevE.91.062141
https://doi.org/10.1103/PhysRevE.72.036125
https://doi.org/10.1103/PhysRevE.72.036125
https://doi.org/10.1103/PhysRevE.72.036125
https://doi.org/10.1103/PhysRevE.72.036125
https://doi.org/10.1134/S1063776107060118
https://doi.org/10.1134/S1063776107060118
https://doi.org/10.1134/S1063776107060118
https://doi.org/10.1134/S1063776107060118
https://doi.org/10.1103/PhysRevE.76.021124
https://doi.org/10.1103/PhysRevE.76.021124
https://doi.org/10.1103/PhysRevE.76.021124
https://doi.org/10.1103/PhysRevE.76.021124
https://doi.org/10.1016/j.jmmm.2011.10.023
https://doi.org/10.1016/j.jmmm.2011.10.023
https://doi.org/10.1016/j.jmmm.2011.10.023
https://doi.org/10.1016/j.jmmm.2011.10.023
https://doi.org/10.1088/0953-8984/24/43/436004
https://doi.org/10.1088/0953-8984/24/43/436004
https://doi.org/10.1088/0953-8984/24/43/436004
https://doi.org/10.1088/0953-8984/24/43/436004


EROL VATANSEVER AND NIKOLAOS G. FYTAS PHYSICAL REVIEW E 97, 012122 (2018)

[20] Y. Yüksel, E. Vatansever, U. Akinci, and H. Polat, Phys. Rev. E
85, 051123 (2012).

[21] E. Vatansever, Phys. Lett. A 381, 1535 (2017).
[22] Y.-L. He and G.-C. Wang, Phys. Rev. Lett. 70, 2336 (1993).
[23] D. T. Robb, Y. H. Xu, O. Hellwig, J. McCord, A. Berger, M. A.

Novotny, and P. A. Rikvold, Phys. Rev. B 78, 134422 (2008).
[24] J.-S. Suen and J. L. Erskine, Phys. Rev. Lett. 78, 3567 (1997).
[25] A. Berger, O. Idigoras, and P. Vavassori, Phys. Rev. Lett. 111,

190602 (2013).
[26] P. Riego, P. Vavassori, and A. Berger, Phys. Rev. Lett. 118,

117202 (2017).
[27] S. W. Sides, P. A. Rikvold, and M. A. Novotny, Phys. Rev. Lett.

81, 834 (1998).
[28] S. W. Sides, P. A. Rikvold, and M. A. Novotny, Phys. Rev. E 59,

2710 (1999).
[29] G. Korniss, C. J. White, P. A. Rikvold, and M. A. Novotny, Phys.

Rev. E 63, 016120 (2000).
[30] G. M. Buendía and P. A. Rikvold, Phys. Rev. E 78, 051108

(2008).
[31] H. Park and M. Pleimling, Phys. Rev. E 87, 032145 (2013).
[32] K. Tauscher and M. Pleimling, Phys. Rev. E 89, 022121 (2014).
[33] E. Vatansever, arXiv:1706.03351.
[34] H. Park and M. Pleimling, Phys. Rev. Lett. 109, 175703 (2012).
[35] G. M. Buendía and P. A. Rikvold, Phys. Rev. B 96, 134306

(2017).
[36] H. W. Capel, Physica (Amsterdam) 32, 966 (1966).
[37] M. Blume, Phys. Rev. 141, 517 (1966).
[38] I. D. Lawrie and S. Sarbach, in Phase Transitions and Critical

Phenomena, Vol. 9, edited by C. Domb and J. L. Lebowitz
(Academic Press, London, 1984).

[39] W. Selke and J. Oitmaa, J. Phys.: Condens. Matter 22, 076004
(2010).

[40] A. N. Berker and M. Wortis, Phys. Rev. B 14, 4946 (1976).
[41] N. S. Branco and B. M. Boechat, Phys. Rev. B 56, 11673 (1997).
[42] D. P. Snowman, Phys. Rev. E 79, 041126 (2009).
[43] A. K. Jain and D. P. Landau, Phys. Rev. B 22, 445 (1980).
[44] A. Falicov and A. N. Berker, Phys. Rev. Lett. 74, 426 (1995).
[45] C. J. Silva, A. A. Caparica, and J. A. Plascak, Phys. Rev. E 73,

036702 (2006).
[46] A. Malakis, A. N. Berker, I. A. Hadjiagapiou, and N. G. Fytas,

Phys. Rev. E 79, 011125 (2009).
[47] A. Malakis, A. N. Berker, I. A. Hadjiagapiou, N. G. Fytas, and

T. Papakonstantinou, Phys. Rev. E 81, 041113 (2010).
[48] A. Malakis, A. N. Berker, N. G. Fytas, and T. Papakonstantinou,

Phys. Rev. E 85, 061106 (2012).

[49] N. G. Fytas and W. Selke, Eur. Phys. J. B 86, 365 (2013).
[50] W. Kwak, J. Jeong, J. Lee, and D.-H. Kim, Phys. Rev. E 92,

022134 (2015).
[51] J. Zierenberg, N. G. Fytas, M. Weigel, W. Janke, and A. Malakis,

Eur. Phys. J. Special Topics 226, 789 (2017).
[52] N. Boccara, A. Elkenz, and M. Saber, J. Phys.: Condens. Matter

1, 5721 (1989).
[53] W. Hoston and A. N. Berker, Phys. Rev. Lett. 67, 1027

(1991).
[54] H. Ez-Zahraouy and A. Kassou-Ou-Ali, Phys. Rev. B 69, 064415

(2004).
[55] X. Shi and G. Wei, Phys. Scripta 89, 075805 (2014).
[56] M. Acharyya and A. Halder, J. Magn. Magn. Mater. 426, 53

(2017).
[57] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H.

Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).
[58] D. P. Landau and K. Binder, A Guide to Monte Carlo Simulations

in Statistical Physics (Cambridge University Press, Cambridge,
UK, 2000).

[59] M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in
Statistical Physics (Oxford University Press, New York, 1999).

[60] R. J. Glauber, J. Math. Phys. 4, 294 (1963).
[61] W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery,

Numerical Recipes in C, 2nd ed. (Cambridge University Press,
Cambridge, UK, 1992).

[62] K. Binder, Z. Phys. B: Condens. Matter 43, 119 (1981); Phys.
Rev. Lett. 47, 693 (1981).

[63] M. E. Fisher, Critical Phenomena, edited by M. S. Green
(Academic Press, London, 1971).

[64] V. Privman, Finite Size Scaling and Numerical Simulation of
Statistical Systems (World Scientific, Singapore, 1990).

[65] K. Binder, Computational Methods in Field Theory, edited by
C. B. Lang and H. Gausterer (Springer, Berlin, 1992).

[66] A. M. Ferrenberg and D. P. Landau, Phys. Rev. B 44, 5081
(1991).

[67] A. E. Ferdinand and M. E. Fisher, Phys. Rev. 185, 832
(1969).

[68] J. Salas and A. D. Sokal, J. Stat. Phys. 98, 551 (2000).
[69] W. Selke, J. Stat. Mech. (2007) P04008.
[70] W. Selke and L. N. Shchur, Phys. Rev. E 80, 042104 (2009).
[71] M. Hasenbusch, Phys. Rev. B 82, 174434 (2010).
[72] F. Kos, D. Poland, D. Simmons-Duffin, and A. Vichi, J. High

Energy Phys. 08 (2016) 036.
[73] G. Grinstein, C. Jayaprakash, and Y. He, Phys. Rev. Lett. 55,

2527 (1985).

012122-10

https://doi.org/10.1103/PhysRevE.85.051123
https://doi.org/10.1103/PhysRevE.85.051123
https://doi.org/10.1103/PhysRevE.85.051123
https://doi.org/10.1103/PhysRevE.85.051123
https://doi.org/10.1016/j.physleta.2017.03.012
https://doi.org/10.1016/j.physleta.2017.03.012
https://doi.org/10.1016/j.physleta.2017.03.012
https://doi.org/10.1016/j.physleta.2017.03.012
https://doi.org/10.1103/PhysRevLett.70.2336
https://doi.org/10.1103/PhysRevLett.70.2336
https://doi.org/10.1103/PhysRevLett.70.2336
https://doi.org/10.1103/PhysRevLett.70.2336
https://doi.org/10.1103/PhysRevB.78.134422
https://doi.org/10.1103/PhysRevB.78.134422
https://doi.org/10.1103/PhysRevB.78.134422
https://doi.org/10.1103/PhysRevB.78.134422
https://doi.org/10.1103/PhysRevLett.78.3567
https://doi.org/10.1103/PhysRevLett.78.3567
https://doi.org/10.1103/PhysRevLett.78.3567
https://doi.org/10.1103/PhysRevLett.78.3567
https://doi.org/10.1103/PhysRevLett.111.190602
https://doi.org/10.1103/PhysRevLett.111.190602
https://doi.org/10.1103/PhysRevLett.111.190602
https://doi.org/10.1103/PhysRevLett.111.190602
https://doi.org/10.1103/PhysRevLett.118.117202
https://doi.org/10.1103/PhysRevLett.118.117202
https://doi.org/10.1103/PhysRevLett.118.117202
https://doi.org/10.1103/PhysRevLett.118.117202
https://doi.org/10.1103/PhysRevLett.81.834
https://doi.org/10.1103/PhysRevLett.81.834
https://doi.org/10.1103/PhysRevLett.81.834
https://doi.org/10.1103/PhysRevLett.81.834
https://doi.org/10.1103/PhysRevE.59.2710
https://doi.org/10.1103/PhysRevE.59.2710
https://doi.org/10.1103/PhysRevE.59.2710
https://doi.org/10.1103/PhysRevE.59.2710
https://doi.org/10.1103/PhysRevE.63.016120
https://doi.org/10.1103/PhysRevE.63.016120
https://doi.org/10.1103/PhysRevE.63.016120
https://doi.org/10.1103/PhysRevE.63.016120
https://doi.org/10.1103/PhysRevE.78.051108
https://doi.org/10.1103/PhysRevE.78.051108
https://doi.org/10.1103/PhysRevE.78.051108
https://doi.org/10.1103/PhysRevE.78.051108
https://doi.org/10.1103/PhysRevE.87.032145
https://doi.org/10.1103/PhysRevE.87.032145
https://doi.org/10.1103/PhysRevE.87.032145
https://doi.org/10.1103/PhysRevE.87.032145
https://doi.org/10.1103/PhysRevE.89.022121
https://doi.org/10.1103/PhysRevE.89.022121
https://doi.org/10.1103/PhysRevE.89.022121
https://doi.org/10.1103/PhysRevE.89.022121
http://arxiv.org/abs/arXiv:1706.03351
https://doi.org/10.1103/PhysRevLett.109.175703
https://doi.org/10.1103/PhysRevLett.109.175703
https://doi.org/10.1103/PhysRevLett.109.175703
https://doi.org/10.1103/PhysRevLett.109.175703
https://doi.org/10.1103/PhysRevB.96.134306
https://doi.org/10.1103/PhysRevB.96.134306
https://doi.org/10.1103/PhysRevB.96.134306
https://doi.org/10.1103/PhysRevB.96.134306
https://doi.org/10.1016/0031-8914(66)90027-9
https://doi.org/10.1016/0031-8914(66)90027-9
https://doi.org/10.1016/0031-8914(66)90027-9
https://doi.org/10.1016/0031-8914(66)90027-9
https://doi.org/10.1103/PhysRev.141.517
https://doi.org/10.1103/PhysRev.141.517
https://doi.org/10.1103/PhysRev.141.517
https://doi.org/10.1103/PhysRev.141.517
https://doi.org/10.1088/0953-8984/22/7/076004
https://doi.org/10.1088/0953-8984/22/7/076004
https://doi.org/10.1088/0953-8984/22/7/076004
https://doi.org/10.1088/0953-8984/22/7/076004
https://doi.org/10.1103/PhysRevB.14.4946
https://doi.org/10.1103/PhysRevB.14.4946
https://doi.org/10.1103/PhysRevB.14.4946
https://doi.org/10.1103/PhysRevB.14.4946
https://doi.org/10.1103/PhysRevB.56.11673
https://doi.org/10.1103/PhysRevB.56.11673
https://doi.org/10.1103/PhysRevB.56.11673
https://doi.org/10.1103/PhysRevB.56.11673
https://doi.org/10.1103/PhysRevE.79.041126
https://doi.org/10.1103/PhysRevE.79.041126
https://doi.org/10.1103/PhysRevE.79.041126
https://doi.org/10.1103/PhysRevE.79.041126
https://doi.org/10.1103/PhysRevB.22.445
https://doi.org/10.1103/PhysRevB.22.445
https://doi.org/10.1103/PhysRevB.22.445
https://doi.org/10.1103/PhysRevB.22.445
https://doi.org/10.1103/PhysRevLett.74.426
https://doi.org/10.1103/PhysRevLett.74.426
https://doi.org/10.1103/PhysRevLett.74.426
https://doi.org/10.1103/PhysRevLett.74.426
https://doi.org/10.1103/PhysRevE.73.036702
https://doi.org/10.1103/PhysRevE.73.036702
https://doi.org/10.1103/PhysRevE.73.036702
https://doi.org/10.1103/PhysRevE.73.036702
https://doi.org/10.1103/PhysRevE.79.011125
https://doi.org/10.1103/PhysRevE.79.011125
https://doi.org/10.1103/PhysRevE.79.011125
https://doi.org/10.1103/PhysRevE.79.011125
https://doi.org/10.1103/PhysRevE.81.041113
https://doi.org/10.1103/PhysRevE.81.041113
https://doi.org/10.1103/PhysRevE.81.041113
https://doi.org/10.1103/PhysRevE.81.041113
https://doi.org/10.1103/PhysRevE.85.061106
https://doi.org/10.1103/PhysRevE.85.061106
https://doi.org/10.1103/PhysRevE.85.061106
https://doi.org/10.1103/PhysRevE.85.061106
https://doi.org/10.1140/epjb/e2013-40475-6
https://doi.org/10.1140/epjb/e2013-40475-6
https://doi.org/10.1140/epjb/e2013-40475-6
https://doi.org/10.1140/epjb/e2013-40475-6
https://doi.org/10.1103/PhysRevE.92.022134
https://doi.org/10.1103/PhysRevE.92.022134
https://doi.org/10.1103/PhysRevE.92.022134
https://doi.org/10.1103/PhysRevE.92.022134
https://doi.org/10.1140/epjst/e2016-60337-x
https://doi.org/10.1140/epjst/e2016-60337-x
https://doi.org/10.1140/epjst/e2016-60337-x
https://doi.org/10.1140/epjst/e2016-60337-x
https://doi.org/10.1088/0953-8984/1/33/015
https://doi.org/10.1088/0953-8984/1/33/015
https://doi.org/10.1088/0953-8984/1/33/015
https://doi.org/10.1088/0953-8984/1/33/015
https://doi.org/10.1103/PhysRevLett.67.1027
https://doi.org/10.1103/PhysRevLett.67.1027
https://doi.org/10.1103/PhysRevLett.67.1027
https://doi.org/10.1103/PhysRevLett.67.1027
https://doi.org/10.1103/PhysRevB.69.064415
https://doi.org/10.1103/PhysRevB.69.064415
https://doi.org/10.1103/PhysRevB.69.064415
https://doi.org/10.1103/PhysRevB.69.064415
https://doi.org/10.1088/0031-8949/89/7/075805
https://doi.org/10.1088/0031-8949/89/7/075805
https://doi.org/10.1088/0031-8949/89/7/075805
https://doi.org/10.1088/0031-8949/89/7/075805
https://doi.org/10.1016/j.jmmm.2016.11.046
https://doi.org/10.1016/j.jmmm.2016.11.046
https://doi.org/10.1016/j.jmmm.2016.11.046
https://doi.org/10.1016/j.jmmm.2016.11.046
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1703954
https://doi.org/10.1063/1.1703954
https://doi.org/10.1063/1.1703954
https://doi.org/10.1063/1.1703954
https://doi.org/10.1007/BF01293604
https://doi.org/10.1007/BF01293604
https://doi.org/10.1007/BF01293604
https://doi.org/10.1007/BF01293604
https://doi.org/10.1103/PhysRevLett.47.693
https://doi.org/10.1103/PhysRevLett.47.693
https://doi.org/10.1103/PhysRevLett.47.693
https://doi.org/10.1103/PhysRevLett.47.693
https://doi.org/10.1103/PhysRevB.44.5081
https://doi.org/10.1103/PhysRevB.44.5081
https://doi.org/10.1103/PhysRevB.44.5081
https://doi.org/10.1103/PhysRevB.44.5081
https://doi.org/10.1103/PhysRev.185.832
https://doi.org/10.1103/PhysRev.185.832
https://doi.org/10.1103/PhysRev.185.832
https://doi.org/10.1103/PhysRev.185.832
https://doi.org/10.1023/A:1018611122166
https://doi.org/10.1023/A:1018611122166
https://doi.org/10.1023/A:1018611122166
https://doi.org/10.1023/A:1018611122166
https://doi.org/10.1088/1742-5468/2007/04/P04008
https://doi.org/10.1088/1742-5468/2007/04/P04008
https://doi.org/10.1088/1742-5468/2007/04/P04008
https://doi.org/10.1103/PhysRevE.80.042104
https://doi.org/10.1103/PhysRevE.80.042104
https://doi.org/10.1103/PhysRevE.80.042104
https://doi.org/10.1103/PhysRevE.80.042104
https://doi.org/10.1103/PhysRevB.82.174434
https://doi.org/10.1103/PhysRevB.82.174434
https://doi.org/10.1103/PhysRevB.82.174434
https://doi.org/10.1103/PhysRevB.82.174434
https://doi.org/10.1007/JHEP08(2016)036
https://doi.org/10.1007/JHEP08(2016)036
https://doi.org/10.1007/JHEP08(2016)036
https://doi.org/10.1007/JHEP08(2016)036
https://doi.org/10.1103/PhysRevLett.55.2527
https://doi.org/10.1103/PhysRevLett.55.2527
https://doi.org/10.1103/PhysRevLett.55.2527
https://doi.org/10.1103/PhysRevLett.55.2527



